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Abstract 

 
Nowadays, many commercial CAD systems support history-based, constraint-based and feature-

based modeling. Unfortunately, most systems fail during the re-evaluation phase when various kind of 
topological changes occur. This issue is known as “persistent naming” which refers to the problem of 
identifying entities in an initial parametric model and matching them in the re-evaluated model. Most works 
in this domain focus on the persistent naming of atomic entities such as vertices, edges or faces. But very few 
of them consider the persistent naming of aggregates like shells (any set of faces). We propose in this paper a 
complete framework for identifying and matching any kind of entities based on their underlying topology, 
and particularly shells. The identifying method is based on the invariant structure of each class of form 
features (a hierarchical structure of shells) and on its topological evolution (an historical structure of faces). 
The matching method compares the initial and the re-evaluated topological histories, and computes two 
measures of topological similarity between any couple of entities occurring in both models. 

The naming and matching method has been implemented and integrated in a prototype of commercial 
CAD Software (Topsolid). 
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1. Introduction 
 

Static solid modeling systems (B-rep, CSG, etc.) largely used in the Computer Aided Design (CAD) 

area are more and more replaced by dynamic modeling systems (known as history-based, constraint-based 

and feature-based modelers) which allow both to express and to record conceptual designs and “design 

intents”. These dynamic modeling systems are often gathered under the term of parametric modeling systems 

[15]. A parametric model is composed of a representation of an object, of a set of parameters (characterizing 

the object) and of a list of constraints (equations or functions) applied to the object. By extension, a 

parametric modeler is a system for geometric design which preserves not only the explicit geometry of the 

designed object (called parametric object or current instance), but also the set of constructive gestures used 

to design it (called design process or parametric specification). 

This two-fold data structure enables rapid modifying by re-evaluation. However, when re-evaluation 

leads to topological modifications, references (between entities) used in the constructive gestures are difficult 
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to match in the new context, giving results different from those expected. A persistent naming system, robust 

regarding some topological modification, proves useful to preserve, from a re-evaluation to another, 

references between topological entities. It is the problem known as “persistent naming” or “topological 

naming” [5][9]. There are two major situations in which persistent naming is need. First when parametric 

models change inside one CAD system and second when parametric models are exchanged to another CAD 

system. In the context of parametric data exchange, however, a full persistent naming solution is not essential 

during transfer because there are no parametric changes [14]. On the contrary, the main goal is to construct a 

model in the target system that is as similar as possible to the model in the source system, and specific 

problems can arise principally because constructive gestures can be defined differently in the two systems. 

Then, in this paper we focus on the persistent naming problem when parametric models change inside one 

CAD system. 

This paper is structured as follows. In section two, we discuss some pre-existing works and we give 

a detailed account of the major issues about naming in parametric modeling. The third and fourth sections 

introduce an alternative approach and a matching method which enable to address theses different issues. 

 

2. Previous work and Issues 
 

Although parametric modeling has developed and expanded for more than one decade, both in 

research centers and in the industry, probably due to commercial competition only a rather small number of 

publications were issued in the field of persistent naming. A detailed survey of naming methods could be 

found in [11]. One important precursory work in this domain is that of Hoffmann and Juan [7]. Over the same 

period of time several authors have analyzed the internal structure of parametric data models, proposing some 

editable representations [7][10][16], studying the persistent naming in a context of decomposed pointsets 

[13], discussing their underlying mathematical structures [12], describing the problems, either of the 

semantics of modeling operations [3][6] or of constraint management [4]. Several naming scheme and 

persistent naming mechanisms based on geometric or topological characterization of ambiguous entities have 

also been proposed [6][9][17]. A significant work has been proposed by Chen [6]. He suggests a model that is 

composed of two representations. For the first one, he uses an editable representation, called Erep [7], which 

is an unevaluated, high-level, generative, textual representation, independent of any underlying core modeler. 

It abstracts the design operations, contains the parametric specification and stores all entities by name. The 

second representation, evaluated and modeler dependent, contains the geometry (the current instance). The 

link between these two representations is obtained by a name schema which establishes the link between the 

geometric entities of the geometric model and the generic names (persistent) of the unevaluated model. Chen 

defines a precise structure for naming invariant entities, vertices, edges and faces (before the interaction with 

the actual geometry) which belong to a specific class of form features build by sweep operations (extrusions 



or revolutions). In this precise context, every entity in a sweep is named by reference to the corresponding 

source entity of the swept 2D contour and the constructive gesture. He also proposes an identification 

technique for contingent entities based on compositions of topological contexts (more or less extended 

topological neighborhoods) and on feature orientations. Each contingent entity is described by the smallest 

unambiguous topological context [5][6]. Chen has mainly studied the naming problem at the construction 

stage of the parametric model, and has given only very few indications about matching method used during 

the reevaluation process. Moreover, the identification method is fairly voluminous, since all the entities seem 

to have to be identified, even if they are not referenced by any constructive gesture. In particular, is it the only 

method which gives names and records explicitly the history of all invariant entities (vertex, edge, face). 

However, the suggested model represents two major contributions in this domain : on the one hand, some 

concepts of topological identification which will be used thereafter per many of other approaches, and on the 

other hand a very precise study of cases of ambiguity. 
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Fig 1 : Original and modified solid's Brep 

 
 
 
 
 
 

Raghothama and Shapiro [12] provide what is believed to be the first formal analysis of the nature of 

this problem and suggest a solution that can be guaranteed to work within certain well-defined limitations. 

They use the structure of a B-rep as a cell complex to control and evaluate the effects of changes in 

parameter. In this way, they introduced boundary representation deformations in their approach to the 

problem, which they related to the question of how to define families of objects in parametric modelling. 

