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Abstract 
 

This paper presents a novel approach for constructing a piecewise triangular cubic polynomial 
surface with  continuity around a common corner vertex. A  continuity condition between two 
cubic triangular patches is first derived using mixed directional derivatives. An approach for constructing 
a surface with  continuity around a corner is then developed. Our approach is easy and fast with the 
virtue of cubic reproduction, local shape controllability,  continuous at the corner vertex. Some 
experimental results are presented to show the applicability and flexibility of the approach. 
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1. Introduction 
 

Surface design is an important field in computer aided geometric design and computer graphics. 

A widely accepted and popular way in surface reconstruction from the scattered data is the use of 

smoothly joined triangular Bernstein-Bézier patches or B-spline patches. The resulting surface must be 

visually smooth, that is, the patch boundary and across-boundary data must agree with the given values 

and this provides  or G continuity for the overall surface. The compositions of Bézier triangles that 

meet with  continuity have been developed by many researchers [5,10,11]. The twist compatibility 

problem [18] or the vertex enclosure/consistency problem [12] which arises when joining some 

polynomial patches with  continuity around a common vertex is a difficult problem. For example, let 

5 triangular patches  meet at a corner as in Figure1. Starting from the first patch , patch 

 could be determined by the continuity conditions with  along their common boundary, 

. But satisfying the continuity condition along the common boundary between patch  and 

 will present serious difficulties. 
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 The earliest schemes that addressed the vertex consistency problem are Clough-Tocher-like 

domain splitting methods [1,13,16]. The triangles are divided into three sub-triangles and quartic  

patch per sub-triangle is produced to interpolate positions and normals. The free parameters are employed 

in order to control the shapes. 
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Fig. 1. Triangular patches around a corner. 

The Gregory technique [3,4] seeks to construct patches on the faces formed by a net of 

intersecting curves in space. It uses the curves themselves and cross-boundary tangent information. From 

the given information, sub-patches are formed at each corner of a face and these are then blended to form 

the full patch that join together with tangent plane continuity. A number of variants and extensions to the 

basic method have been investigated by several researchers [15,19]. The extensions of the technique to 

give higher order continuity are studied in [7,8]. 

Loop presents a piecewise  spline surface composed of sextic triangular Bézier patches, 

one per triangle [9]. Optional shape parameters are available for additional local control over the shape of 

the surface. But unwanted surface undulations occur due to severe constraints on the second derivatives 

along boundary curves at each end-point. The recent work of [5] presents an interpolating quintic  

triangular spline surface, which is a generalization of Loop's scheme [9]. The basic idea is to use a regular 

4-split of each triangle so that the constraints between each end-point of the boundary curves are relaxed 

and an interpolating curve network can be built without unwanted undulations. Both strategies lead to 

linear systems of equations with a circulant matrix, which will not give a solution in general if an even 

number of patches meet at a corner [5,9]. 
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Furthermore some special approaches can be found in [6,14,17], in which various restrictions 

are made on the input data, thus their methods are not general enough in practice. 

In this paper we present a novel approach to construct a piecewise triangular polynomial 

surfaces with  continuity around a corner vertex. For easy evaluation and manipulation one often 

aims at a local method which uses low degree polynomial patches. Cubic polynomials are used in our 

method. The basic idea is to use and keep the mixed directional derivatives along their common boundary 

between adjacent patches. The result surface is piecewise cubic triangular polynomials and is  
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continuous across the boundaries between different patches and is  continuous at the corner vertex. 

