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Abstract 
 

Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex 
surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to 
subdivision depth. Adaptive tessellation reduces the number of faces needed to yield a smooth 
approximation to the limit surface and, consequently, makes the rendering process more efficient. In this 
paper, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfaces. 
Different from previous control mesh refinement based approaches, which generate approximate meshes 
that usually do not interpolate the limit surface, the new method is based on direct evaluation of the limit 
surface to generate an inscribed polyhedron of the limit surface. With explicit evaluation of general 
Catmull-Clark subdivision surfaces becoming available, the new adaptive tessellation method can 
precisely measure error for every point of the limit surface. Hence, it has complete control of the accuracy 
of the tessellation result. Cracks are avoided by using a recursive color marking process to ensure that 
adjacent patches or subpatches use the same limit surface points in the construction of the shared 
boundary. The new method performs limit surface evaluation only at points that are needed for the final 
rendering process. Therefore it is very fast and memory efficient. The new method is presented for the 
general Catmull-Clark subdivision scheme. But it can be used for any subdivision scheme that has an 
explicit evaluation method for its limit surface.  
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1. Introduction 
 

Subdivision surfaces have become popular recently in graphical modeling and animation 

because of their capability in modeling/representing complex shape of arbitrary topology [2], their 

relatively high visual quality, and their stability and efficiency in numerical computation. Subdivision 

surfaces can model/represent complex shape of arbitrary topology because there is no limit on the shape 

and topology of the control mesh of a subdivision surface. 

With the parametrization technique for subdivision surfaces becoming available [4] and with 

the fact that non-uniform B-spline and NURBS surfaces are special cases of subdivision surfaces 

becoming known [16], we now know that subdivision surfaces cover both parametric forms and discrete 

                                                      
∗ Corresponding author: 
Tel: 1-859-257-6760 
Fax: 1-859-323-1971 
Homepage: http://www.cs.uky.edu/~cheng 
Email: cheng@cs.uky.edu 



 
 

forms. Parametric forms are good for design and representation, discrete forms are good for machining 

and tessellation [1]. Hence, we have a representation scheme that is good for all graphics and CAD/CAM 

applications. 

Subdivision based evaluation process of a subdivision surface relies on performing repeated 

subdivision of the control mesh until the refined mesh is close enough to the limit surface (within some 

given tolerance). It is then possible to push the control points (mesh vertices) to their limit positions. But 

the number of faces in the uniformly refined meshes increases exponentially with the recursive steps of 

subdivision. See Figure 5(a) for an example where the control mesh of a Gargoyle is uniformly 

subdivided only twice and yet the resulting mesh is already quite dense. Hence, a good method for 

reducing the number of faces in the refined mesh while keeping the precision of the approximation is 

necessary. For instance, in Figures 5(b), 5(c), and 5(d), the same model is adaptively subdivided 4, 3 and 

2 times, respectively. The resulting meshes have a higher or similar precision while the number of facets 

in the resulting meshes is much less than the uniform case. Such a method is important for both rendering 

and finite-element mesh generation. The criterion for rendering, however, is different from the criterion 

for finite-element mesh generation. In the first case, the number of sides of the mesh faces could be 

different while, in the second case, the mesh faces are either all triangles or all quadrilaterals. Figure 5(e) 

shows a triangulated result of Figure 5(d). 

Research work for reducing the number of faces in a mesh has been done in several directions. 

Mesh simplification [8] is the most popular one over the past decade. It aims at removing some of the 

overly sampled vertices in a mesh and produces approximate meshes with various levels of detail. 

Another main method for reducing the number of faces in a mesh, called adaptive tessellation, is to apply 

adaptive or local refinement schemes to areas specified by a user or determined by an application. The 

resulting mesh should be crack-free and have the same limit surface as the uniformly refined mesh. 