Then, the main problem to address is to be able to determine which objects belong to a family, defined by a 

prototype model, and which objects do not. For that, they define BR-invariance and BR-variance in order to 

characterize continuity in term of cells complex. Basically they argue that as long as a continuous boundary 

deformation is possible from the prototype model to the new instance, the latter is considered to be a member 

of the family. However, as they also admit, definition of continuous deformations, BR-invariance and BR-

variance seem to be too restrictive when the model's topology changes radically, and operations like splitting 

and merging of model entities would have to be dealt with, in order to allow topological changes such as the 

elimination of holes, but this has not been elaborated. Moreover, the notion of parametric family must depend 

on the semantics of constructive operations used to create the object. For example, using the Fig 1 introduced 

in [12], the two objects can be regarded as belonging to the same or different families according to the 

meaning of the blend constructive gesture : if the blend is achieved either on the intersecting edges between 



the cylinder and the face f or on the oriented edge e according to position and orientation of this edge. 

Clearly, it may not be possible to provide a complete solution, since this does not appear to exist in 

any practical system at present. Most of the previous studies discussed parametric modeling in terms of 

creation (but not or in a succinct way re-evaluation), and none deals with the whole range of major issues 

introduced in the following of this section. However, some mechanism must be provided that will give 

correct results in most cases and also, of course, be compatible with the approaches taken by the CAD system 

developers. 

The main problem for parametric re-evaluation is to characterize geometric and topological entities 

of a parametric model. Characterizing entities consists in giving them a name at design time and “finding 

them” again at re-evaluation time (i.e. matching entities of the initial model with entities of the re-evaluated 

model.) 

Let us take the example of Fig 2 to illustrate this problem. The initial model is designed by means of 

a parametric specification containing four successive constructive gestures. The fourth one consists of 

rounding edge e. If the initial model is saved after this fourth step, the current instance no longer contains 

edge e: it was removed by the rounding function. Thus, the rounding function, which has edge e as input 

parameter, cannot any longer be represented in the parametric specification part of the model. Therefore, 

“names” are needed to represent entities referenced in the parametric specification whether or not they exist 

in the current instance in order to be able to re-evaluate these entities. 

Moreover each constructive gesture creates a number of entities which have to be distinguished and 

therefore named, to be referenced by further constructive gestures, even if the same number of entities exists 

in all possible re-evaluations (no topological change). Therefore, each entity should be named in a non-

ambiguous and unique way at design time. 
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Swept block U Slot T Slot Round edge 

Fig 2: Naming problem 



The problem is even more complex for parametric models of which the entities and the number of 

entities change from one evaluation to another. Let us return to the previous example, but this time in the re-

evaluated model. We notice that, at step 3, the edge e has been split into edges e1 and e2. Thus at step 4 the 

problem is to determine which edge(s) has(ve) to be rounded. The problem is to identify, i.e. to match, edge e 

with edges e1 and e2 despite topology changes. Thus, when re-evaluation leads to topology changes a new 

issue is to match two different structures. The naming mechanism should be powerful enough to perform a 

robust matching during re-evaluation. For example, the innovative Kripac's model [9] introduces an 

interesting graph structure for identification of any topological entities based on face history (creations, splits, 

merges and deletions of faces), but it does not allow to record that a selected mapping was only approximated 

as it uses a discrete metrics. That strongly induces the later mappings introducing "piece loss" problem during 

re-evaluation and would deserve to be taken into account. Indeed, the matching algorithm consists on a 

backward-forward search in the graph structure and a cross-analysis. More precisely, starting from a given 

face f, a backward search is done in the graph, until reaching an ancestor face already matched. Then, starting 

from this common face, a forward search is done in the graph, to find the mapping of f. The matching 

calculated on the ancestor face is done approximately. Therefore, it is possible not to analyze all faces that 

should be analyzed. Fig 4 illustrates this problem. The matching of face 3.2 is done at the re-evaluation’s third 

step. The face 2.1, the ancestor face of face 3.2, has been matched with face 2.3 at the re-evaluation’s second 

step. Then, the cross-analysis to find the mapping of face 3.2 is done only between faces coming from 2.1 and 

faces coming from 2.3. In particular, in this example, only faces 3.1 and 3.2 will be crossed with face 2.3. 

The algorithm “looses” the face 3.5 which can be considered part of face 3.2. Moreover, this matching 
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Fig 3 : Re-evaluation of a parametric model consisting of four construction steps: construction 
of a block by extrusion of the face 1.A, addition of a cylindrical protrusion, subtraction of a slot 

and then rounding of the edge between a shell and the protrusion 
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algorithm is very sensitive to the subdivision of the topological neighborhood. It tries to match new faces 

with the old ones by analyzing the topological neighborhoods. The cross-analysis consists of finding the 

longest common face cycle in the topological neighborhoods. Unfortunately, as shown in [11], this cross-

analysis is not relevant in case of irregular subdivision of the topological neighborhoods. 

The last important issue relates to the persistent naming of aggregates. Most works in the persistent 

naming domain focus on the persistent naming of atomic entities such as vertices, edges or faces. But very 

few of them consider the persistent naming of aggregates. Particularly, the persistent naming of shells (a set 

of connected faces) currently represents an important requirement for CAD. 

In fact, the problem here is to have a model able to reference in the parametric specification (i.e. to 

name in a persistent way), entities corresponding to various semantics and able to characterize various user 

design intents. This could be done particularly by naming high level abstractions like shells. For example, the 

designer might want to express that a feature is applied on a shell corresponding to a slot bottom rather than 

on a particular face. To illustrate this problem, let us take the example of Fig 3, but modifying a little the re-

evaluation process by moving the position of the cylindrical protrusion to the face 1.F. According to whether 

the rounding function, at step four, was expressed between the cylinder and face 2.1 (case 1) or between the 

cylinder and the top shell composed of faces <1.F, 1.G, 1.H, 1.I> (case 2), the re-evaluated model is different 

because the "design intent" is different. In the first case one obtains a model where the round disappeared 

since it cannot be made any more between the cylinder and face 2.1. In the second case one obtains a model 

where the round always exists since it could be made between the cylinder and the top shell. Actually, in most 

of CAD systems it is possible to name some shells (also named "smart collectors", "selection intend", etc.). 

