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Abstract 

 
The traditional method of manipulation of knots and degrees gives poor quality of surface, if compatibility of 
input curves is not good enough. In this work, a new algorithm of multiple refitting of curves has been 
developed using minimum energy based formulation to get compatible curves for skinning. The present 
technique first reduces the number of control points and gives smoother surface for given accuracy and the 
surface obtained is then skinned by compatible curves. This technique is very useful to reduce data size when 
a large number of data have to be handled. Energy based technique is suitable for approximating the missing 
data. The volumetric information can also be obtained from the surface data for analysis. 
 

Keywords: Surface approximation, Surface skinning, Curve compatibility, Energy minimization, B-
Spline curve fitting  

 
1. Introduction 

 
Surface skinning is the process of passing a smooth surface through a set of curves called sectional curves, 
which, in general, may not be compatible. Thus the first task for skinning is to get compatible curves. There 
are two approaches to get the compatible curves, namely, (i) exact method and (ii) approximate method. 
 
In exact method, compatible curves are obtained by manipulation of degrees and knot vectors. This technique 
is straightforward and efficient in computation. But, this approach results in astonishing number of control 
points when compatibility of curves is not good enough. While manipulating a large number of sectional 
curves of different degrees and defined in different knot intervals, the exact method results in a huge number 
of control points and the quality of skinned surface becomes poor.  This problem has been overcome in the 
present formulation, which is based on approximation technique. 
 
On the other hand, in approximation technique, compatibility of curves is obtained by approximation instead 
of interpolation. In this process tremendous saving can be achieved at the cost of quality of precision. Piegl 
and Tiller [1] have pointed out the usefulness of approximation technique. In the first step they use exact 
method, which gives a large number of control points, which are reduced in the second step of algorithm by 
adopting approximation technique. But, this technique gives poor qualities of surface when curves are 
irregular in parameterization.  Refitting technique has been used to get compatible curves by employing 
energy coefficient up to second derivative to get smoother and stable solution [2]. Hofler & Pottmann [3] has 
developed energy-based algorithm by employing energy contribution up to second derivative to get Spline on 
manifold. It allows the treatment of obstacles via barrier surfaces.  Abbas and Nasri [4] has adopted a 
technique to interpolate intersecting curves by Cutmull-Clark subdivision surfaces. Planarity and specific 
symmetry at the junction points have been taken to ensure interpolation limit of the subdivision process by a 
surface with an adequate degree of smoothness. Nira et al. [5] have given a butterfly subdivision scheme for 
surface interpolation with tension control. It generates triangulation of control points and has a tension 
parameter that provides design flexibility.   
 



Present technique is similar to that of Park et al. [2] but uses B-Spline interpolating function and energy 
coefficients up to second derivatives. The effects of energy co-efficient on smoothness of curve have been 
described in the previous work of the present author [7], while the effect the same has been explained in Fang 
and Gossard [6] by using Hermit interpolating function.  
 
The present formulation is an approximation technique, which uses refitting algorithm based on energy 
technique to give smoother and stable solution. Numbers of control points are reduced and the optimal 
number of control points for a given accuracy is obtained based on binary search. This data reduction is very 
helpful when a huge number of data have to be handled and the curves obtained are very smooth due to 
energy-based approximation. Manipulating energy coefficient can enhance capability of data reduction. 
Fitting coefficient directly reduces the error and hence improves data reduction. But, at the higher accuracy 
level the proposed method may be inefficient in data reduction.  
 
Another approximation technique, which approximates the cross sections using distance map, converts the 
multi branching problem into single branching and final B-Spline surface is obtained by skinning [8]. Present 
technique energy based approximation has been used to get cross sectional curve. Points in 3D spaces are the 
prime inputs for present formulation. 
 
