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Abstract 
Recently with the development of 3D modeling and digitizing tools, more and more models 

have been created, which leads to the necessity of the technique of 3D mode retrieval system. In 
this paper we investigate a new method for 3D model retrieval based on orthogonal projections. 
We assume that 3D models are composed of trigonal meshes. Algorithms process first by a 
normalization step in which the 3D models are transformed into the canonical coordinates. Then 
each model is orthogonally projected onto six surfaces of the projected cube which contains it. A 
following step is feature extraction of the projected images which is done by Moment Invariants 
and Polar Radius Fourier Transform. The feature vector of each 3D model is composed of the 
features extracted from projected images with different weights. Our System validates that this 
means can distinguish 3D models effectively. Experiments show that our method performs quit 
well. 
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1 Introduction 
Now 3D models play an important role in many applications such as computer game, 

computer aided design, e-business, molecular biology, cultural relic preservation, etc, and become 
the forth multimedia type after sound, image and video[1]. Recent developments in techniques for 
modeling, digitizing and visualizing 3D shapes have led to an explosion in the number of available 
3D models on the Internet and in domain-specific databases. This has led to the development of 
3D shape retrieval systems which can retrieve similar 3D objects according to the given query 
object. This problem involves many fields such as Computer Graphics, Artificial Intelligence, 
Computer Vision, Pattern Recognition, etc. The standard descriptions have been brought into the 
frame of MPEG-7[2].  
 3D Model Retrieval based on content first automatically computes model data thus extract 
features such as shape, space relation, color and texture of material, etc, then establishes an index 
for multi-dimension information of 3D model. We can calculate the similarity between the query 
model and the aimed models in multi-dimension feature space so as to realize the browse and 
retrieval of 3D model database. Thus users can get their needed models using ocular feature 
matching, which is more close to the mode that people usually rely on their intuition and 
impression to use information in real life. 



 The outline of the rest of this paper is as follow: in the next section we review the relevant 
previous work. In Section 3 we describe feature extraction and comparison based on orthogonal 
projections. In Section 4 experiments and results are presented in detail. At last we give the 
conclusion and future work in Section 5. 

2 Previous Work 
Paquet made the initial research and got remarkable achievements[3][4]. From then on, a lot of 

researches have been carried on. Now many approaches have been proposed In general, they can 
be divided into four types: Retrieval based on shape, Retrieval based on topology, Retrieval based 
on image and Retrieval based on surface attributes. 
 Anderst[5] directly syncopated 3D model with some mode, then calculated the proportions of 
point number of each unit in that of the whole model, thus a shape histograms was formed. In his 
paper, Anderst introduced three methods to syncopate 3D models: shell model, sector model and 
spider web model. So we can retrieve model through comparison of shape histograms. Suzuki[6] 
put forward to a different method to syncopate 3D models which was called point density. This 
method did not form feature vector only by the syncopated units but classified the syncopated 
units, so the dimension of feature vector and computational quantity decreased greatly. Osada[7] 
investigated a 3D model retrieval system based on shape distributions. The main idea was to 
calculate and get large numbers of statistical data which could be served as shape distributions to 
describe the features of models. The key step was to define the functions which could describe the 
models. Reference [7] defines five simple and easy-to-compute shape functions: A3, D1, D2, D3 
and D4. Because this method was based on large number of statistical data, it was robust to noise, 
resampling and mesh simplification. Vranic’s[8] method firstly voxelized the 3D model, then 
applied 3D Fourier Transform on these voxelizations to decompose the model into different 
frequencies, finally choosed certain amount of coefficients of frequency as this model’s feature 
vector. Another approach[9] investigated by Vranic was spherical harmonics analysis, which was 
also called 2D Fourier Transform on unitary sphere. This method needed sampling and harmonics 
transform, so the process of feature extraction was slow. Chen[10] had developed a web-based 3D 
model retrieval system in which a topology method using Reeb graph was introduced. Reeb graph 
could be constructed by different precisions, thus in this way mutli-resolution retrieval was 
available. 
 There are also many searches on image-based retrieval[11] [12] [13],of which Chen at Taiwan 
University made outstanding productions[12]. In Chen's system, several images, taken from 
different views around, are used to represent a 3D model and then transformed into descriptors. 
Thereafter, the matching of any two 3D models is achieved by matching two groups of 2D images 
by those descriptors. 100 images which belong to 10 lightfields for each model are required and 
the calculation is enormous. The method proposed in the paper also belongs to this type but aims 
to reduce the number of images required for per 3D model, thus quickens the speed of retrieval. 