But either the domain of referenceable shells is considerably restricted to some particular shells (i.e. usually 

only the complete 2D manifold boundary of the part or the feature), either the re-evaluation process leads to 

pertinence and stability problems of the naming mechanism. Let's take again the example in Fig 3. The shell 

used and referenced by the last constructive gesture is the shell  composed of faces <3.2, 2.1> (grayed 

shell). It represents one of the two parts appeared at step 3 as a result of a split of an initial shell 

corresponding to the top of the object created at step 1 and then possessing a user meaning. During the re-

evaluation process, the position of the slot is changed and the topology of the object too. In order to be able to 

re-evaluate the fourth constructive gesture (rounding operation) and since the topology is now different, it is 

necessary to calculate in the re-evaluated model the shell corresponding to  (i.e. to calculate the matching 

of ). To solve this problem, a classical approach consists to characterized  by the set of faces 

contained in this shell ( ={3.2, 2.1}). Then, using both a mapping mechanism for faces and this shell 

characterization it is possible to compute the shell ={1.H, 2.2} corresponding to  in the re-

evaluated model because, at step 4, faces 3.2 and 2.1 are mapped respectively to faces 1.H and 2.2. 

Unfortunately,  is not suitable with the user design intent who wanted to designate one of the two shells 
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appeared at step 3 by split of the initial shell corresponding to the top of the object created at step 1. 

Obviously, the shell  should be composed of the set of faces {1.H, 2.2, 3.6}. Then, the problem is how 

to represent and establish correspondence between shells in the presence of topology-changing operations. 

réevS

 

3. Principles of the proposed approach 
 

Fig 4: "Loss of faces" during matching (Is 3.2 matched with 3.5 ?) 
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The global architecture of the model consists of a three layers architecture : 

• The parametric specification layer contains the description of the modeling operations 

(feature-based operation, Boolean operations, chamfering operations, blending operations, 

2D contour and sweeping operations, etc.) that defined the parametric object; these 

operations refer to the layer of names. 

• The name layer allows representing geometric or topological entities that existed at some 

time during the parametric design process; these names can reference geometric or 

topological entities if they still exist in the geometrical layer. 

• The geometrical layer contains the geometric and topological entities that constitute the 

current instance; it can also contain geometric and topological entities that existed in some 

previous steps of a parametric design to support UNDO functions. 

 2To define robust names allowing solving the issues introduced in section , we have proposed to 

distinguish two types of geometric and topological entities [1]: 

• Invariant entities. An invariant entity is a geometric or topological entity that can be, 

completely and unambiguously, characterized by the structure of a constructive gesture and 

its input parameters, independently of involved values. In Fig 2, invariant entities include 



the end face of the swept block, the lateral shell of the horizontal slot with its begin and end 

faces (that can, or not exist), etc.. To characterize, i.e. to “name”, such entities, information 

models are to be defined that relate these entities to constructive gestures and to their input 

parameters. 

• Contingent entities. Beside those invariant entities, there exist entities that depend on the 

context of a constructive gesture. We call contingent entity a geometric or topological entity 

that results from an interaction between the pre-existing geometric model and invariant 

entities resulting from a particular constructive gesture. For example, in Fig 4, the number of 

lateral faces generated by the second slot (step 3) in the initial and in the re-evaluated model 

is not identical. A naming mechanism is also required to define how to name these 

contingent entities. 

The proposed method enables to identify, in a single and non-ambiguous way, both invariant and 

contingent entities using a direct acyclic graph (dag), called shell graph, consisting of a hierarchical structure 

of shells above of a historical structure of faces (i.e. dag of faces). 

The hierarchical structure of the shell graph is defined recursively in the following way: A node 

represents a shell (a connected set of faces) and an oriented link from node a to node b means that the shell b 

is include in the shell a. Let f be a face in the geometric model existing or having existed at a previous 

construction step in the geometric model. On the lowest level of the hierarchical structure a node represents a 

particular shell corresponding to a face fi. This node is also called elementary-shell, because a face can be 

considerate as an elementary-shell. It is associated to a label equal to 0 corresponding to a hierarchical level 

of the elementary-shell in the graph and it is noted . 0S
Then, a higher hierarchical level shell (also called non elementary-shell) is defined recursively by the 

connected set { }
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Let a node  be connected through oriented links to a node (according to the previous 

definition, we must have p>0 and p>q). This means that the corresponding shell is include in the 
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The graph is then structured in shells, sub-shells, etc., in order to be able to apprehend the geometry 

at various levels of granularity, and thus to express different semantics. An example of this hierarchical 

structure is given in Fig 5. For example, 1.G, 1.H, 1.I, 1.F are elementary-shells (level 0). They are sub-shells 

of the 1,top (level 1) and 1,top is the super-shell of these elementary-shells. 1,block (level 3) is the super-shell 

of 1,front (level 1), 1,back (level 1) and 1,lateral (level 2). 

 

Such a definition allows representation of connected shells (a shell is a composition of connected 

elementary or non elementary-sub-shells), and overlapping shell (an elementary or non elementary-shell 

could belong to different non elementary-super-shells). 

In the following of this paper, we use equivalently the term face or elementary-shell. 

The historical structure of the shell graph is defined in the following way: The goal is to follow 

shells evolution (split, merge, destruction, modification) in order to be able, during model design, to identify 

the involved shells, then, during re-evaluation, to identify the effective shells (in the current instance) 

corresponding to the referenced shell. We only represent explicitly the elementary-shell (i.e. face) history in 

the graph because it is the only historical information necessary to solve the persistent naming problem of 

shells (see sections  4 and  5). Each node represents a face, which exists or has existed in the model. All the 

faces without outgoing historical links exist in the geometry. Invariant shells have no historical ancestor. 