Our approach is easy to use, the result surfaces can be quickly obtained by solving a simple  linear 

system which is always non-degenerate. The user can adjust the input values to control the shape of the 

surface interactively, which makes it a new and useful tool for shape design in CAD. 
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2. Preliminaries 
 

2.1 Representations of triangular surfaces 

Let  be a non-degenerate triangle in the plane with vertices T ( , ), 1,2,3i i iT x y i= = . Any point 

 within  can be expressed uniquely as  ( , )P x y= T

1 2P uT vT wT3= + +  

 

in terms of barycentric coordinates ( , , ), 1, 0, 0, 0u v w u v w u v w+ + = ≥ ≥ ≥ that can be obtained by 

solving the following equations 

1 2

1 2

1

3

3

x ux vx wx
y uy vy wy

u v w

= + +⎧
⎪ = + +⎨
⎪ = + +⎩

 (1)

The Bernstein-Bézier polynomial or the Bézier triangular surface of degree  over triangle domain   

has the form[2] 

n T

, , , ,( ) ( , , ) ( , , )n n n
i j k i j k

i j k n

T P T u v w B u v w T
+ + =

= = ∑  

where , , , ,
!( , , ) , .

! ! !
n i j k
i j k i j k

nB u v w u v w T R
i j k

= ∈  Let  

, ,
0 0

: ,
n n i

i j
i j i jn

i j

a x y a R
−

= =

⎧ ⎫
= ∈⎨ ⎬
⎩ ⎭

∏ ∑∑  

be the polynomial set with degree no larger than . It is known that the degree  Bernstein-Bézier 

polynomials and the polynomials in can be converted into each other using Eq. 1[2]. 

n n

n∏

2.2 Directional derivatives 
Let  be a bivariate continuous function with continuous second order partial 

derivatives. Let  be a vector in the plane. The directional derivative of  according to direction 

 is defined by  

( , )u x y

l ( , )u x y

l



 
 

cos sinu u u
x y

α α∂ ∂ ∂
= +

∂ ∂ ∂l
, 

whereα  is the anti-clockwise orientational angle from x -axis to the vector , see Figure 1 [2]. l

α

l

ln

x

y

O β

Fig. 2. Vector l and its normal vector nl in the plane. 
 

The mixed directional derivative may be obtained from a generalization of the above definition 

of direction derivative: let l  and  be two independent vectors in the plane. Then the mixed 

directional derivative of  according to directions ,  is defined by the directional derivative of 

m

( , )u x y m

u∂
∂l

 according to vector m  as: 

2u∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠l m m l
. 

It is easily seen that 

2 2u u∂ ∂
=

∂ ∂ ∂ ∂l m m l
. 

Denote  as the vector that is orthogonal to  such that the anti-clockwise angle from  to  is ln l ln l

2
π , see Figure 2. The vector  is called the normal vector of . ln l

Given a vector  having angle l α  with x  axis, we can obtain the mixed directional 

derivative of  according to vector  and its normal vector  by simple computation as  ( , )u x y l ln

2

cos sin cos cos sin sinu u u u u
x x y y x y

α α β α α⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝l m

β⎞
⎟
⎠

 

cos sin sin cos sin cosu u u u
x x y y x y

α α α α α β⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (2)

( )
2 2 2

2 2
2 2sin cos sin cos sin cos ,u u u

x x y y
α α α α α∂ ∂ ∂

= + − −
∂ ∂ ∂ ∂

α  

where 2β α π= −  is the anti-clockwise angle from x  axis to , see Figure 2. Similarly, the second ln



 
 

order directional derivative of  according to  is derived by  ( , )u x y l

2 2 2 2
2 2

2 2 2cos sin 2 sin .u u u u
x x y y

α α α∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂l
 (3)

It is seen from Eqs. 2 and 3 that the second order directional derivatives of  according to the 

vector  are dependent on the second order partial derivatives of  and the angle between the 

vector  and 

( , )u x y

l ( , )u x y

l x  axis. 

 

3. Main results and proof 
First, we have the following lemma. 

 

Lemma 1. Let  be a vector in the plane and  be a bivariate function defined on the plane. A 

rotation transformation is applied so that the 

l ( , )u x y

y′  axis of the new coordinate frame  is coincident 

with the vector  and the new bivariate function is denoted by 

ox y′ ′

l ( , )u x y′ ′ . Then 

2 2 2 2

2 2, ,u u u u u u
y y x

∂ ∂ ∂ ∂ ∂ ∂
= = =

y′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ll l l n ′
. 