There are two possible approaches for adaptive tessellation of subdivision surfaces. One is a 

mesh refinement based approach. It approximates the limit surface by adaptively refining the control 

mesh of the surface. The resulting mesh usually does not interpolate points of the limit surface. The other 

one is a surface evaluation based approach. This approach approximates the limit surface by generating 

an inscribing polyhedron of the limit surface, with vertices of the polyhedron taken (evaluated) adaptively 

from the limit surface. The mesh refinement based approach needs a subdivision scheme, such as the 

Catmull-Clark method or the Doo-Sabin method, to refine the input mesh. Most methods proposed in the 

literature for adaptive tessellation of subdivision surfaces belong to this category. The second approach 

needs a parametrization/evaluation method for the limit surface. With the availability of direct evaluation 

methods of subdivision surfaces recently [4-7], the second approach could be more appealing for adaptive 

tessellation of subdivision surface because of its simplicity in nature. Currently there is only one paper 

published in this category [11]. This paper works for parametrization that reproduces linear functions [19]. 

In this paper we will present a surface evaluation based approach for adaptive tessellation of 

subdivision surfaces. Our method is different from [11] in that our method works with any 

parametrization method and has a precise error estimate. The new approach is presented for the general 



 
 

Catmull-Clark subdivision surfaces [2], but it can be easily extended to work for any subdivision surface 

that has an exact evaluation method for its limit surface. 

 

2. Previous Work 

2.1. Catmull-Clark Subdivision Surfaces 
Given a control mesh, a Catmull-Clark subdivision surface (CCSS) is generated by iteratively 

refining (subdividing) the control mesh [2] to form new control meshes. The subdividing process consists 

of defining new vertices (face points,  edge points and vertex points) and connecting the new vertices to 

form new edges and faces of a new control mesh. A CCSS is the limit surface of a sequence of refined 

control meshes. The limit surface is called a subdivision surface because the mesh refining process is a 

generalization of the uniform B-spline surface subdivision technique. The valence of a mesh vertex is the 

number of mesh edges adjacent to the vertex. A mesh vertex is called an extra-ordinary vertex if its 

valence is different from four. A mesh face with an extra-ordinary vertex is called an extra-ordinary face. 

The valance of an extra-ordinary face is the valence of its extra-ordinary vertex. Given an extra-ordinary 

face, if the valence of its extra-ordinary vertex is n, then the surface patch corresponding to this extra-

ordinary face is influenced by 2n+8 control vertices. Recent work [4, 5, 6, 7] shows that any point in the 

limit surface of a CCSS can be exactly and directly evaluated from its 2n+8 control points. Hence control 

mesh subdivision is not absolutely necessary for the rendering of a CCSS. 

 

2.2. Adaptive Tessellation 
A number of adaptive tessellation methods for subdivision surfaces have been proposed [3, 9, 

10, 11, 14, 15]. Most of them are mesh refinement based, i.e., approximating the limit surface by 

adaptively refining the control mesh. This approach requires the assignment of a subdivision depth to 

each region of the surface first. In [3], a subdivision depth is calculated for each patch of the given 

Catmull-Clark surface with respect to a given error toleranceε . In [9], a subdivision depth is estimated 

for each vertex of the given Catmull-Clark surface by considering factors such as curvature, visibility, 

membership to the silhouette, and projected size of the patch. The approach used in [3] is error 

controllable. An error controllable approach for Loop surface is proposed in [11], which calculates a 

subdivision depth for each patch of a Loop surface by estimating the distance between two bounding 

linear functions for each component of the 3D representation. 

Several other adaptive tessellation schemes have been presented as well [15, 14, 10]. In [10], 

two methods of adaptive tessellation for triangular meshes are proposed. The adaptive tessellation process 

for each patch is based on angles between its normal and normals of adjacent faces. A set of new error 

metrics tailored to the particular needs of surfaces with sharp creases is introduced in [14]. 

 In addition to various adaptive tessellation schemes, there are also applications of these 

techniques. D. Rose et al. used adaptive tessellation method to render terrain [18] and K. Muller et al. 

combined ray tracing with adaptive subdivision surfaces to generate some realistic scenes [13]. Adaptive 



 
 

tessellation is such an important technique that an API has been designed for its general usage [17]. 

Actually hardware implementation of this technique has been reported recently as well [12]. 