They define entries in the shell graph. At a construction step t, an invariant non elementary-shell referenced 

in a constructive gesture consists of all the faces belonging to this shell and existing at step t in the current 

instance (i.e. the historical leave faces at step t of the faces (i.e. elementary sub-shells) contained in this non 

elementary-shell). For example, at the fourth step of the initial construction process, the non elementary-shell 

<1, top> in Fig 8 consists of faces <1.F, 1.G, 3.1, 3.2, 2.1> in the current instance. 

Fig 9 illustrates a part of the face graph corresponding to the object presented in Fig 3. The top face 

evolution is described by historical links. In this example, the top face of the block is split differently during 

the construction and the re-evaluation process then the initial and the re-evaluated graphs are not the same. 

 

 

 

 

 

 

 

 

 

Fig 5 : Invariant hierarchical shell structure corresponding to the swept block in Fig 3
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4. Naming of entities 
 

It is necessary to associate a characterization to each graph's node in order to identify in a persistent 

way the shells during construction and re-evaluation processes. 

The identification of a shell is based on unchanging elements that characterize it in a unique way. In 

a parametric model, what never changes is the construction process (we consider the modification of the 

construction process as an edited model and not as a model re-evaluation). Therefore, shell characterization is 

done by means of the construction step number (creation order) and by means of additional information 

which identifies each shell in a unique way. So the characterization of a shell is as follows : <StepId, 

Additional information>. The problem is to define the necessary and sufficient additional information that 

enables both characterization of shells in a unique way within each construction step and persistent re-

evaluation. 

As stated before, we consider that each constructive gesture can be subdivided in two steps. Firstly, 

the creation of the feature where all shells must be named (for example the elementary-shell 1.A in Fig 4), and 

secondly, the feature positioning within the existing geometry. This interaction with the existing geometry 

leads to modification and deletion of existing shells and to creation of new contingent shells. These 

contingent shells must also be named (for example the elementary-shell 2.1 in Fig 4). Therefore, there are two 

types of naming to implement: one for invariant shells and another for contingent shells. A preliminary study 

of only elementary shells matching can be found in [2]. 

4.1 Naming of invariant shells 

4.1.1 Naming of invariant elementary-shells (faces) 

According to the feature taxonomies proposed in [1][8], invariant faces present in the graph are 

generated by four types of features (primitive, transition, extrusion and revolution). For the two first cases, 

the invariant naming of the generated faces are ensured by a unique topological traversal of the object (see 

[1]). 

In the case of extrusion, the generator contour is swept along a director path. Each resulting 
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Fig 6: Invariant face naming. 



topological entity corresponds to the cartesian product between a topological entity of the profile and a 

topological entity of the path. For example in Fig 6, face e1e4 from the extruded object corresponds to the 

cartesian product between the director edge e1 of the director path and the generator edge e4 of the generator 

contour. In a similar way, the internal face v2f1 comes from v2 (director path) and f1 (generator contour). 

Robust naming of each contour entity and of each path entity is fundamental to enable robust naming of faces 

in the graph.  

Each invariant face is associated with an invariant stamp representing the additional information 

allowing to characterize each face in a unique way within each construction step. So, for each graph node 

corresponding to an invariant elementary-shell the following characterization is associated: <StepId, 

<InvariantStamp>> where StepId is the construction step of this face and InvariantStamp is <generator entity, 

director entity>. 

4.1.2 Naming of invariant non elementary-shells 

Invariant shells are entirely defined by the constructive gesture. Each constructive gesture must then 

be associated in advance to an invariant structure which allows non elementary-shell naming in a unique and 

unambiguous way. Fig 5 gives an example of a hierarchy of an invariant shell. In [1][8], an invariant 

hierarchical structure is defined for each form feature classified in the taxonomy. However, it is suitable to 

extend a little this taxonomy, in order to integrate invariant aggregates generated automatically by the system 

during the interaction between the object (part) and the feature. For example, in case of a protrusion feature, 

this is done by adding a new super-shell (aggr-prot) in the hierarchical structure of the graph between the 

protrusion and the face or the shell of the block on which this protrusion is fixed to (see Fig 7). An invariant 

aggregative shell can consist of either invariant or contingent sub-shells. 

 

 

Then, in this way, each entity of the invariant structure can be associated with an unique invariant 

stamp defined in the taxonomy (top, lateral, protrusion, aggr-prot, etc.). This invariant stamp represents the 

additional information allowing to characterize each shell in a unique way within each construction step. So, 

for each graph node corresponding to an invariant non elementary-shell the following characterization is 
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associated: <StepId, <InvariantStamp>> where StepId is the construction step of this non elementary-shell. 

4.2 Naming of contingent shells 

4.2.1 Naming of contingent elementary-shells (faces) 

For contingent face, the additional information consists of an iterative number (an arbitrary but 

unique number for each construction step). This name (<StepId, <ItNumber>>) is sufficient to characterize in 

a unique way each entity during the construction process, but is not sufficient to allow an ulterior matching of 

contingent faces. Therefore, each contingent face in the graph is associated with information about his 

topological neighborhood (see section  5.2.1). 

4.2.2 Naming of contingent non elementary-shells 

Contingent non elementary-shells result from the evolution (split, merge, destruction, modification) 

of an invariant non elementary-shell. They appear in a conditional way because of interactions occurring 

during the construction process. So, contingent non elementary-shells possess necessarily an invariant 

ancestor non elementary-shell (several in case of fusion). 

The only contingent non elementary-shells explicitly represented in the graph are the contingent non 

elementary-shells referenced in a constructive gesture. When a contingent non elementary-shell must be 

referenced by a constructive gesture, a new node corresponding to this shell and consisting of faces is 

generated in the graph. This shell can then in its turn being used in an ulterior constructive gesture to build, 

for example, an invariant aggregative shell. This node is associated with the following characterization : 

<StepId, <InvariantShell, FaceList>>, 

where StepId is the construction step of this shell, InvariantShell is the graph node corresponding to 

the invariant ancestor shell from where this contingent shell results, FaceList is the list of the faces contained 

in this shell at the StepId construction step. 