 

Proof. The conclusions can be easily shown by noting that the rotation transformation has the following 

form  

sin cos
cos sin

x x y
y x y

α α
α α

′ ′= +⎧
⎨ ′ ′= − +⎩

. 

We are now ready to prove the main result in this paper. The continuity conditions between two 

cubic bivariate polynomial triangular patches along their common boundary are given by the following 

theorem. 

 

Theorem 1. Consider two adjacent cubic polynomial triangular patches ( , )z u x y=  and  

that share a common boundary  with 

( , )z v x y=

op=l
uur

0 0( , ),O x y= 1 1( , )P x y= , see Figure 3. If  and 

 satisfy the following conditions: 

( , )u x y

( , )v x y

(I) , 0 0 0 0( , ) ( , )u x y v x y=

(II) , 1 1 1 1( , ) ( , )u x y v x y=

(III) 1 1 1 1( , ) ( , )u vx y x∂ ∂
=

∂ ∂l ln n
y , 

(IV) 0 0 0 0( , ) ( , )u vx y x y
x x
∂ ∂

=
∂ ∂

, 



 
 

(V) 0 0 0 0( , ) ( , )u vx y x
y y
∂ ∂

=
∂ ∂

y , 

(VI) 
2 2

0 0 0 02 2( , ) ( , )u vx y x∂ ∂
=

∂ ∂l l
y , 

(VII) 
2 2

0 0 0 0( , ) ( , )u vx y x∂ ∂
=

∂ ∂ ∂ ∂l ll n l n
y , 

then the two patches  and  join at the common boundary  with  continuity.  ( , )u x y ( , )v x y l 1C

0 0( , )O x y

1 1( , )P x y

x

y 'y

'x

l
3 ( , )u x y

3 ( , )v x y

Fig. 3. Two triangular patches u(x, y) and v(x, y) with a common boundary 

l  
Proof. Without loss of generality, we assume that the point  on the common boundary  lies on  

axis because any translation transformation will not change the given conditions and conclusions. We 

then apply a rotation transformation to make the 

O l y

y′  axis of the new coordinate frame coincident with 

the common boundary . For simplicity, the new coordinate axis OP=l
uuur

,x y′ ′  are still denoted as ,x y  

and the transformed point ( )* *,x y′ ′  of ( )* *,x y  are still denoted as ( )* *,x y . It can be easily shown by 

simple computation that under the above rotation transformation the conditions of the theorem are 

converted into: 

(I) , 0 0(0, ) (0, )u y v y=

(II) , 1 1(0, ) (0, )u y v y=

(III) 1 1(0, ) (0, )u vy y
x x
∂ ∂

=
∂ ∂

, 

(IV) 0 0(0, ) (0, )u vy y
x x
∂ ∂

=
∂ ∂

, 

(V) 0 0(0, ) (0, )u vy y
y y
∂ ∂

=
∂ ∂

, 

(VI) 
2 2

0 02 2(0, ) (0, )u vy y
y y
∂ ∂

=
∂ ∂

, 

(VII) 
2 2

0 0(0, ) (0, )u vy y
x y x y
∂ ∂

=
∂ ∂ ∂ ∂

, 

The cubic bivariate polynomial can be rewritten as ( , )u x y



 
 

2 3( , ) ( , ) ( ),u x y u x y x p y= +  (4)

where  is a quadric bivariate polynomial, is cubic polynomial on . Noting 2 ( , )u x y 3( )p y y that 

30
( , ) )u x y y , it can be shown that a unique cubi ynomial 3( )p y  can be de rmined by the 

onditions (I), (II), (V) and (VI). Therefore, we have 

(
x

p
=
= c pol te

four interpolation c

30 0
( , ) ( , ) ( )

x x
u x y v x y p y

= =
= = , 

which indicates that the two patches  and  are  continuous along their common 

e now try to prove that they are continuous along their common boundary. Following Eq. 

4, we hav

( , )u x y ( , )v x y  0C

boundary. 