 A problem with the mesh-refinement-based, adaptive tessellation techniques is the so called 

gap-prevention requirement. Because the number of new vertices generated on each boundary of the 

control mesh depends on the subdivision depth, gaps (or, cracks) could occur between the control meshes 

of adjacent patches if these patches are assigned different subdivision depths. Hence, each mesh-

refinement-based adaptive tessellation method needs some special mechanism to eliminate gaps. This is 

usually done by performing additional subdivision or splitting steps on the patch with lower subdivision 

depth. As a result, many unnecessary polygons are generated in the tessellation process. In this paper, we 

will adaptively tessellate a subdivision surface by taking points from the limit surface to form an 

inscribing polyhedron of the limit surface, instead of refining the control mesh. Our method simplifies the 

process of gap detecting and elimination. It does not need to perform extra or unnecessary evaluations 

either. 

2.3. Evaluation of a CCSS Patch 
Several approaches [4, 5, 6, 7] have been presented for exact evaluation of an extraordinary 

patch at any parameter point (u,v). In this paper, we will follow the parametrization technique presented 

in [7], because this method is numerically stable, employs less eigen basis functions, and can be used for 

the evaluation of 3D position and normal vector of any point in the limit surface exactly and explicitly. 

Some most related results of [7] are briefly summarized below. 

Every point in the parameter space of a regular or extra-ordinary patch can be exactly and 

explicitly evaluated as follows: 
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where n is the valance of the extraordinary patch, W is a vector containing the 16 B-spline power basis 

functions. are eigenvalues of the Catmull-Clark subdivision matrix and their values 

can be found in [7]. m and b can be exactly evaluated from u and v [7]. K and M
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b,j are constant matrices 

and their values can be found in [7]. G is the vector of control points (See [7] for their labeling). 

One can compute the derivatives of S(u,v) to any order simply by differentiating W(u,v) in Eq. 

(1) accordingly. For example, 
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With the explicit expression of S(u,v) and its partial derivatives, one can easily get the limit 

point of an extraordinary vertex in a general Catmull Clark subdivision surface: 

GMS nb ⋅⋅= +1,]0,,0,0,0,1[)0,0( L                         (3) 

and the first derivatives: 
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where Du and Dv are the direction vectors of 
u

S
∂

∂ )0,0( and 
v

S
∂

∂ )0,0( , respectively. The normal vector at 

(0,0) is the cross product of Du and Dv. 

 

3. Basic Idea 

3.1. Inscribed Approximation 
One way to approximate a curve (surface) is to use its control polygon (mesh) as the 

approximating polyline (polyhedron). For instance, in Figure 1(a), at the top are a cubic Bezier curve and 

its control polygon. For a better approximation, we can refine the control polygon using midpoint 

subdivision. The solid polyline at the bottom of Fig. 3(a) is the approximating control polygon after one 

refinement. This method relies on performing iterative refinement of the control polygon or control mesh 

to approximate the limit curve or surface. Because this method approximates the limit shape from control 

polygon or control mesh ``outside’’ the limit shape, we call this method circumscribed approximation. 

Another possible method is inscribed approximation. Instead of approximating the limit curve 

(surface) by performing subdivision on its control polygon (mesh), one can approximate the limit curve 

(surface) by inscribed polygons (polyhedra) whose vertices are taken from the limit curve (surface) 

directly. The easiest approach to get vertices of the inscribed polygons (polyhedra) is to perform uniform 

midpoint subdivision on the parameter space and use the evaluated vertices of the resulting subsegments 

(subpatches) as vertices of the inscribed polylines (polyhedra). For instance, in Figure 3(b), at the top are 

a cubic Bezier curve and its approximating polygon with vertices evaluated at parameter points 0, 1/2 and 

1. Similarly, the solid polygon at the bottom of Figure 3(b) is an approximating polygon with vertices 

evaluated at five parameter points. 

 

  

(a) Circumscribed (b) Inscribed 

    Figure 1. Inscribed and Circumscribed Approximation. 

 

Because inscribed approximation uses points directly located on the limit curve or surface, in 

most cases, it has faster convergent rate than the circumscribed approximation. As one can see clearly 

from Fig. 3 that the inscribing polygon at the bottom of Fig. 3(b) is closer to the limit curve than the 

circumscribing polygon shown at the bottom of Fig. 3(a) even though the inscribing polygon actually has 



 
 

less segments than the circumscribing polygon. 