After having compatible curves, they can be skinned in longitudinal direction by two methods, either by exact 
interpolation or by approximation technique. In exact interpolation, compatible curves are interpolated with 
the same number of control points as the control points of compatible curves in v-direction (skinning 
direction).  While in approximation technique, binary search is used to get optimal number of control points 
for given tolerance. This optimal number of control points should satisfy the tolerance limit for all the control 
points of compatible curves [9, 10, 11]. 
 
Rest of the paper has been organized as follows:  
In section 2, B-Spline curve and surface formulation have been described. Section 3 and section 4 of the paper 
deals with knot selection and algorithm of multiple refitting respectively. Energy based approximation has 
been described in section 5.  Section 6 deals with basic formulation for B-Spline skinning. Results and 
Discussions have been given in section 7. Section 8 concludes the current work. 
 
 

2. B-Spline Curves and Surfaces 
 
The parametric representation of a p-th degree B-Spline curve is given by  
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where Vi for i=0, 1, 2, …, n, are the control points, u is the parametric value of the curve, and Ni,p(u) are the p-
th degree B-Spline basis functions defined on the knot vector as given by 
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with m = n+p+2 being the total number of knot values. For an open knot vector, p+1 numbers of knot values 
are repeated at the start and the end of the knot vector. Basis functions are recursively defined as given below 
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for p≥1. When evaluating the basis functions, 0/0 =0 is assumed. 
 
Extension of the above curve formulation in two parametric directions results in a B-Spline surface. A bi-
parametric B-Spline surface can be defined as tensor product of B-Spline curves. A B-Spline surface of p × q 
degrees is defined as follows 
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where Vij, for i=0, 1, 2, …, m and j=0, 1, 2, …, n, form the control net in 3D, Ni,p(u) is the i-th basis function 
in u-direction and is defined on knot vector (u0, u1, …, um+p+1), and Mj,q(v) is the j-th basis function in v-
direction and is defined on knot vector (v0, v1, …, vn+q+1) with p and q being the degrees of the surface in u 
and v directions, respectively. Basis functions are recursively defined similar to equation (2) in both 
parametric directions. In equation (3), m+1 and n+1  are numbers of control points in u and v directions,  
respectively. Details of B-Spline formulation can be found in references [9, 10]. 
 

3. Knot Selection 
 
The prime criteria of selection of knot vector are such that every knot segment must contain at least a point. 
Selection of knot is based on the parametric value of points of sectional curves. There are three basic 
techniques of parameterization (a) uniform method, (b) chord length parameterization, and (c) centripetal 
method. Please see the references [2, 9, 10] for parameterization. In present work, chord length 
parameterization has been used. There are (n+1) and (m+1) number of control points and total number of 
points in curve respectively. Common degree of the given sectional curves is p. Details of this formulation are 
given in references [2, 12]. There are three possible conditions for selecting knots, which are given below 
 
(1) Number of input points are same as the number of control points assumed    
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 where ui  is the parametric value of input points and Ti is the knot values. 
 
 
(2) Number of points are greater than number of control points assumed: Insert formula 
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With this formula every knot span must have at least one ui
 
(3) Number of points are less than number of control points 
 
                In this case the parametric values are sampled at different points in terms of the given parametric 
values of input points. The first condition is used to get the required knot vectors. 
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  Final knot vectors are obtained by using equation (4) in newly sample points. 

 
4. Algorithm of Multiple Refits 

 
In this technique, a compromise between accuracy and the costs has been done.  Cost deals with the storage 
cost as well as the computational cost. The present algorithm starts with input points, which are given for each 
sectional curve. Maximum number of input points (m+1) among the sectional curves is determined. We 
assume that maximum number of common control points will not be more than this number (m+1). Common 
degree (p) and accuracy are also inputs for this algorithm. Since input points are the prime inputs so it is upon 
the user to decide the overall degree of the curves. If curves are given then its points are derived from the 
different curves. Input curves may be of different degree. Current algorithm is based on binary search, which 
is given below 
 
