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Abstract 
 

As three-dimensional range scanners make large point clouds a more common initial representa-
tion of real world objects, a need arises for algorithms that can efficiently process point sets.  In this pa-
per, we present a method for extracting smooth surfaces from dense point clouds.  Given an unorganized 
set of points in space as input, our algorithm first uses principal component analysis to estimate the sur-
face variation at each point.  After defining conditions for determining the geometric compatibility of a 
point and a surface, we examine the points in order of increasing surface variation to find points whose 
neighborhoods can be closely approximated by a single surface.  These neighborhoods become seed 
regions for region growing.  The region growing step clusters points that are geometrically compatible 
with the approximating surface and refines the surface as the region grows to obtain the best approxima-
tion of the largest number of points.  When no more points can be added to a region, the algorithm stores 
the extracted surface.  Our algorithm works quickly with little user interaction and requires a fraction of 
the memory needed for a standard mesh data structure.  To demonstrate its usefulness, we show results 
on large point clouds acquired from real-world objects. 
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1. Introduction 
 

Point clouds are becoming an increasingly common initial digital representation of real-world 

objects.  This is due to the popularity of affordable and accurate scanning equipment that can quickly 

digitize the geometry of a real-world object.  However, the resulting point cloud representing an object’s 

surface can often contain millions of three-dimensional points.  This large size and the noise associated 

with measurement can make processing the data difficult.  Nevertheless, there are many applications 

where it is necessary to create a computer model consisting of just a few simple surfaces from the point-

cloud data.  Accurately reconstructing the object’s geometry in this way is often a difficult and time-

consuming task.  In this work, we present a method for automatically extracting surfaces from point-

cloud data that works quickly and minimizes the memory overhead of handling large data sets.  Our sur-

face extraction technique segments the point cloud and has the potential to be used in surface reconstruc-

tion, reverse engineering, industrial design, and rapid prototyping. 
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(a) Surface variation (100,000 points) 
 

(b) Points assigned to surfaces  
 

 
(c) Extracted surfaces 

Fig. 1. Different surface extraction steps for an automobile C-pillar. 

 

Surface extraction through region growing is founded on the assumption of surface coherence 

[11, 38].  This is the observation that, despite the presence of noise, almost every point sampled from an 

object’s surface will be geometrically related to its nearby points in that they will all lie near a single, 

smooth surface.  Furthermore, it implies that the connectivity information of a triangle mesh can be re-

placed by spatial proximity of the sampled points if the point cloud is sufficiently dense.  Our algorithm 

exploits this property to automatically organize the point cloud into distinct regions approximated by 

simple surfaces. 

Our method iterates between region growing and surface fitting to automatically find sets of 

points that can be closely approximated by single surfaces.  Given a set of N points  

sampled from a surface in R
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3 and a seed point  our algorithm attempts to find a parametric surface 

 and a maximal set of points such that every point in  is geometrically compatible with 

  We define a point to be geometrically compatible with a surface if its position and normal dif-

fer from the nearby surface by small amounts.  In this presentation, we assume all points have consis-

tently oriented normals .  If the normal data is not available, then it can be calculated 

from a mesh representation, from the laser scanner acquisition process, or by estimating the tangent plane 

of each point and then propagating normals along a minimum spanning tree as described in [19]. 
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The algorithm presented here, summarized in Algorithm 1, first partitions the bounding box of 

 into a cubical grid for efficient nearest-neighbor searching.  Then it attempts to grow a region from 

each point  in order of increasing surface variation 

X

Xx∈ )(xkσ , determined by principal component 

analysis.  Region growing first checks if a small neighborhood, the seed region , around a point 

can be approximated with a single surface .  If so, the compatible points in the seed region 

define a new region  and the algorithm adds to this new region all nearby points geometrically 

compatible with the surface.  Once all compatible points have been added, the algorithm fits a new sur-

face  to the entire region and repeats the region growing.  A final surface  is ex-

tracted when the number of points in the region stops increasing.  The different steps of the algorithm  
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Algorithm 1.  Pseudocode for the surface extraction algorithm 

 

are illustrated in Figure 1.  Figure 1(a) shows the point colored by surface variation, Figure 1(b) shows 

the points colored according to different underlying surfaces, and Figure 1(c) shows the extracted surfaces 

painted with the same colors as the points they represent.  Note that in all of our examples the point 

clouds appear continuous because they are dense enough that there is more than one point per pixel. 

Our region growing approach for surface extraction is intuitive, efficient, and straightforward to 

implement.  By reducing the data representation to only what is essential, we eliminate the need for a 

mesh data structure and reduce the algorithmic complexity and memory requirements for processing the 

data.  This allows users to process larger data sets, including not just point clouds, but also parametric 

and polygonal data, which one can easily convert into dense point clouds.  Our algorithm can extract 

parametric surfaces from sets of millions of points in minutes with guaranteed approximation errors.  