3 Feature Extraction and Comparison 
The essence of 3D model retrieval is comparison of feature vectors, so the choice of feature is 

vital to the performance of a 3D model retrieval system. In this paper, we propose a method based 
on orthogonal projections and the process of feature extraction and comparison can be divided into 
four steps as follow: 1. Normalize the pose; 2. Project the 3D models onto six surfaces of the 



projected cube; 3. Extract features of the projected images; 4. Compare the 3D models. The rest of 
the section will discuss the above four steps one by one in detail. 

3.1 Pose Normalization 
3D models have arbitrary position, orientation and scaling in 3D space. In order to capture 

the projected features of a model, the model has to be placed in a canonical coordinate frame. 
Thereby, if we scaled, translated, rotated or flipped a model, then the placing into the canonical 
frame would be the same. 

 Let be the set of vertices on the surface of this model. 

The goal of pose normalization is to find an affine map  in such a way that a 

model of any translation, rotation and scaling can be put normatively by this transformation. 
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 The translation invariance is accomplished by finding the center of the model: 
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  So the point is the center of this model, we move  to coordinate origin. 

Thus for each point , a corresponding transformation: 

 is performed. Based on the transformation we define points set 
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 The rotation invariance is accomplished by the method of PCA(Principle Component 
Analysis). We calculate the covariance matrix . C
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 This step must be done after the translation of to coordinate origin. Obviously the matrix 

is a real symmetric one, therefore its eigenvalues are non-negative real numbers. Then we sort 
the eigenvalues in a non-increasing order and find the corresponding eigenvectors. The 
eigenvectors are scaled to Euclidean unit length and we form the rotation matrix 

cP

C

R  which has 
the scaled eigenvectors as rows. We rotate all points in 'P  and a new points set is formed: 
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 When this step has been done, the model is rotated so that the X-axis maps to the eigenvector 
with the biggest eigenvalue, the Y-axis maps to the eigenvector with the second biggest eigenvalue 
and the Z-axis maps to the eigenvector with the smallest eigenvalue[14]. An effect of PCA is 



illuminated as Figure 1, the left model is in a gradient coordinate frame while after PCA it is 
placed regularly as showed in the right image. 

 
Fig.1. An effect of PCA 

 The scaling invariance is accomplished by zooming in or out the model to a fixed size. Firstly 
let rmax be the max distance from the set of vertices to coordinate origin. Next for each point in 

,we must do the third transform and obtain the final points set: ''P
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 Obviously, for each point in , the following inequation come into existence. '''P
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So the model can be contained in a cube whose center is coordinate origin and length of arris 
is 2, we call such a cube axis-aligned bounding box(AABB). The new model which is composed 

of points set '''P  and has the same topology structure as the original model is just the result of 
process of pose normalization.  

We must notice that the distribution of points may not be uniform, for example, a large 
quadrangle in the surface of a model can be decomposed into two triangles and four points while 
some fine detail needs hundreds of triangles and points. Thus the result of pose normalization will 
not be perfect. We can easily modify the method described above. A feasible way is that the points 
set P  is taken uniformly from the surface of a model instead of the original set of vertices. 
Detailed introduction about uniform point-taking can be found in Reference [15]. 

3.2 Project the 3D Models onto Six Surfaces of AABB 
After the pose normalization has been done, we can project the 3D model onto the planes and 

form 2D images. The planes we chose are the six surfaces of the projected cube. The main idea is 
to divide the model according to the three orthogonal planes of Cartesian reference frame: 
XY-plane, YZ-plane and ZX-plane and each plane divides the model into two parts. Figure 2 
shows the division. Notice that the images on two parallel projected planes are different if the 
model is not symmetrical with regard to the corresponding syncopating plane. 

 



Fig.2. Syncopating Planes 

To illustrate the difference of distances from the points on the surface of the divided model to 
the projected planes, we use different gray values on the projected 2D images. The bigger the 
distance is, the bigger gray value the corresponding projected point has. Figure 3 shows the result 
of the projections of the model of insect as showed in Figure 1. The projected images is fixed to 

 and the process of projection can be achieved by Z-buffer arithmetic256256× [16]. For some 
models, the projected images have spiculate edges and corners, which make it hard for further 
process, so a step to smooth the projected images is necessary. In this paper, we adopt the mean of 
Dilation in Mathematical Morphology[17] to achieve the aim. 