Process:: MultipleRefit() 
{ 

NCMax = Maximum number of control points  
NCNow = Current number of control points 
m = maximum number of points for input sectional curves 
NCMin = p 
NCMax = m+1 
 
Start: 
 
NCNow = (NCMax + NCMin)/2 
 



Calculate the knot vector for all section curves based on knot selection criteria see section 3 
Take the average of all these knot values as common knot vector 
For all the section curves do the energy based approximation 
{ 
    If (error calculated violates the tolerance limit) 
    { 
 
       if((NCMax – NCNow)   ≤ 1) 
         { 

        if (previous value of control points exist) 
           return with the previous control points 
        else 
                 go for exact interpolation 

         } 
        else 
           { 

             NCMin = NCNow 
              go to Start 

             }        
      } 
} 

 
if( Energy based approximation for all section curves is true in u-direction) 
{ 

  copy current control points in previous control points 
    
      if( (NCNow - NCMin)  ≤ 1 ) 
        { 
               return with current value of control points 
         } 
       else 
         { 
                 NCMax = NCNow 
                 go to Start 
          } 

 
    }  
} 
 

5. Energy Based Approximation 
 
In this section, an energy based interpolation technique has been described. Control points of the input 
sectional curves are obtained for a given number of control points and knot vectors. Common knot vectors are 
obtained from the knot selection technique given in section 3 with help of number of control points and 
common degree of freedom of curve. This approximation technique is used multiple times till an optimal 
number of control points is achieved. Optimal number of points depends on the accuracy needed. For higher 
accuracy number of control points increase. This technique help in approximating the missing data due to 
energy based formulation. The sectional curve obtained by this approximation is smoother [7]. 
 
Total energy for a sectional curve considered in this formulation is given by the following equation 
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where α, β and γ1 are non-negative values called stretching, bending and fitting co-efficient respectively. 
A new non-negative coefficient of energy responsible for having smooth curvature is γ 
In this technique equation 7 is solved.  
Approximated cubic B-Spline curve is C(t) 
Input points are denoted by Pi 
First, second and third derivations of  B-Spline curve C(t) are Ct, Ctt and Cttt  respectively. 
 Parametric variable is t.  These energy terms have been explained in [1, 6, 12, 13]. The squared first and 
second terms in equation (7) give strain energy contribution due to stretching and bending of the curve. 
Squared third derivative part of the equation does not have any physical significance. It has some geometrical 
meaning. The magnitude of the third derivative is a rough estimate of the rate of change of curvature with 
respect to the parametric value.  The fourth term of energy equation indicates the energy stored in spring due 
to error (see elastic beam analogy in [6]). 
 Effects of these coefficients have been studied in the previous work [7]. Quadratic functional minimization 
technique has been used in this work which results in a curve by solving the linear set of equations [2].  
Equation (7) has been solved by assuming a B-Spline curve satisfying it. Set of linear equations has been 
obtained finally. Control points of B-Spline curve are obtained by solving linear equations. If equation (8) is 
the B-Spline solution for equation (7)  
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 where N represents B-Spline basis functions and X represents Control points [9, 10]. Equation (7) 
can be rewritten as  
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Nt, Ntt, Nttt represents first, second and third derivatives of Basis Function [10]. K1, K2 and K3 are 4x4 matrices 
[6, 13]. A and P represent co-efficient matrix and input points respectively. 
 
 KL = αK1 + β K2 + γ K3
 
If the basis function assumed is uniform or in Bezier form KL can be calculated analytically [14]. In case of 
non-uniform basis function numerical technique (Gaussian quadrature) can be used to get KL matrix. 
Constraints are given by  
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where k, varies from 0 to  (number of constraints-1). 
This equation may contain the positions, tangents and higher derivative data. 
 The final matrix equations can be expressed as reference [2]. 
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where V is a vector storing Langrange Multiplier and X are the unknown control points. 
 K is the assembled stiffness matrix with size (n+1) × (n+1).   
 C is n-constraints  × (n+1) matrix.  
 n-constraints indicates number of constraints given. 
 Above matrix equations have been solved by Gauss-elimination to get control points. 
 Details of this formulation are available in [2, 6, 7].  
 