Furthermore, one can speed up the surface extraction by simplifying the point cloud as in [29] without 



 
 

creating a mesh.  Finally, the region-growing algorithm can be easily adapted so that a user can simply 

click on a point cloud to automatically extract surfaces from it. 

 

2. Related Work 
 

Surface reconstruction from point clouds has received considerable study and continues to do so.  

There are several existing methods for generating a piecewise-linear mesh from a point cloud [13, 19, 5, 

6].  There are also methods for reconstructing a smooth or piecewise-smooth surface from a point cloud 

[16, 7, 27, 26, 12, 20].  However, for our target applications, creating an approximating mesh from the 

point cloud is unnecessary.  Furthermore, a fully automatic smooth or piecewise-smooth surface recon-

struction that results in an implicit surface or a tiling of many triangular or rectangular patches is difficult 

for a designer or modeler to modify and cannot produce large surfaces of acceptable quality for consumer 

product styling.  More recently, point clouds have also received attention as a potential rendering primi-

tive because of their compactness and the increasing commonness of very large data sets [23, 31, 34, 4, 1, 

2, 3].   

Our region growing method is similar in principle to existing methods for automatically parti-

tioning meshes into regions that can be easily parameterized.  For example, [24, 15] use an s-source ad-

aptation of Dijkstra’s shortest-path algorithm to segment a mesh.  On point clouds, [28] grows regions 

by enforcing a normal cone condition, requiring that the largest angle spanned by the point normals in a 

region is below a certain threshold.  The present region growing method is more specific than these, 

requiring that both the positions and the normals of points are close to that of an underlying surface. 

Our surface extraction algorithm can also be viewed as a complement to existing algorithms for 

extracting features from point clouds [18, 30].  These papers apply principal component analysis to a 

point cloud to detect features then use a minimum spanning graph of the feature points to extract sharp 

edges.  Pauly, et al, [30] further model the extracted edges with adaptive contour models.  In our ap-

proach, we use principal component analysis to find the areas of smallest variation, then use region grow-

ing to find clusters of points lying near smooth surfaces.  While feature extraction is most suitable for 

mesh generation and non-photorealistic rendering, surface extraction is useful for reverse engineering, 

surface reconstruction, and industrial design. 

The concept of growing regions to find groups of points that can be approximated by surfaces 

was introduced for images by [11, 10] and adapted for gridded height data in [36].  In [39, 38], the pre-

sent authors applied the region growing approach to segment dense, unstructured meshes.  In this paper, 

we further extend the region growing approach into a method for automatic surface extraction from point 

clouds.  As widespread use of modern measurement equipment makes very large data sets more ubiqui-

tous, operating directly on the point cloud becomes more desirable.  By utilizing only the necessary data, 



 
 

the amount of computer memory required for analysis becomes a fraction of what is required for main-

taining a mesh data structure. 

The work done by Huang and Menq and Benkő and Várady is most similar to ours.  The 

method proposed by Huang and Menq [21, 22] first constructs a mesh from the point cloud, then seg-

ments it and fits B-spline surfaces to the segments.  However, the assumptions and complexity of the 

approach make it unfeasible for very large data sets.  The method presented by Benkő and Várady [8, 9] 

is more closely related to ours.  It applies a hierarchy of tests to recursively subdivide a point cloud into 

small regions that can be approximated by a single analytic surface such as a plane, cylinder, cone, sphere, 

or torus.  However, it is not clear that such an approach can be used on point clouds representing free-

form surfaces.  

 

3. Surface extraction algorithm 
 

3.1. Seed point selection 
 

Our algorithm begins with a single point, called a seed point, for the extraction of each surface.  

A small neighborhood around the seed point is then used to find an initial surface approximation for re-

gion growing.  Intuitively then, region growing will be most effective when the seed point is interior to a 

large group of points lying near a single surface.  We choose a simple, fast heuristic method to select 

seed points, first estimating the surface variation at each point in the point cloud, then examining the 

points in order of increasing surface variation.  This makes the reasonable assumption that region grow-

ing will be more successful in areas with low variation than in areas with high variation.  In addition, as 

surfaces are extracted from the point cloud, potential seed points can simply be skipped if they are already 

assigned to regions.   