However, the problem with both approaches is that, with uniform subdivision, no matter it is 

performe

3.2. Adaptive Inscribed Approximation 

For a patch of S( to approximate it with the 

quadrilate

d on the control mesh or the parameter space, one would get unnecessarily small and dense 

polygons for surface patches that are already flat enough and, consequently, slow down the rendering 

process. To speed up the rendering process, a flat surface patch should not be tessellated as densely as a 

surface patch with big curvature. The adaptive tessellation process of a surface patch should be performed 

based on the flatness of the patch. This leads to our adaptive inscribed approximation. 

 

u,v) defined on u1≤u≤u2 and v1≤v≤v2, we try 

ral formed by its four vertices V1=S(u1,v1), V2=S(u2,v1), V3=S(u2,v2) and V4=S(u1,v2). If the 

distance (to be defined below) between the patch and its corresponding quadrilateral is small enough (to 

be defined below), then the patch is considered flat enough and will be (for now) replaced with the 

corresponding quadrilateral in the tessellation process. Otherwise, we perform a midpoint subdivision on 

the parameter space by setting u12 = (u1+u2)/2 and v12 = (v1+v2)/2 to get four subpatches: S([u1, 

u12]×[v1,v12]), S([u12, u2]×[v1,v12]), S([u12, u2]×[v12,v2]), S([u1, u12]×[v12,v2]) and repeat the flatness testing 

process on each of the subpatches. The process is recursively repeated until the distance between all the 

subpatches and their corresponding quadrilaterals are small enough. The vertices of the resulting 

subpatches are then used as vertices of the inscribed polyhedron of the limit surface. For instance, if the 

four rectangles in Figure 2(a) are the parameter spaces of four adjacent patches of S(u,v), and if the 

rectangles shown in Figure 2(b) are the parameter spaces of the resulting subpatches when the above 

flatness testing process stops, then the limit surface will be evaluated at the points marked with small 

solid circles to form vertices of the inscribed polyhedron of the limit surface. 

Figure 2. Basic idea of the construction of an inscribed polyhedron. 

 the above flatness testing process, to measure the difference between a patch (or subpatch) 

and its co

 

In

rresponding quadrilateral, we need to parametrize the quadrilateral as well. The quadrilateral 

can be parametrized as follows: 
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where u1≤u≤u2, v1≤v≤v2. The difference between the patch (or subpatch) and the corresponding 

quadrilateral at (u,v) is defined as  

TvuSvuQvuSvuQvuSvuQvud )),(),(()),(),((),(),(),( 2 −⋅−=−=         (5) 

where •  is the second norm and AT is the transpose of A. The distance between the patch (or 

subpatch) and the corresponding quadrilateral is the maximum of all the differences: 
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To measure the distance between a patch (or subpatch) and the corresponding quadrilateral, we only need 

to measure the norms of all local minima and maxima of d(u,v). Note that Q(u,v) and S(u,v) are both C1-

continuous, and d(V1), d(V2), d(V3) and d(V4) are equal to 0. Therefore, by Mean Value Theorem, the 

local minima and maxima must lie either inside [u1,u2]×[v1,v2] or on the four boundary curves. In other 

words, they must satisfy at least one of the following three conditions: 
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For a patch (or subpatch) that is not adjacent to an extraordinary point (i.e., (u1,v1) ≠ (0,0)), m is 

fixed and known [7]. Hence Eq. (6) can be solved explicitly. With the valid solutions, we can find the 

difference for each of them using Eq. (5). Suppose the one with the biggest difference is . 

Then is also the point with the biggest distance between the patch (or subpatch) and its 

corresponding quadrilateral. We consider the patch (or subpatch) to be flat enough if  

)ˆ,ˆ( vu
)ˆ,ˆ( vu

ε≤= )ˆ,ˆ( vudD                                  (7) 

where ε is a given error tolerance. In such a case, the patch (or subpatch) is replaced with the 

corresponding quadrilateral in the tessellation process. If a patch (or subpatch) is not flat enough yet, i.e., 

if Eq. (7) does not hold, we perform a midpoint subdivision on the patch (or subpatch) to get four new 

subpatches and repeat the flatness testing process for each of the new subpatches. This process is 

recursively repeated until all the subpatches satisfy Eq. (7). 