W 1C  

e  

3
0 0

( )
x x

u v p y
y y= =

∂ ∂ ′= =
∂ ∂

 (5)

and  

2
2 1 2

( , ) ( , ) : ( , ) ( ),u x yu x u x y u x y x p y
x x

∂∂
= ⋅ + = +

∂ ∂
 

 

here is a linear bivariate polynomial, and is a quadratic polynomial with . It can be 

 from th

w 1( , )u x y  2 ( )p y  y

derived e above equation that  

2
1

2
( , )( , ) ( ),u x yu x y x p y

x y y
∂ ′= ⋅ +

∂ ∂ ∂
 

thus we have 

∂

2
0

( , ) ( ),
x

u x y p y
x =

∂
=

∂
 and 

2

2
0

( , ) ( ).
x

u x y p y
x y

=

∂ ′=
∂ ∂

 

It can be proven that the above quadratic polynomial can be uniquely determined by 

the 3 con

2 ( )p y  

ditions (III), (IV), and (VII). Thus we have 

2
0 0

( , ) ( , ) ( ),
x x

u x y v x y p y
x x= =

∂ ∂
= =

∂ ∂
 (6)

The conclusion of the theorem is thus obtained following Eqs. 5 and 6. 



 
 

4. Construction of surface with  continuity around a corner 1C

It is known that we need 10 independent conditions to determine a cubic bivariate polynomial 

surface or a cubic Bézier surface over a triangular patch. 

Considering a corner vertex  of order , with neighbor vertices , where the subscripts 

are always taken modulo , we define a surface patch  over each triangle 

O n iP

n 3 3( ) ( , )i iT P T x y= 1,i iOPP+Δ  

, see Figure 4. Let  and  be the edge vector  and its corresponding normal 

vector. 

1,2, ,i = L n il il
n iOP

Now we have the following theorem. 

 

Theorem 2. Consider the surface patch  over triangle 3( , )iT x y 1i iOPP+Δ  for a specific index . If i

, , 0,1, ,9i j j ,λ = L  are given, then a cubic bivariate polynomial surface T x  can be uniquely 

obtained by the following 10 conditions in two bundles: 

3( , )i y

(I) 
3 3 2 3 2 3 2 3

3
,0 ,1 ,2 ,3 ,4 ,52 2( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,i i i i i

i i i i i i
T T T T TT O O O O O O
x y x x y y iλ λ λ λ λ∂ ∂ ∂ ∂ ∂

= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

λ  

(II) 
1

3 3
3 3

,6 1 ,7 ,8 1 ,9( ) , ( ) ( ) , ( ) .
i i

i i
i i i i i i i i i i

T TT P T P P Pλ λ λ
+

+ +

∂ ∂
= = =

∂ ∂l ln n
λ=  

 

Proof. Without loss of generality, the point O  is assumed to be ( )0,0 . Let the cubic bivariate 

polynomial be represented by 

3 2 2 3 2
0 1 2 3 4 5 6 7 8 9( , ) .iT x y a a x a y a x a xy a y a x a x y a xy a y= + + + + + + + + +

O

3 ( , )iT x y

iP

1iP+

1i+l

il il
n

1i+ln3
1T

3
nT

iT

Fig. 4. Cubic polynomial surface patches defined on the triangles around a corner vertex O. 
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We can determine the coefficients  from condition bundle (I) as 0 1 2 3 4 5, , , , ,a a a a a a



 
 

,3 ,5
0 ,0 1 ,1 2 ,2 3 4 ,4 5, , , , ,

2 2
i i

i i i ia a a a a a .
λ λ

λ λ λ λ= = = = = =  (7)

We now prove that the other coefficients can be determined by condition bundle (II). Suppose 

 The unit vector of  is ( , )i i iP x y= il

2 2 2 2
,i i

i i i i

x y

x y x y+ +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

( )1 2: ,r r= , 

and the unit vector of  is ( . Thus we have 
il

n )2 1,r r−

3 3 3

2 2 2 2
i

i i i i i

i i i i

T T y T x

x yx y x

∂ ∂ ∂
= ⋅ − ⋅

∂ ∂ ∂+ +ln y
. (8)