As explained before, contingent non elementary-shells can be completely calculated and 

characterized at the time of their referencing in the parametric specification according to invariant and 

contingent elementary-shells (faces) and invariant non elementary-shells. Avoiding to calculate and to 

represent at each construction step the history of the various contingent non elementary-shells simplifies 

considerably both the time and the memory complexity of the model. Then, contingent non elementary-shells 

are calculated through a boundary traversal of the geometric model just when the user wishes to use it in a 

constructive gesture. The user selects a face F belonging to this shell, and the system must be able to calculate 

dynamically the list Lcont of non elementary-shells containing this face. The calculation of Lcont is achieved in 

two steps : 

• firstly, the calculus of Linv, the list of all invariant non elementary-shells containing F, by a 

backward (history of faces) and upward (hierarchy of faces) traversal of the shell graph 

from F. We can note that a face can have several direct historical predecessors if its history 



contains a fusion. In a same way, a shell can belong to different super-shells in case of 

overlapping super-shells (see for example shell <1, top> in Fig 8). Finally, a shell can 

belong to a contingent super-shell. In the example proposed in Fig 8, the selection and then 

the backward traversal from the face 3.2 at step four of the construction process generate 

the list Linv={<1, top>, <1, latteral>, <1, block>, <2, aggr-prot>}. 

• Secondly, for each shell Sinv belonging to Linv a contingent non elementary-shell Scont is 

calculated and added to Lcont. A contingent non elementary-shell is necessarily an historical 

descendant of an invariant ancestor non elementary-shell. So for each shell Sinv an 

incremental topological traversal from F of the geometric model at step StepId is performed 

and each encountered face is added to Scont if it is a historical descendant of invariant faces 

(i.e. elementary-sub-shells) belonging to Sinv. In this way, Scont represents the biggest 

connected component containing F and historical descendant of Sinv. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8 : Part of the shell graph corresponding to the parametric model in Fig 3 for step 1, 2 and 3. The 
cylindrical protrusion feature is positioned on the shell <1, top>. To make the graph readable, 

intergraph links between the invariant structure and the nodes corresponding to the slot feature are 
not represented. 
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For example, let us continue with the selection of the face 3.2, at step four of the construction 

process, in Fig 8. For each invariant shell in Linv, a contingent shell is generated dynamically through 

construction of connected components using an incremental topological traversal from face 3.2. For example, 

the first invariant shell <1, top> in Linv generates the contingent shell <4, <1, top>, {3.2, 2.1}>. Indeed, the 

incremental traversal from face 3.2 is achieved on the geometric model following the topological adjacencies. 

Each encountered face is both used in its turn to continue the incremental traversal and added to the 

contingent shell, if it is an historical descendant of elementary-sub-shell (i.e. faces) belonging to the <1, top>. 

The encountered face belonging to <1, top> is only the face 2.1. Using in a similar way all invariant shells 

belonging to Linv, different contingent shells are generated and added respectively in the list Lcont={<4, <1, 

top>, {3.2, 2.1}>, <4, <1, latteral>, {3.2, 2.1, 1.C, 1.D, 1.E, 1.F, 1.G, 3.1}>, <4, <1, block>, {3.2, 2.1, 1.C, 

1.D, 1.E, 1.F, 1.G, 3.1, 3.3, 3.4}>, <4, <2, aggr-prot>, {3.2, 2.1, 2.A, 2.B}>}. 

 

5. Matching of entities 
 

The matching of entities consists in associating n entities of the initial model with m entities of the 

re-evaluated model in order to decide if each of the n entities corresponds to one or several entities of the re-

evaluated model, and conversely if each of the m entities corresponds to one or several entities of the initial 

model. The matching can be done using the geometry and/or the topological neighborhood of entities to be 

referenced. Topology use allows to get a robust matching method in relation to important geometric 

variations and small topological variations. However, in some particular cases, when the model contains non-

linear entities, topological neighborhood, even extensive [7], are ambiguous and do not allow characterizing 

in a unique way an entity of this model. Thus, it would be proper to use an additional geometric mechanism 

(feature orientation, etc.) allowing to remove this ambiguity [6]. 

Matching quality is very relative and generally depends on operations on the one hand and on the 

semantics the designer wants to express on the other hand. Some semantics information can be available only 

in the parametric specification layer. When the parametric specification layer asked for a name, the 

responsibility of a generic naming layer is to provide information enough about this name in order to enable 

interpretation of this name according to the semantics of a particular operation accessible in the parametric 

specification layer. For example, suppose that a face F is referenced by two constructive gestures in the 

parametric specification : a painting of  F and a build of a protrusion on F. A persistent name is asked by the 

parametric specification layer for F to the naming layer in order to store the construction process. A name 

called N1 is then constructed and returned by the naming layer for F. Now, modifying some parameters of the 

construction process, suppose that the re-evaluation of the parametric specification split F in two faces. It 

seem obvious that N1 must correspond to different entities according to the constructive gesture of the 

specification layer that uses this persistent name :  for the painting operation the two faces should be painted, 



but for the protrusion operation only one face could be used. 

According to the previous statements, and since matching an entity with another means that both 

entities are geometrically and topologically similar but not necessarily identical, our approach consists in 

defining a naming layer which measures the similarity between the set of potentially corresponding entities 

(called crossing process) and returns these measures to the parametric specification layer. The later will then 

use this information according to the semantics of a particular constructive operation to select the well 

matching. 

To achieve this, a matching value between faces present in the initial graph (called IG) and faces 

present in the re-evaluated graph (called RG) is calculated. Others entities (non elementary-shell, edge, etc.) 

are mainly named according to this matching. 