 
 

 

Figure 3. Partitioning of the unit square [7] 
 

For a patch (or subpatch) that is adjacent to an extraordinary point (i.e. (u1,v1) = (0,0) in Eq. (6)), 

m is not fixed and m tends to ∞ (see Figure 3). As a result, Eq. (6) can not be solved explicitly. One way 

to resolve this problem is to use nonlinear numerical method to solve these equations. But numerical 

approach cannot guarantee the error is less thanε everywhere. For precise error control, a better choice is 

needed. In the following, an alternative method is given for that purpose. 

Eq. (3) shows that S(u,v) and Q(u,v) both converge to S(0,0) when (u,v) (0,0). Hence, for any 

given error toleranceε , there exists an integer such that if , then the distance between S(u,v) εm εmm ≥

and S(0,0) is smaller thanε /2 for any vu ×∈ , and so is the distance between 

uen , the distance 
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explicitly calculated. ext subsection, we will show how to calculate

quare with 
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⎡ ⎤ εmmu <≤22/1log (see Figure 3), eq. (6) can be 

used directly to find th ference betw S(u,v) and Q(u,v) for any fixed ⎡ ⎤22/1 εe dif een mum ),logmin(∈ . 

patch (or subpatch) and the corresponding quadrilateral. If this distance is sm

Therefore, by combining all these differences, we have the distance between the given extra-ordinary 

aller thanε , we consider the 

given extra-ordinary patch (or subpatch) to be flat, and use the distance quadrilateral to replace the extra-

ordinary pat . Otherwise, repeat

subpatch) and perform flatness testing on the resulting subpatches until all the subpatches satisfy Eq. (7). 

 

ch (or subpatch) in the tessellation process edly subdivide the patch (or 

 

3.3. Calculating 
For a given 

εm  
ε >0, an integer εk  will first be computed so that if k is bigger than εk , then the 

subpatch of  S(u,v) with 0≤u,v≤1/2^k is contained in a sphere with center S(0,0) and diameter ε  

(called an ε -sphere). A subpatch is contained in an ε -sphere if all points of the subpatch are ε /2 

away from S(0,0). 

To find such εk , we need a few properties from [7]. Recall that an extra-ordinary patch S(u,v) 

can be ex sed as 
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and G is the vector of control points of S e ei ions satisfy the scaling relation [4, 7], i.e., 
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In addition, S(0,0) is a fixed point and has an explicit expression for any patch  eq. 3), and 

Q(u,v) also has an explicit parametrization (See eq. (4)). Hence, similarly, by using the method of Eqs. (6), 
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4. Crack Elimination 
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but the right patch is approximated by 7 quadrilaterals. Consider the boundary shared by the left patch 

, th ef ertices 

But on the right side, the boundary is a polyline defined by four vertices : A2, C4, B4, and A5. They would 

s from different levels of the midpoint subdivision process, cracks could occur between 

adjacent patches. For instance, in Figure 4, the left patch A1A2A5A6 is approximated by one quadrilateral 

and the right patch. On the left side at boundary is a line segment d ined by two v : A2 and A5. 

not coincide unless C4 and BB  lie on the line segment define ut ua

case. Hence, cracks would appear between the left patch and the right patch. 
4 d by A2 and A5.  B  that us lly is not the 

 

Figure 4. Crack elimination. 
 

Fortunately Cracks can be eliminated simply by replacing each boundary of a patch or subpatch 

with the one that contains all the evaluated points for that boundary. For example, in Figure 4, all the 

dashed lines should be replaced with the corresponding polylines. In particular, boundary A2A5 of patch 

A1A2A5A6 should be replaced with the polyline A2C4BB4A5. As a result, polygon A1A2A5A6 is replaced with 

polygon A1A2C4B4B

olygons with any number of 

sides. However, it should be pointed out that through a simple zigzag technique, triangulation of those 

polygons is actually a simple and very fast process. 