The first two equations 3
,6( )i i iT P λ=  and 3

1( )i i iT P ,7λ+ =  of condition bundle (II) can be respectively 

converted into 

3 2 2 3

6 7 8 9i i i i i i 1x a x y a x y a y a A+ + + = , (9)

and 

3 2 2 3

1 6 1 1 7 1 1 8 1 9 2i i i i i ix a x y a x y a y a A
+ + + + + +

+ + + =  (10)

where 

( )2 2

1 ,6 0 1 2 3 4 5i i i i i i iA a a x a y a x a x y a yλ= − + + + + + , 

( )2 2

2 ,7 0 1 1 2 1 3 1 4 1 1 5 1i i i i i i iA a a x a y a x a x y a yλ
+ + + + +

= − + + + + +
+

. 

From Eq.8 the last two equations 
3

,8( )
i

i
i i

l

T
P

n
λ

∂
=

∂
 and 

1

3

1( )
i

i
i

l

T
P

n ,9iλ
+

+

∂
=

∂
 can be respectively converted 

into 

2 2 3 3 2 2

6 7 82 2 2 2 2 2 2 2

3 2 2 3i i i i i i i i i i

i i i i i i i i

x y x y x y x y x y
a a a a

x y x y x y x y

− −
+ + −

+ + + +
9 3A= , (11)

and 

2 2 3 3 2 2

1 1 1 1 1 1 1 1 1 1
6 7 82 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

3 2 2 3i i i i i i i i i i

i i i i i i i i

x y x y x y x y x y
a a a

x y x y x y x y
+ + + + + + + + + +

+ + + + + + + +

− −
+ + −

+ + + +
9 4a A= , (12)

where  



 
 

( )2 2

3 ,8 2 1 4 3 5 42 2

1
2i i i i i i i

i i

A a x a y a x a a x y a y
x y

λ= − − + − + − +
+

⎡ ⎤⎣ ⎦ , 

( )2 2

4 ,9 2 1 1 1 4 1 3 5 1 1 4 12 2

1 1

1
2i i i i i i

i i

A a x a y a x a a x y a y
x y

λ
+ + + + + +

+ +

= − − + − + − +
+

⎡ ⎤⎣ ⎦i . 

Eqs. 9, 10, 11, 12 form a linear system with unknown coefficients , , , . It has unique 

solution if and only if the following determinant:  

6a 7a 8a 9a

3 2 2 3

3 2 2 3

1 1 1 1 1 1

2 2 3 3 2 2

2 2 2 2 2 2 2 2

2 2 3 3 2 2

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 1 1 1 1 1 1

3 2 2 3

3 2 2 3

i i i i i i

i i i i i i

i i i i i i i i i i

i i i i i i i i

i i i i i i i i i i

i i i i i i i

x x y x y y

x x y x y y

x y x y x y x y x y

x y x y x y x y

x y x y x y x y x y

x y x y x y x y

D

+ + + + + +

+ + + + + + + + + +

+ + + + + + +

− −
−

+ + + +

− −
−

+ + + +

=

2

1

0

i+

≠  

or the following determinant 

3 2 2 3

3 2 2 3

1 1 1 1 1 1

2 2 3 3 2 2

2 2 3 3 2 2

1 1 1 1 1 1 1 1 1 1

0
3 2 2 3

3 2 2 3

i i i i i i

i i i i i i

i i i i i i i i i i

i i i i i i i i i i

x x y x y y

x x y x y y
D

x y x y x y x y x y

x y x y x y x y x y

+ + + + + +

+ + + + + + + + + +

= ≠
− − −

− − −

 

We now prove that the determinant 0D ≠ . There are at most two among the four numbers 

1,i ix x + ,  that are equal to 0 as the three points 1,i iy y + 1, ,i iO P P+  form a triangle. So there are three cases 

as follows: 

(a) There are two zeros in { }1, , ,i i i i 1x x y y+ + . The possibilities are that 1i ix y +=  or 1i ix y+ = . 