 
Fig.3. Projections 

3.3 Feature Extraction of the Projected Images  
Now we have six projected images for each 3D model which are corresponding to the model, 

so the united features of these images also basically represent the features of the 3D model. Since 
the foreground and background of these projected images are clearly differentiated, the images 
needn’t segmentation and the extraction of feature becomes easy. In this paper, we join up two 
ways to enhance the performance of the arithmetic: Moment Invariants and Polar Radius Fourier 
Transform. These two approaches extract feature vectors respectively in space domain and 
frequency domain.  

3.3.1 Moment Invariants 

 Moment Invariant proposed by Hu[18] is a kind of feature based on region. Let  be a 

2D digital image with its size being 
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),( cycx  is the centroid point of the image . Based on the definition above, Hu defined 7 

moment invariants as: 
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 The 7 moment invariants keep changeless to the translation, rotation and scaling of the object 
in the images. We can form a feature vector of an image using these 7 moment invariants. Because 
different moment invariants represent different physical meanings, they have different scopes of 
values and can not be compared directly. We must place these moment invariants at the same 
status so that these moment invariants play the same roles in comparison of feature vectors, 
Conference [19] introduces a method based on Gauss unitization. 

3.3.2 Polar Radius Fourier Transform 
 Polar Radius Fourier Transform is based on the contour. So the first step is contour extraction 
of the projected images. We used contour tracking arithmetic introduced in Conference [20]. The 
result is showed in Figure 4(a). 
 As the points numbers on the contour are different, we can’t directly apply this transform. 
Firstly we must sample the contour and remain the same number of points. To hold details on the 
contour, we adopt a method of equidistance in which two adjoined sampling points have the same 
distances on the contour, as showed in Figure 4(b). 

 
Fig.4. a) Contour              b)Sampling on contour 

 Figure 4(b) has 360 sampling points, we can obverse that its shape is very close to the 

contour. Calculate the polar radius  of each sampling point. ir
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),( cycx  is the centroid of contour and  is the number of sampling. Then we can 

calculate the Polar Radius Fourier Transform: 
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 We choose the first several coefficients as the high frequency part is not steady and changes 
drastically when the contour has even a slight difference. To get invariance for scaling, we choose 



the following list as feature vector: ]
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3.4 Comparison of 3D models  
 The distance between two models can be obtained by combining the distances of 
corresponding projected images with different weights. There are six 2D images for one 3D model, 
but there they are in different statuses. In this subsection, we investigate a method to unite the 
feature vectors of six images into one. 

3.4.1 Comparison with different weights 
According to Section 3.1, we can be acquainted that after PCA the eigenvector corresponding 

to the biggest eigenvalue becomes X-axis, the eigenvector corresponding to the second biggest 
eigenvalue becomes Y-axis and the third eigenvector becomes Z-axis. The theory of probability 
points out that the value of eigenvalue represents the density of distributing of points in the 
direction of corresponding eigenvector, so projections form different directions play different roles 
in comparison. As showed in Figure 3, we can get rough shape from the image projected on 
XY-plane while we can’t from image projected on YZ-plane, this is because the information 
supplied by different projections is not equal.  

Let , ,  (each actually has two distances, but has the same weights) respectively 

represent distances of projections of the two models from three coordinate planes and 

, ,

xyD yzD zxD

xEV yEV zEV are the eigenvalues calculated in the process of PCA when calculating the query 

model. Then we can define the distance between two models: 
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Thus the image which contains more information accordingly plays a more important role in 
comparison, as a result the distance  can represent the difference of two models more closely.  D

3.4.2 Comparison of Projected Images 
 As illustrated in Section 3.3, there are two kinds of feature vectors, and the computations of 
distances of both vector adopt Euclidean Distance. But according to statistical data we notice that 
the two kinds of distance have different range of values. In general, the distance of feature vector 
composed of moment invariants ranges from 0.0 to 10.0, while the feature vector composed of 
coefficients of Fourier Transform ranges from 0.0 to 0.5. Obviously, they can not be added 
together directly. A feasible way is to externally unitize the feature vectors and make their 
distances range between [0, 1] to the best of our abilities. In this paper, we assume that the 
distributions of feature vectors of both kinds accord with Gauss Distribution. For each kind of 
feature vector of image, the detailed step to be externally unitized is as following: 
 1. Calculate all the distances between the same oriented projections of two models: 