A potential problem with this process is the new polygons generated by the crack elimination 

algorithm might not satisfy the flatness requirement. To ensure the flatness requirement is satisfied 

everywhere when the above crack elimination method is used, we need to change the test condition in Eq. 

(7) to the following one: 

A5A6 in the tessellation process. For rendering purpose this is fine because graphics 

systems like OpenGL can handle polygons with non-co-planar vertices and p

ε≤+ )ˆ,ˆ(),( vudvud                               (8) 

where  and )ˆ,ˆ( vu ),( vu  are solutions of Eq. (6) and they satisfy the following conditions: 

 ong all the solutions of Eq. (6) that are located on one side of Q(u,v), i.e. solutions that Am

satisfy Q(u,v)≥0, )ˆ,ˆ( vud  is the biggest. If there does not exist any solution such that 

Q(u,v)≥0, then )ˆ,ˆ( vud  is set to 0; 

 Among all the solutions of Eq. (6) that are located on the other side of Q(u,v), i.e. solutions that 

satisfy Q(u,v) < 0, ),( vud is the biggest. If there does not exist any solution such that Q(u,v) 

< 0, then ),( vud  is set to 0. 



 
 

From the definition of )ˆ,ˆ( vu  and ),( vu , we can see that satisfying Eq. (8) means that the patch being 

tested is located between two quadrilaterals that areε away. 

Note that all the evaluated points lie on the limit surface. Hence, for instance, in Fig. 4, points 

A2, C4, BB4 and A5 of patch A2A3A4A5 are also points of patch A1A2A5A6. With the new test condition in Eq. 

(8), we know that a patch or subpatch is flat enough if it is located between two quadrilaterals that are ε  

away. Because boundary points A2, C4, B4 and A5 are on the limit surface, they must be located between 

two quadrilaterals that are ε  away. So is the polygon A1A2C4BB

oxima lygon ar

4A5A6. Now the patch (or subpatch) and 

its appr ting po e both located inside two quadrilaterals that are ε  away. Hence the ove

error w

rall 

 bet een the patch (or subpatch) and its approximating polygon is guaranteed to be smaller than ε . 

In previous method aptive tessellation of subdivision surfaces [3, 9, 10, 14], the most 

t. The resulting surface s error contro

s for ad

difficult part is crack prevention. Yet in our method, this part becomes the simplest part to handle and 

implemen i llable and guaranteed to be crack free. 

5.
umerical  two different settings, the flatness of a patch, which can be 

 error e app

l e or relative sense. The flatness of a patch is 

called the

 

 Degree of Flatness 
Just like n  errors have

viewed as a numerical from th roximation point of view, has two different aspects as well, 

depending on if the flatness is considered in the abso ute sens

  absolute flatness (AF) if the patch is not transformed in any way. In that case, the value of ε  

in Eqs. (7) and (8) is set to whatever precision the flatness of the patch is supposed to meet. AF should be 

considered for operations that work on physical size of an object such as machining or prototyping. 

For operations that do not work on the physical size of an object, such as the rendering process, 

we need a flatness that does not depends on the physical size of a patch. Such a flatness must be Affine 

transformation invariant to be a constant for any transformed version of th patch. Such a flatness is 

called the relative flatness of the patch.  More specifically, if Q is the corresponding quadrilateral f

e 

o  

patch S, the relative flatness (RF) of S with respect to Q is defined as follows:  

},max{ 21 DD
dRF =  

where d i he maximal distance from S to Q, and D1, D2 are lengths of the diagonal lines of Q. It is easy 

to see that RF defined this way is A ote that when D1 and D2 are fixed, 

smaller RF means smaller d. Hence, RF indeed measures the flatness of a patch. The difference between 

RF and AF

he 

 

s t

ffine transformation invariant. N

 is that RF measures the flatness of a patch in a global sense while AF measures flatness of a 

patch in a local sense. Therefore, RF is more suitable for operations that have data sets of various sizes 

but with a constant size display area such as the rendering process. Using RF is also good for adaptive 

tessellation process because it has the advantage of keeping the number of polygons low in t

tessellation process. 