Obviously the determinant  for both possibilities. 0D ≠

(b) There is only one zero in { }1, , ,i i i i 1x x y y+ + . Without loss of generality, let , then 0iy =

( )

3

3 2 2 3

6 2 2 41 1 1 1 1 1

1 1 13

2 2 3 3 2 2

1 1 1 1 1 1 1 1 1 1

0 0 0

0
0 0 0

3 2 2 3

i

i i i i i i

i i i i

i

i i i i i i i i i i

x

x x y x y y
D x

x

x y x y x y x y x y

+ + + + + +

+ + +

+ + + + + + + + + +

= =
−

− − −

x y y+ ≠  

(c) None of the four numbers { }1, , ,i i i i 1x x y y+ +  is zero. Let 1 1,i i i i i iy k x y k x 1+ + +
= = . Therefore, 



 
 

3 2 2

3 2 2 3

1 1 1 1 1

2 2 3 3 2

2 2 3 3 2

1 1 1 1 1 1 1 1 1 1

3 2 2 3

3 2 2 3

i i i i i

i i i i i i

i i i i i i i i i i

i i i i i i i i i i

x x y x y y

x x y x y y
D

3

1

2

2

i

x y x y x y x y x y

x y x y x y x y x y

+ + + + + +

+ + + + + + + + + +

=
− − −

− − −

 

2 3

2 3

6 6 1 1

1 2 3

2 3

1 1 1 1

1

1

3 2 1 2 3

3 2 1 2 3

i i

i i

i i

i i i i

i i i i

k k

k k k
x y

k k k k k

k k k k k

+ +

+

1

2

2

1

i

i

i

i

k

+

+ + + +

=
− − −

− − −
+

 

( ) ( ) ( )

2 3

2 2 3 3
46 6 2 21 1 1

1 1 12 3 2 4

2 3 2 4

1 1 1 1 1

1

0
1 1

0 1 2 2 3 3

0 1 2 2 3 3

i i i

i i i i i i

i i i i i i

i i i i i

i i i i i

k k k

k k k k k k
x y k k k k

k k k k k

k k k k k

+ + +

+ + +

+ + + + +

− − −
= = − −

− − − − − −

− − − − − −

0+ + ≠ , 

by the fact  as three points 1 0i ik k
+

− ≠ 1, ,i iO P P
+

 form a non-degenerate triangle. 

Therefore we have completed the proof of Theorem 2. 

For a patch with corner vertex  and  neighbor points  for O n iP 1, 2, , ,i n= L  see Figure 4, 

we construct a piecewise cubic polynomial surface  over the patches as follows. First we set 6 

scalar values at the corner point , that is, the position value , 2 values of the partial derivatives 

( , )T x y

O ( )T O

( )T O
x

∂
∂

, ( )T O
y

∂
∂

 and 3 values of the second order partial derivatives 
2

2 ( )T O
x

∂
∂

, 
2

( )T O
x y
∂
∂ ∂

, 
2

2 ( )T O
y

∂
∂

. 

At each end-point  for  we set 2 scalar values, one is its position value  and the 

other is the value of cross-edge directional derivative 

iP 1, 2, , ,i = L n ( )iT P

( )
i

i
i

T P∂
∂ ln

. Thus we have  values to 

determine the shape of the surface over the patches. 

6 2n+

At each triangle , there are a total of 10 values, six values at the vertex  plus two 

values at  and  respectively. From Theorem 2 the cubic triangular surface patch  over 

 can be uniquely determined for all 

1i iOPP+Δ O

iP 1iP+
3( , )iT x y

1i iOPP+Δ 1,2, ,i n= L . 

It is easily shown that the adjacent patches  and  join at their common 

boundary with  continuity by Eq. 2, Eq. 3 and Theorem 1. As each triangular patch  uses 

the same values at the common corner O , thus the composition surface over the patches is  

continuous at the corner vertex. 