The surface variation at each point is calculated using principal component analysis, a technique 

commonly used to estimate local surface properties of point clouds [29, 18, 30].  It is illustrated in Fig-

ure 2.  The technique can be understood as analogous to finding the mean and variance of a one-

dimensional distribution.  Let  be the k-nearest neighbors of a point )( ixN Xx ∈i .  Denoting by x  

the centroid of , we can define the )( ixN 33×  covariance matrix  by C

∑
∈
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)()(
i

T

xNy
xyxyC . (1)

This matrix is symmetric and positive semi-definite with real eigenvalues 210 λλλ ≤≤ and correspond-

ing eigenvectors , ,  forming an orthogonal basis of R0v 1v 2v 3.  The eigenvalues lλ  measure the 

variance of  in the directions   In particular,  estimates the surface normal of  (up to 

sign) and the plane through 

)( ixN .lv 0v ix

x  spanned by  and  approximates the tangent plane at  [29, 19].   1v 2v ix



 
 

 

 
 

(a) Input point cloud (200,000 points) 

 
 

(b) Surface variation using few 
nearest neighbors 

 
 

(c) Surface variation using many 
nearest neighbors 

 

Fig. 2. The effects of varying neighborhood size on surface variation estimation for a golf club head. 

 

Therefore, 0λ  quantifies the deviation of  from the tangent plane and we can define the scale-

invariant surface variation of the k-nearest neighbors as  

)( ixN

210
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λλλ

λσ
++
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As shown in Figure 2, this measure of variation distinguishes clearly between curved and flat regions. 

 

3.2. Region growing 
 

Region growing first finds a small set of points near the seed point and approximates this 

neighborhood with an initial surface.  The region then grows by clustering points that are geometrically 

compatible with the approximating surface.  Once all compatible points have been added, the algorithm 

fits a new surface to the region to improve the approximation.  The algorithm then uses this new surface 

to re-grow the region.  This process is repeated until the region size stops increasing. 

As we progress through the point cloud, we attempt to approximate the neighborhood of each 

point with a surface.  We first check if  has been labeled as belonging to a region.  If so, we 

simply skip it.  If not, we construct a seed region  of all the unlabeled points within a radius 
ix ix

)( ixS Sρ  

of : ix

{ }unlabeledisandii xxxXxxS Sρ<−∈=)( . 

A seed region is illustrated in 2D in Figure 3.  If  does not contain enough points for surface fit-

ting, we move on to the next seed point, leaving  unlabeled.  Otherwise, we fit a surface to the seed 

region  as described in Section 3.3.  The radius 

)( ixS

ix

)( ixS Sρ  should be chosen to allow enough points for 

surface fitting but not so many that it includes points that may correspond to other surfaces.  We discuss 

its selection in Section 4. 



 
 

 

 

Fig. 3. Seed region selection.  The points in the 

seed region are filled with gray.  The initial surface 

is fit only to the points in the seed region. 

 

 

Fig. 4. Geometric compatibility.  Only one point, filled 

with gray, is geometrically compatible with the surface.  

The dotted curves represent the G0 compatibility thresh-

old. 

 

Each region formed by the algorithm is a set of points geometrically compatible with the re-

gion’s underlying surface.  We define geometric compatibility in a G0 and G1 sense.  For a point  a 

parametric surface  and parameters 

,x

),,( vub ),( vu  that minimize the distance from  to  we 

say the point is G

x ),,( vub
0 compatible with the surface if  

0),( ε<− vubx  (3)
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and  is in radians.  All the different possible cases of compatibility and non-compatibility are shown 

in Figure 4.  The dotted lines show the shortest paths to the surface and thus imply the direction of the 

surface normal  at the position on the surface nearest to each point.  When point normals deviate too 

much, the points are incompatible with the surface.  The compatibility thresholds  and  are the 

only user-defined parameters.  They can be determined automatically as described in [38], but to in-

crease interactivity and to decrease computation, we leave them to the user in this presentation.  The 

parameters 

1ε

bn
0ε 1ε

),( vu  of the point on the surface closest to  are determined by first coarsely sampling 

points on the surface and then using the closest point to  as the initial value for a Newton iteration that 

minimizes the distance from the surface to   A detailed description of this process is given in [32]. 

x

x

.x

Now that we have defined geometric compatibility, we can present the algorithm for region 

growing.  Given a seed region  and a parametric surface  the first region growing step  )( ixS ),,( vub



 
 

 

REGION-GROWING( , ) , ) )( ixS ,( vub bR

 CLEAR( ) bR

 CLEAR( ) Q

 for each  )( ixSx∈

  if  compatible with  x ),( vub

   LABEL( x ) 

   INSERT( , ) bR x

  ENQUEUE( Q , ) x

 GROW( , , ) bR Q ),( vub

 

GROW( , , ) bR Q ),( vub

 while NOT-EMPTY( ) Q

   x ←  DEQUEUE( Q ) 
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  for each )(xNy∈  
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    LABEL( y ) 

    INSERT( , ) bR y
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 Algorithm 2.  This function grows a region 

 given a seed region and an initial approximating 

 surface. 