,  is the number of models in model database. jiNUMjijiD ≠= ,,2,1,,, L NUM

 2. Calculate the average  and covariance averD σ of the 2)1( −NUMNUM  distances. 



  and averD σ  are the inherent physical measure of a 3D model database and stay 

invariable if the database remains changeless. So although the two steps above are very 
time-consuming, this work is once and for ever. 

3. When we calculate , , or , if is the preliminary result, then xyD yzD zxD imgD

2)1
3

( +
−

=
σ

averDimgD
imgD .We can easily know that the probability of the fact that  

falls into the range of [0,1] is over 99%. 

imgD

Thus we can add the two unitized distances directly. If we want to emphasize one of the two 
factors, we can endow it with a bigger weight. 

4 Experiments and Results 
 According to the method described above, we have developed a 3D model retrieval system 
using Visual C++. The system consists of off-line pre-process module and on-line retrieval process 
module. In the off-line pre-process, features of 3D models are extracted and stored in database 
within about 2 seconds on average for per model using a PC with Pentium IV 1.8G CPU and 
Windows 2000 Server Operation System. In the on-line process, users can select a 3D model as 
the query model and get the first 48 models which are most similar to the input one. A query needs 
1.8 seconds on average. Figure 5 shows a typical example for a query of dogs. The left six images 
are the abbreviative projected images of the dog model. In this query, the weights of Moment 
Invariants and Polar Radius Fourier Transform are respectively 0.3 and 0.7. We can observe that 
the result is satisfactory.  

 
Fig.5. A query of dogs 

 We have collected 2863 models from Web in total with a median of 3789 points and 7146 
triangles per one. The models are not all well defined trigonal meshes，many of which contain 
cracks, self-intersections, polygons-missing, etc. To fairly test the performance, we use the 
Princeton Shape Benchmark (PSB), which is a defacto criterion of 3D model database and is 
introduced in Conference [21] in detail, to test our system. It is a collection of 1814 models which 
are manually divided into 161 classes, each containing at least 4 models. The performance can be 
decided by two measures: precision and recall. “Precision” measures that the ability of the system 
to retrieve only models that are relevant while “recall” measures the ability of the system to 
retrieve all models that are relevant. Let be the number of relevant models in the database, in C



other words,  is the number of models of the class to which the query model belongs. Let  
be the number of relevant models that are actually retrieved in the top 

C N
A  retrievals. Then, recall 

and precision are defined as follows:   

C
NrecallA

Nprecision == ,  

There is a trade-off relationship between precision and recall. In our system each model has a 
feature vector of 162 dimensions. We test various kinds of models including animals, plants, cars, 
characters, and so on, from each kind we choose ten models as the query models and test the 
results. From the average precision-recall diagram, as showed in Figure 6, we can easily observe 
that Chen’s method only slightly outperforms ours, but the queries using our method is much 
quicker than his because ours need only fewer images to be compared despite that ours need an 
additional step of pose normalization. 

 
Fig.6. Comparison of two methods 

5 Conclusion and Future Work 
In this paper, we present a new 3D model retrieval system based on orthogonal projections. 

The contribution of this paper can be summarized as: Realize 3D model retrieval by 2D image 
comparisons and get considerable result at preferable speed. To improve the performance, we use 
two kinds of features to work together. At the same time, because our system is based on 
projections, we can easily realize the retrieval by 2D image. Given a 2D silhouette, we can get the 
models which have the similar silhouette. Furthermore, our method is robust to some kinds of 
flaws of 3D models as described in Section 4. 

The technology of 3D model retrieval is just underway and there is a long way to advance. 
Because of its complexity, many ripe methods which can be applied on images can not directly be 
transplanted to 3D models, as a result, the performance is not satisfactory on the whole and needs 
further enhancement. A next work of us is to apply the newest field in Digital Geometry 
Processing on the 3D model retrieval, the main idea being each model can be decomposed into a 
basal mesh and several details[22], then through analyzing these comparatively simple parts, we can 
obtain the firsthand features of 3D models. 
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