5.1 Matching of invariant shells 
The matching method is similar for both invariant elementary-shells and invariant non elementary-

shells. In both cases, the characterization <StepID, InvariantStamp> of invariant shells is associated to the 

constructive gesture. This characterization is unique and unambiguous during both construction and re-

evaluation of the model. Then, the matching calculus is obvious. For example, in Fig 8 the invariant shell <1, 

top> can be found in the two invariant hierarchical structures. 

5.2 Matching of contingent shells 

5.2.1 Matching of contingent elementary-shells (faces) 

At the re-evaluation step, we calculate topological similarity between p faces of IG and q faces of 

RG. Thus, we speak about “crossing” between two sets of faces based on each face topological 

neighborhood. For each face F, we note γF={ο0,ο1,..οn} the circuit of oriented edges (οi)i=0..n of the boundary 

of F. The crossing result is a set of inter-graphs relationships that can exist between faces of IG and faces of 

RG. 

Let γFig
={ο0, ο1,.. οn} and γFrg

={ο0’, ο1’,.. οm’} be the circuits associated with faces Fig of IG and Frg 

of RG. We define ΓFig
 and ΓFrg

 the sets of the partial sub-paths of γFig
 and γFrg

; a partial sub-path of a circuit is 

a sub-path of the circuit where some oriented edges have been deleted. 

First, one could notice that actually an oriented edge cannot appear in two distinct face circuits in an 

oriented model. If an oriented edge appears in the circuit of face F and the circuit of face G then it means that 

F and G have opposite orientation: the model is not oriented. So, for each oriented edge ο, there is a unique 

face of which circuit uses ο and we call neighbor adjacent face of ο, the adjacent face of the edge associated 

with o that does not use o in its circuit. 

In order to quantify topological matching, we define the equivalence relation ~Adj between face 

circuits γ and γ’, defined by: γ~Adjγ’ ⇔ ∃(οi)i=0..n and (οi’)i=0..n / γ=ο0.. οn, γ’=ο0’.. οn’ and ∀i∈{0..n}, the 

invariant ancestor face of the neighbor adjacent face of οi is also the invariant ancestor face of the neighbor 



adjacent face of οi’. In other words, when you come along γ and γ’ and you consider only the invariant 

ancestor of neighbor adjacent faces, you get the same circular list of invariant faces around the faces of which 

circuits are γ and γ’. 

Therefore, we can define, ΓF∩G the set of elements of ΓF that are equivalent to an element of ΓG 

according to our relation. This way, ΓF∩G contains all partial sub-paths of γF such as there is at least an 

element of γG of which circular list of adjacent faces, in terms of invariant faces, is identical. We propose to 

introduce a coefficient allowing to weight each edge influence in the topological neighborhood according to 

the edge length. Thus, we introduce three functions: 

•  π  such that for each edge e, π(e) is the length of e, 

• Π such that for each circuit γ={ο0, ο1,.. οn}, Π(γ)=Σi=0..nπ(οi), 

• Θ, such that for each element γ of ΓF∩G , Θ(γ)=max{ Σi=0..n min(π(οi), π(οi’)) with (οi)i=0..n 

and (οi’)i=0..n / γ=ο0.. οn and ο0.. οn~Adjο0’.. οn’}. 

Θ(γ) can be interpreted as the maximum common weight between γ and an equivalent element in ΓG. 

Finally, we define σ=max{Θ(γ),γ∈ΓF∩G}. 

σ is the maximum sum of edge lengths that we can extract from the boundaries of Fig and Frg such as 

the edges appear in the same order in the boundaries of Fig and Frg. 

We calculate two ratios: δ0=σ/Π(γG) and δ1=σ/Π(γF). δ0 is the ratio of inclusion of γFig
 in γFrg

 and δ1 

is the ratio of inclusion of γFrg
 in γFig

. δ0 and δ1 range in interval [0,1] according to the similarity of both 

weighted topological neighborhoods. δ0=δ1=1 means that the two topological neighborhoods γFrg
 and γFig

 are 

equals. δ0=1 and δ1∈]0,1[ means that γFrg
 is included in γFig

. δ0∈]0,1[ and δ1∈]0,1[ means that γFrg
 and γFig

 

partially overlaps. δ0=δ1=0 means that the two topological neighborhoods γFrg
 and γFig

 do not overlaps. 

 
If a face needs to be matched at step i of the re-evaluation process, faces to be use in a same crossing 

are leaves of IG and RG appeared up to step i and having the same invariant ancestor face. This approach 
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resolves the problem of “piece loss” introduced in section  2 and illustrated in Fig 4. Let us observe on this 

example the calculation of δ0 and δ1 at step 2 (see Table 1). It is necessary to cross two faces of IG (F2.1, F2.2) 

with two faces of RG (F2.3, F2.4). 

Previous calculations allow evaluating in an individual way probabilities δ0 and δ1 with mutual 

inclusion of Frg and Fig faces and so topological matching between both faces. This very local approach does 

not take into account topological matching of adjacent faces. Once δ0 and δ1 are calculated, we have to define 

a method allowing to evaluate in a global way similarity between crossed faces. This method consists in 

handling, in an iterative way, the whole table cells in decreasing order of matching possibilities. For that, we 

apply the following process:  

• Find a cell which is not already “handled” of which sum δ0+δ1 is maximum (if there exist 

several cells giving this maximum sum, we take any cell of them). Let us suppose that this 

cell corresponds to the crossing of faces Frg and Fig. 

• Decrement edge weights for edges in γFig
 and γFrg

 according to the weight of corresponding 

oriented edges in the element o∈ΓF∩G that lead to the maximum σ; actually, a temporary 

weight function replaces π that makes edges appear ‘shortened’ since some length is no 

more available for further cell computing.  