3( , )iT x y 3
1( , )iT x y+

1C 3( , )iT x y

2C

Thus a continuous piecewise cubic triangular polynomial surface over the  patches could be 

constructed from the given 6 2 values with  continuous along the boundary curves between 

adjacent triangular patches and continuous at the corner. 

n

n+ 1C
2C

It is worthwhile to note that changes of the six values at the corner will affect the shape over all 



 
 

the triangular patches while changes of the two values at  would locally affect the shapes of the 

triangles  and . 

iP

iT 1iT +

Our algorithm is cubic reproduction. That is, if the values of the vertices of the patch and the 

corner are computed from a cubic polynomial surface, the result of our approach is exactly the same as 

the original cubic polynomial surface. This can be easily seen from the proof of Theorem 2. 

We now give the algorithm for designing a  continuous surface over the triangular patches 

around a corner in the following. 

1C

 

Algorithm 1. 

Input: 6 scalar values at the corner vertex, 2 scalar values at each patch vertex, totally  values.  6 2n+

Output: a  continuous piecewise triangular polynomial surface around the corner. 1C

Steps: For each triangular patch, do 

Step 1. Compute  by Eq. 7. 0 1 5, , ,a a aL

Step 2. Compute  by solving the 6 , ,a aL 4 4×  linear system given by Eqs. 9-12.  9

Step 3. Convert the cubic triangular polynomial into Bernstein-Bézier form.  

 

5. Experimental results 
 

In this section we show several examples of construction of cubic triangular patches around a 

corner that illustrate the behaviors of our approach. All examples in the paper are the results of an 

implementation of the proposed algorithm in a 3D user interface design system in C++ developed at our 

lab. The user can explicitly change the number and shapes of the patches around the corner and control 

the values at the corner and the patch vertices to adjust the shape of the surfaces interactively. 

 

Example 1. We use a sphere surface as a ground truth sample and approximate a part of the sphere 

surface 2 2( , ) 1z x y x y= − −  using 6 triangular cubic polynomial patches. The domain edge points are 

1
2 ,0

2
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(0,0)O =⎟  and the corner is , see Figure 5(a). We set the values at the corner as 

2( , ) ,0 ,
2iP

u u
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

ln( , , , , , ) (1,0,0, 1,0, 1)x y xx xy yy O
u u u u u u = − −  and the values at patch vertices    

, computed following the equation of sphere surface. The piecewise cubic triangular patches 

generated by our approach are shown in Figure 5(b). The maximum approximation error is 0.006, and the 

approximation result looks good. 

1,2, ,6i = L
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Fig. 5. Polynomial approximation to part of the sphere surface using 6 triangular patches: (a) 

domain patches; (b) piecewise cubic triangular polynomial surfaces. 

 
Example 2. We use two surfaces with degree not larger than 3 for testing the cubic reproduction property 

of our approach. One surface is a saddle surface z xy= , see Figure 6(a), and the other is a cubic 

surface , see Figure 6(b). We use 4 triangular patches in our tests. The 

reconstructed surface patches are exactly the same as the original surfaces in both cases. 

3 23 2z x xy xy y= − + +

( )a ( )b

Fig. 6. Our approach can reproduce exact cubic surfaces: (a) a saddle surface; (b) a cubic surface. 

 
Example 3. To illustrate the flexibility of our approach, we use an example with eight patches around the 

corner. We can easily adjust the values used in the algorithm to control the shape of the piecewise surface. 

The result of approximating a sphere surface is shown in Figure 7(a). We then adjust the values of mixed 

derivatives of the corner vertex, with large positive values, see Figure 7(b) or with large negative values, 

see Figure 7(c). Figure 7(d) shows a result when the user adjusts the position of one boundary point and 

the partial derivatives of the corner vertex. The corresponding smooth rendering effects are shown on the 

right side for each of the example. 

 

6. Conclusions 
 

In this paper, we proposed a novel approach for constructing  continuous surface over 1C

arbitrary triangular patches around a corner. The approach is derived based on the mixed directional 



 
 

derivatives between the common boundaries between two adjacent patches. The result surface is 

piecewise cubic polynomials with the advantage of cubic reproduction. The approach is simple and fast. 

The user can easily control the shape of the interpolation surface by adjusting the input values. We 

demonstrate the applicability and flexibility of the approach by several experimental results. 

The presented approach still has much to do for improvements and extensions. We should 

consider t
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