 



 
 

6. Algorithms of Adaptive Tessellation 
In this section, we discuss the important steps of the adaptive tessellation process and present 

the corresponding algorithms.  

6.1.   Global Index ID 
Currently, all the subdivision surface parametrization and e uation techniques are patch based 

[4, 6, 7]. Hence, no matter which method is used in the adaptive tessellation process, a patch cannot see 

val

vertices evaluated by other patches from its own (local) structure even though the vertices are on its own 

boundary. For example, in Figure 4, vertices C4 and BB

ed in previous patch evaluation. 

ith a global index ID, it is easy to do crack prevention even with a patch based approach. Actually, 

bsequent processing can all be done with a patch based approach and still performed efficiently. For 

example, in Figure 4, p

4 are on the shared boundary of patches A1A2A5A6 

and A2A3A4A5. But patch A1A2A5A6 can not see these vertices from its own structure because these 

vertices are not evaluated by this patch. To make adjacent patches visible to each other and to make 

subsequent crack elimination work easier, a global index ID is assigned to each evaluated vertex such that 

 all the evaluated vertices with the same 3D position have the same index ID; 

 the index ID's are sorted in v and then in u, i.e., if (ui,vi)≥(uj,vj), then IDi ≥ IDj, unless IDi or IDj 

has been us

W

su

atch A1A2A5A6 can see both C4 and BB  not evaluated by this 

patch. In

ygon for the tessellation purpose, i.e., A1A2C4B4A5A6. 

6

1 + v2)/2; 

This routine adaptively ma h P. Function `Evaluate' 

evaluates

4 even though they are

 the subsequent tessellating process, the patch simply output all the marked vertices on its 

boundary that it can see to form a pol

.2.    Adaptive Marking 
The purpose of adaptive marking is to mark those points in uv space where the limit surface 

should be evaluated. With the help of the global index ID, this step can be done on an individual patch 

basis. Initially, all (u,v) points are marked white. If surface evaluation should be performed at a point and 

the resulting vertex is needed in the tessellation process, then that point is marked in black. This process 

can be easily implemented as a recursive function. The pseudo code for this step is given below. 

AdaptiveMarking(P, u1, u2, v1, v2) 

1.       Evaluate(P, u1, u2, v1, v2); 

2.       AssignGlobalID(P, u1, u2, v1, v2);  

3.       if (FlatEnough(P, u1, u2, v1, v2))  MarkBlack(P, u1, u2, v1, v2);  

4.       else  u12 = (u1 + u2)/2;   v12 = (v

5.       AdaptiveMarking(P, u1, u12, v1, v12); 

6.       AdaptiveMarking(P, u12, u2, v1, v12); 

7.      AdaptiveMarking(P, u12, u2, v12, v2); 

8.      AdaptiveMarking(P, u1, u12, v12, v2); 

 

rks points in the parameter space of patc

 limit surface at the four corners of patch or subpatch P defined on [u1,u2]×[v1,v2]. Function 



 
 

`FlatEnough' uses the method given in section 3 and Eq. (7) to tell if a patch or subpatch is flat enough. 

Function `MarkBlack' marks the four corners of patch or subpatch P defined on [u1,u2]×[v1,v2] in black. 

All the marked corner points will be used in the tessellation process. 

6.3.    Adaptive Tessellation of a Single Patch 
The purpose of this step is to tessellate the limit surface with as few polygons as possible, while 

preventin that the limit surface will be evaluated only at the points 

marked i ly vertices that will be used in the tessellation 

process. T ecial care must be 

taken on tive marking, this process can easily be 

implemen e for this step is given below.  