• For cells which are not already handled, calculate numerators σ of δ0 and δ1 with remaining 

weights. 

• Mark this cell as handled 

• Iterate the process until all cells are marked. 

Note that handling a cell of which coefficients δ0 and δ1 are equal to zero does not change anything 

for the table. Thus, when a cell has both coefficients equal to zero, it can be considered as handled. Note also 

that during the handling, coefficients δ0 and δ1 only decrease. 

Observe the result of this method on Table 2. We can see, on the second loop table, that the grayed 

cell is selected because it is the maximum coefficient sum. Edge coefficients (through a temporary weight 

function) of γ2.3 are zero because every edge length has been totally used. Edge coefficients of γ2.1 are not 

totally equal to zero because some edge length has been partially used. Coefficients of the row and the 

column are recalculated. The result is zero for the row corresponding to face 2.3 because there is no more 

face that can be used on L to identify other faces. Coefficients being equal to zero, this cell is considered as 

already handled (dashed cells). At the third loop, only one cell has to be handled. No computing of 

coefficients δ0 and δ1 is needed because all cells of row and column are handled. 



 
Let us observe the evolution of different re-evaluation steps in Fig 4. Initially, at the first re-

evaluation step, identification between invariant entities (see section 
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 5.1) exists and is symbolized by the 

dotted link between face 1.A of IG and RG (see Fig 9). 

 

Fig 9: Cover links after re-evaluation at step 2 
 

At the second re-evaluation step, face 1.A is split into two new faces 2.3 and 2.4. Face 1.A of RG, 

father of both faces, is connected by a cover link (identification link in this particular case because it is an 
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Table 2 : Global calculations of mutual inclusion between crossed faces, 
at the second re-evaluation step of Fig 4 



invariant face) to face 1.A of IG of which leaves, appeared up to the second step, are faces 2.1 and 2.2. Both 

faces 2.3 and 2.4 have to be crossed with faces 2.1 and 2.2. Intergraph links obtained after the second re-

evaluation step are represented in Fig 9 by tagged links between nodes 2.1, 2.2and 2.3, 2.4 containing values 

δ0 and δ1. 

At the third re-evaluation step, leaves of 1.A appeared up to the third step must be crossed (i.e. faces 

3.1, 3.2, 3.3 and 3.4 must be crossed with 2.3, 3.5 and 3.6). 

Finally, the whole graph obtained after the fourth re-evaluation is shown in Fig 10. 
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Fig 10: Construction of the initial and the re-evaluated graphs 
corresponding to the history of the invariant face 1.A in Fig 3  

and calculation of the matching intergraph links at step 4. 
 

5.2.2 Matching of contingent non elementary-shells 

Matching a contingent non elementary-shell of the initial model consists in calculating a set 

of potentially corresponding non elementary-shells in the re-evaluated model and deciding which 

of these shells correspond effectively to . A shell corresponds potentially to  if it belongs to the same 

invariant shell history and if it possesses a topological similarity with . 

iniS
reevΓ reev

iS
iniS iniS

iniS
The matching of non elementary-shells can be done by using either geometry and/or the topological 

neighborhood of these shells or faces belonging to these shells. Calculation of matching having already been 

achieved for faces, it is less expensive to use the contents of non elementary-shells rather than topological 

neighborhood. 

The proposed shell matching method breaks up into two main steps: firstly, the calculation of reevΓ  

the set of potential corresponding shells and then the calculation of ratios measuring the probability of 

matching between  and each shell belonging toiniS reev
iS reevΓ . Similarly to faces, these ratios, called δ0 and 

δ1, are then stored in intergraph links between non elementary-shells. 



5.2.2.1 Calculation of  reevΓ

If the initial non elementary-shell we try to match is contingent, then the calculus of iniS reevΓ  

requires the construction of all potential corresponding shells  in the re-evaluated model. The 

contingent non elementary-shells are not explicitly represented in the B-rep model. Then, calculation of the 

non elementary-shells  is performed through construction of connected components in a similar way to 

the one introduced in the section 

reev
iS

reev
iS

 4.2.2. The starting face of the incremental topological traversal of the re-

evaluated geometric model is calculated through the matching intergraph links stored in the graph at face 

level for each face contained in the shell . So, a shell belongs to iniS reevΓ if at least one of its faces 

corresponds to the matching of a face belonging to . iniS
In Fig 8, the re-evaluation of the contingent non elementary-shell <4, <1, top>, {3.2, 2.1}> generate 

the set ={<4, <1, top>, {3.6, 1.H, 2.2}>} because there is intergraph links between faces 3.2 and 1.H 

and faces 2.1 and 2.2. Similarly, the non elementary-shell <4, <2, aggr-prot>, {3.2, 2.1, 2.A, 2.B} generate 

the set ={<4, <2, aggr-prot>, {3.6, 1.H, 2.2, 2.A, 2.B}>}. The non elementary-shell <4, <1, top>, {1.F, 

3.1, 1.G}> generate the set ={<4, <1, top>, {1.F, 3.5}>, <4, <1, top>, {3.6, 1.H, 2.2}>} containing two 

shells. Indeed, the face 1.G, for example, is matched on both the faces 3.5 and 3.6, and the incremental 

traversal from these two faces generates two different connected shells. 

reevΓ

reevΓ
reevΓ

5.2.2.2 Calculation of matching intergraph links 

For each non elementary-shell , we note S SΨ ={F1,..Fn} the set of faces belonging to . If a faces 

belonging to the initial graph is connected through an intergraph link to a face  belonging to the re-

evaluated graph, then we note  this relation. In order to quantify topological matching, we define the 

function =1 if 
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of the initial graph and one non elementary-shell  of 
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δ . 0δ is the ratio of inclusion of  in  and iniS reev
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the ratio of inclusion of  in . reev
iS iniS 0δ  and 1δ  range in the interval [0,1] according to the similarity of the 

contents of the shells. These calculations allow evaluating in individual way probabilities 0δ  and 1δ  of 

mutual inclusion of  and  shells and so topological matching between both shells. iniS reev
iS



For example in Fig 8, the calculation of the matching intergraph links for the contingent shell <4, <1, 

top>, {3.2, 2.1}> and the set ={<4, <1, top>, {3.6, 1.H, 2.2}>} gives reevΓ 0δ =2/2 and 1δ =2/3. 