6 B-Spline Skinning 
 
Skinning is a process of blending the sectional curves together to form a surface (see references [9, 10]. 
Blending direction is in v-direction, which is also known as longitudinal direction. Sectional curves may be of 
different degree and defined over different knot vectors. If sectional curves have same degree and defined 
over same knot vector then the input sectional curves are compatible; otherwise multiple refitting algorithm is 
applied to get the compatible section curves. Compatible sectional curves can be skinned by two methods, see 
section 1. Exact skinning uses interpolation with the same number of control points as the number of control 
points of the compatible curves in skinning direction. This results in a perfect interpolation. It is suitable for 
skinning less number of curves. If a large number of sectional curves are given then the approximate 
technique saves a large number of control points at the cost of accuracy. Approximation technique is based on 
binary search to get optimal number of control points. Sectional curves assumed in this work are the set of 
points.  
B-Spline surface interpolates n+1compatible curves and can be written as equation (12), which has been 
rewritten as follow 
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 Control points (Vij)  for i = 0, 1, 2, …….,m  and j = 0, 1, 2, ……,n are obtained by energy based refitting 
technique in u-direction. Final control nets are obtained by interpolating or approximating Vij  (compatible 
control points) in v-direction. All j column of Vij are taken for interpolation in v-direction. Algorithm of 
approximate skinning is given below 
 
Algorithm of approximate skinning 
 



Process:: AproximateSkinning( ) 
{ 

NCVMax = number of sectional curves in skinning direction 
NCVmin  =  degree in skinning direction 
 
Start: 
NCVNow = (NCVMax + NCVMin)/2 
 
For each set of control points in skinning direction 
{ 

    calculate the knot vectors by formula given in section 3 
    do global interpolation with degree in skinning direction, NCVNow and knot vector 
 
   if( error calculated violates the tolerance limit) 
  { 

    if (NCVNow – NCVMin)  ≤ 1) 
     { 
     if (previous value of control points exists) 
        return with previous values of control points 
    else 
     go for exact interpolation 

     } 
else 
   { 
            NCVMin = NCVNow 
            go to Start 
   } 

  } 
if( approximation is true for all set of control points in  v-direction) 
{ 

copy present control points in previous control points 
if( (NCVMax –NCVNow)  ≤ 1) 
   { 
        return with current values of final control points for all the control points of 
        Compatible curves 

                 } 
            else 
                { 

       NCVMax = NCVNow; 
       go to Start 

                 } 
                   } 
} 

7  Results and Discussions 
 
Several data have been tested. It has been found that the current algorithm has achieved a large percentage of 
data saving at the cost of accuracy. Results have been displayed by using OpenGL on a PC using windows 
operating system. Each result has been drawn in the frame of reference, which contains a cuboid frame. 
Figure 1 shows input points and control polygon of compatible curves obtained after the present energy based 
approximation technique. Lines and dots in the Figure 1 show the input points and control polygons for the 
compatible curves respectively. 
 
 
 



 
 
 
  
 
 
 
 
 
 
 
 
        Fig. 1 Input points control points of sectional curves                      Fig. 2 Control net of surface skinning 
 