, v2))  TessellatePolygon(P, u1, u2, v1, v2); 

v2)/2; 

.      AdaptiveTessellation (P, u1, u12, v1, v12); 

patch or subpatch P. Function 

`NoMarkedPointInside' te ing the boundary points, 

are mark

); 

n of a CCSS 
SS is given below. The algorithm takes the 

control m

CSSAdaptiveTessellation(Mesh M) 

ation(P, u1, u2, v1, v2);

g the occurrence of any cracks. Note 

n black, and the resulting vertices are the on

o avoid cracks, each marked points must be tessellated properly. Hence sp

adjacent patches or subpatches. With the help of adap

ted as a recursive function as well. A pseudo cod

AdaptiveTessellation (P, u1, u2, v1, v2) 

1.      if (NoMarkedPointInside(P, u1, u2, v1

2.      else  u12 = (u1 + u2)/2;   v12 = (v1 + 

3

4.      AdaptiveTessellation (P, u12, u2, v1, v12); 

5.      AdaptiveTessellation (P, u12, u2, v12, v2); 

6.      AdaptiveTessellation (P, u1, u12, v12, v2); 

 

This routine adaptively tessellates marked points in 

sts if none of the points inside  [u1,u2]×[v1,v2], exclud

ed. If all the interior points are in white (i.e. not marked), it returns TRUE. Function 

`TessellatePolygon' is defined as follows. 

TessellatePolygon(P, u1, u2, v1, v2) 

1.      Begin(TessellationModel);  

2.            Output all the marked points between:  

3.                  (u1,v1)  (u2,v1); 

4.                  (u2,v1)  (u2,v2

5.                  (u2,v2)  (u1,v2);  

6.                  (u1,v2)  (u1,v1);  

7.      End();  

6.4.    Adaptive Tessellatio
The overall algorithm for tessellating a general CC

esh of the surface as input.  

C

1.      for each face P in M 

2.            AdaptiveMarking(P, u1, u2, v1, v2); 

3.      for each face P in M 

4.            AdaptiveTessell



 
 

 

 
(a) Uniform (d) Adaptive (b) Adaptive (c) Adaptive 

   
(e) Tr daptive (h) Adaptive iangulated (f) Uniform (g) A

  
(i) Adaptive (j) Triangulated (k) Uniform (l) Adaptive 

    
(m) Adaptive (n) Adaptive (o) Adaptive (p) Triangulated 

Figure 5. Adaptive tessellation of surfaces with arbitrary topology. 

 

 



 
 

7. Implementation and Test Results 
The proposed approach has been implemented in C++ using OpenGL as the supporting 

graphics system on the Windows platform. Quite a few examples have been tested with the method 

described here. All of these examples have extra-ordinary points in the given meshes. Some of the tested 

results are shown in Figures 5. For instance, Fig. 5(f) is generated using uniform subdivision, while Figs. 

5(g), 5(h), 5(i) are tessellated with the adaptive technique presented in this paper, and Fig. 5(j) is the 

triangulated result of Fig i). Also Fig. 5(e) and Fig. 5(p) are the triangulated results of Fig. 5(d) and Fig. 

5(o), From Figur at al ely tessellat ndeed 

significantly reduce the number of faces in the resulting tessellation while satisfying the given error 

requirement. 

From our experiments, we also see that triangulated tessellations usually increases the number 

of polygons by at lease 2 times. Hence triangulation will slow down the rendering process while it does 

not improve accuracy. From the view point of rendering, triangulation is not really necessary. But for 

some special applications, such as Finite Element Analysis, triangulation is indispensable. As mentioned 

above, performing triangulation on the resulting mesh of our adapt e tessellation process is 

strai st. 

The proposed adaptive tessellation method is good for models that have large flat or nearly flat 

regions in its limit surface and would save significant amount of time in the final rendering process. One 

main disadvantage of all the current adaptive tessellation methods (including the method proposed here) 

is that they only eliminate polygons inside a single patch. They do not take the whole surface into 

consideration. For instance, all the flat sides of the rocker arm model in Fig. 5 are already flat enough, yet 

a lot of polygons are still generated there. 

 

8. Summary 
A uation-based tion metho l Catmull- sion 

surfaces is presented. The new method only evaluates those limit surface points that are needed in the 

final rendering process. On the other hand, while previous methods use a significant amount of effort to 

prevent the occurrence of cracks between adjacent patches, it takes almost no effort for the new method to 

eliminate cracks in the resulting inscribed polyhedron of the limit surface. Hence the new method is both 

computation efficient and memory efficient. 
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