The calculation of the matching intergraph links for the contingent shell <4, <2, aggr-prot>, {3.2, 

2.1, 2.A, 2.B} and the set ={<4, <2, aggr-prot>, {3.6, 1.H, 2.2, 2.A, 2.B}>} gives reevΓ 0δ =4/4 and 1δ =4/5. 

The calculation of the matching intergraph links for the contingent shell <4, <1, top>, {1.F, 3.1, 

1.G}> and the set ={<4, <1, top>, {1.F, 3.5}>, <4, <1, top>, {3.6, 1.H, 2.2}>} gives reevΓ 0δ =2/3 and 

1δ =2/2 for the matching between {1.F, 3.1, 1.G} and {1.F, 3.5} and 0δ =2/3 and 1δ =2/3 for the matching 

between {1.F, 3.1, 1.G} and {3.6, 1.H, 2.2}. 

When is an invariant shell then the coefficients iniS 0δ  and 1δ  between  and the single shell 

 belonging to  are equal to 1. Indeed, the shells being invariant, the matching is perfect and then it 

is not necessary to achieve the previous calculus. Then, the matching of an invariant shell at step t 

consists of all historical leaves at step t of the faces belonging to . For example, the invariant shell <2, 

aggr-prot> at step 3 consist of faces {2.A, 2.B, 3.1, 3.2, 2.1, 1.G, 1.F} in the initial model. During the re-

evaluation, the invariant shell <2, aggr-prot> of the initial graph is matched to the invariant shell <2, aggr-

prot> of the re-evaluated graph with coefficients 

iniS
reev
iS reevΓ

iniS
reev
iS

0δ  and 1δ  equal to 1. The faces belonging to <2, aggr-

prot> in the re-evaluated graph are {2.A, 2.B, 2.C, 1.F, 1.G, 1.H, 1.I} and then the historical leaves of these 

faces at step 3 are {2.A, 2.B, 1.F, 3.5, 3.6, 1.H, 2.2}. 

5.2.3 Other entity matching 

The matching of faces being robust, other entities (loops, edges, vertices, etc.) can then be named in 

term of faces or sets of faces. The characterization of these entities can be carried out in a way similar to the 

one introduced by Chen [6]. For example, an edge will be characterized by its two adjacent faces, the ordered 

list of the adjacent faces at its ends, as well as an orientation according to the feature orientation making it 

possible to remove some topological ambiguities. 

 

6. Implementation 
 

A package corresponding to the naming layer of the parametric model architecture has been 

implemented and integrated in a commercial CAD Software (Topsolid).  

The API between the naming layer and the two others layers of the parametric model is reduced to 

about ten elementary functions which enable to generate a persistent name for a topological entity designated 

interactively by the user, to calculate the matching of a persistent name computing the intergraph links, and to 



construct the historical structure of faces using at each construction step a bulletin board generated by the 

geometric layer and containing the evolution appeared on faces. 

The additional overhead in space mainly relates to the shell graph. Even if it is the price to pay in 

order to have the persistent naming of shells, this overhead is perceptible for important mechanical parts. 

However, the complexity of the graph does not grow tremendously with each operation because each 

operation impacts on average a limited number of faces. Moreover, the matching method for non elementary-

shells avoid calculating and representing at each construction step the history of the various contingent non 

elementary-shells. That simplifies considerably both the time and the memory complexity of the model. 

The additional overhead in time is not noticeable on a real mechanical part because on the one hand 

the calculus of measure of topological similarity is very limited (only faces coming from the same invariant 

ancestor), and on the other hand, geometrical calculus in CAD application represents a very important part of 

the time complexity in comparison with topological traversals of the model and the shell graph. 

The objects presented in Fig 11 have been constructed using this prototype. The first object is build 

with fourth constructive gestures (creation of an initial bloc by sweeping of a sketch, creation of a cylindrical 

protrusion, creation of a slot, and then creation of a blend between the cylindrical protrusion and the right part 

of the top shell). In the second and third objects, the position of the slot and the protrusion are changed. The 

shell matching method enables to retrieve the well right part of the top shell in both case and then the re-

evaluation can preserves or deletes the blend in a persistent way. 

 

 

Fig 11 : An example of re-evaluation using persistent 
 shell matching method 

 
 Object 1 Object 2 Object 3 



7. Conclusion 
 

We proposed a mechanism of persistent naming associated with a hierarchical structure allowing 

tracing the historical evolution of easily identifiable invariants in each constructive gesture. For that, the 

suggested method defines a shell graph, consisting of a hierarchical structure of shells above of an historical 

structure of faces. 

The shells characterization enables on the one hand to represent the different kinds of shells required 

in CAD during initial model construction and on the other hand to identify the effective shells matching to the 

referenced shells during model re-evaluation. A shell could be connected, overlapping (a face or a shell could 

belong to different super-shells), hierarchical (a shell could be a composition of shells). 

The matching method for faces offers various advantages. First of all, it is a global method of 

topological matching in the sense that it involves two sets of faces in order to find the best possible matching 

for all faces. Then, it addresses the tracability loss problems. Finally, the use of weighted topological 

neighborhood of faces enables an efficient measurement of topological similarity. 

The matching method for non elementary-shells avoid calculating and representing at each 

construction step the history of the various contingent non elementary-shells. That simplifies considerably 

both the time and the memory complexity of the model. It is based on an invariant aggregative structure and 

on a construction of connected components using an incremental topological traversal of the geometric 

model. 
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