 
Figure 2 shows the control net of skinned surface of the result shown in Figure 1. Skinned surface has been 
shown in Figure 3 for the input points shown in Figure 1. In this case 10 sectional curves have been given, 
each curve having ten input points. Eight control points are sufficient to get the compatible curves with 
accuracy 1.0. The Stretch, bending, and fitting coefficients for this case are 1.0, 1.0 and 1.0e9 respectively. 
Coefficient for third derivative energy parameter has been taken as 0.004.  Exact interpolation has been done 
in skinning direction. In this example, even skinning with nine number of control points results in an 
unacceptable error of 1.5. In such cases exact approximation gives better solution. This is true once less 
number of curves is to be skinned. Data reduction in skinning is not very effective in this case because data 
given is just sufficient to approximate the points. Complex geometry needs more data hence the data saving is 
not affective. Ranges of input points are 476 × 448 × 300 for this example. Range of data is another parameter, 
which affect the data reduction. If the range of data is wider, accuracy limit should be higher for same data 
reduction.  Data reduction hence depends on the complexities of geometry of input curves and their ranges in 
3-D space. Another example has been shown in Figure 4, which is an example of the close curve. In this case 
ten points have been given for each curve. Present formulation gives accurate and smooth sectional curve 
although there is no data reduction. Ten control points are needed to approximate curves in both the directions. 
Figure 4 shows the input points and control polygon for sectional curves obtained by present formulation. 
Figure 5 shows the control net for skinned surface for the input points shown in Figure 4 and Figure 6 shows 
the skinned surface for the same. 
 
 
 
 
 

 
 
 
                                                                                                        
Fig. 3 Skinned Surface for control net show in Fig 2    Fig. 4  Input points and the control points of compatible curves 
                                                                                 
 
 
 
 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5 Control net for example shown in figure 4                    Fig. 6 Skinned surface for control net shown in Fig 5 
 
Present work gives smoother results than Park et al. [2] because energy parameters up to third derivative have 
been taken for curve refitting. This work is helpful in data reduction of large data. Processing of data becomes 
easier because of less number of control points.  As the value of tolerance decreases more number  
of control points are needed to get compatible curves. The data reduction is related to accuracy needed. Value 
of fitting coefficient decreases the error and hence results more affective data reduction. Present technique 
gives smoother and stable results due to energy coefficients considered up to third derivative.     
Current work takes data file from I-DEAS Surface Modeler (a product of Structural Dynamic Research 
Corporation). Effect of third energy term results smoother curves because total energy calculated is more 
accurate. Results have been shown in ref. [7]. Similar effects have been obtained in reference [6]. Figure 3 on 
page number 54 of reference [6] shows the effect of third derivative. Curvature plot in [6] for a semi-circled 
curve become a straight line after addition of third derivative term only in the energy equation.  
An approximated quarter of circle and its curvature plots at very high resolution have been shown in Figure 7. 
Black and gray circular arcs in Figure 7 show the curves obtained by considering coefficient of the third 
derivative (black curve) and without considering the third derivative (gray curve).  It is very hard to predict 
the effect of the third derivative by seeing the curve plot. Curvature plots have been shown in X-Y coordinate 
(Figure 7) at very high resolution. Black and gray curves in X-Y plane show the curvature plots by 
considering the third derivative and without considering the third derivative. It indicates clearly that by adding 
third derivative the curvature plot is smoother. 
  Figure 8 shown a human face having 100 curves each curve having 100 points. If hundred control points will 
be taken for each curve then this results an exact fit. If the tolerance set to 1.0 then 56 control points per curve 
are sufficient to approximate the given sectional curves. If tolerance is set to 1.5 then number of control points 
of the compatible curves are 31 per curve. Approximation in skinning direction is also effective. For accuracy 
1.5 and 2.0 number of control points in skinning direction are 94 and 81 respectively. Range of the input 
points is 500 × 500 × 500.   Energy coefficients taken are same as in Figure 1. Effects of energy coefficient on 
the error of the curves have been shown in my previous work [7]. Data reduction means minimizing the 
control points for given accuracy. Number of control points with degree of curves gives the complete 
information about the curve. Branching problem have not been addressed in the present formulation. 
 

Curves with and without the third derivative  
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Fig 7 Effect of coefficient of third derivative          
on smoothness of the curve                                             
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