 Algorithm 3.  The GROW function, called in 

 Algorithm 2, uses a queue and nearest-neighbor 

 searching to grow the region. 

 

labels all the compatible points in  and adds them to the region .  These points are also in-

serted into a queue  used for region growing.  The algorithm dequeues points and checks their k-

nearest neighbors for any unlabeled points.  If any of these unlabeled points are compatible with 

 the algorithm inserts them into the queue.  This continues until the queue is empty.  This can 

be written in pseudocode as an Algorithm 2, where the function GROW that grows each region can be 

written as in Algorithm 3. 
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Once the region growing is complete, we fit a new surface to the points in  and repeat the 

region growing process with  and the new surface.  As shown in Algorithm 1, we temporarily 

store the region points and underlying surface for each iteration until the region size does not increase 

from one iteration to the next.  In this case, we stop region growing and use the larger of the current and 

previous regions and its corresponding underlying surface.  This iterative procedure maximizes the size 

of each region while improving the quality of the approximating surface. 

bR
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3.3. Surface fitting 
 

The region growing framework is quite general and can be used with a variety of surfaces.  

The algorithm can be used with any class of surfaces that allows approximation (for surface fitting), dif-

ferentiation, and point projection (for testing geometric compatibility).  We implemented the region 

growing algorithm with non-rational bicubic Bézier surfaces because they are easy to manage yet repre-

sentative of surfaces commonly used in computer-aided design.  They can be expressed as 
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where the  are the n)(uBn
i

th-degree Bernstein polynomials.  Given parameters  for each point in 

the region  we can write an overdetermined system of linear equations that can be solved for the 

control points  using linear least squares [17, 33].  However, determining quality parameters for 

each point is often subtle [37, 25]. 
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We adopt a fast and simple scheme for point parameterization that has given good results in all 

our test cases.  Given the points  in a region, we calculate the plane perpendicular to a weighted 

average of the point normals.  We first find the centroid 
bR

x  of the points in the region and the maximum 

squared distance from any point to the centroid,  
22

max max i
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The plane normal is the Gaussian-weighted average of the point normals in the region 
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where σ  is chosen such that 1.0)](2/1exp[ 22
max ≈− σd .  We then project the points in  onto the 

plane defined by 
bR

x  and n  and rotate them in-plane so that the area of their axis-aligned bounding box 

is minimized.  The in-plane coordinates are then linearly scaled so that each point in  is assigned 

parameters  such that 
bR

),( vu .1, αα −≤≤ vu   The constant α  is necessary because the Bézier sur-

faces are only defined for  and the region needs room to grow.  In our implementation, we 

use 

1,0 ≤≤ vu

25.0=α . 

Once we have found parameters for each point, we can perform surface fitting with linear least 

squares.  Although this initial surface approximation is often adequate, we can improve the fit accuracy 

by projecting the points back onto  to find new parameters for them.  These new parameters can 

then be used to fit a new surface to the region with linear least-squares.  We use three iterations of this in 

our implementation. 
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4. Results and implementation 
 

We implemented the algorithm as described in Section 3.  Our current program can take in 

mesh or point-normal data and output control points for the parametric surfaces approximating the data. 

For principal component analysis and region growing, we find the k-nearest neighbors with 

.  To make the nearest neighbor searches faster, we precompute the radius 10=k iρ  of the ball that 

contains the 10-nearest neighbors of each point .  This eliminates the need for sorting or maintaining 

a priority queue when making nearest neighbor queries.  For creating seed regions, we use the points in a 

ball of radius 

ix

ρρ 3=S . 



 
 

 

Table 1. Results with execution times and memory usage. 

 

Model Num. 

Points 

Thresh.

Angle

Peak 

RAM 

Time

(secs)

C-pillar 99,790 5° 25 MB 24 

Rear Fender 1,065,886 6° 90 MB 255

Front Door 1,497,459 5° 125 MB 288

 

Table 1 shows the memory use and time for region growing.  We do not include the time re-

quired for principal component analysis because it is a standard analysis tool and takes only a few sec-

onds for even the largest models.  A threshold distance of 0.3 mm was used for all the examples, so it is 

also elided.  In practice, threshold distance can be easily determined based on the laser-scanner toler-

ances.  The threshold angle is more application dependent.  The algorithm extracts surfaces from rela-

tively small models in seconds and takes just minutes for the largest models.  Also, processing a point 

cloud takes considerably less RAM than processing a mesh.  Our implementation approaches approxi-

mately 80 bytes per point for large models.  In our experience, this is less than 25% of the RAM re-

quired to hold a mesh data structure with faces and edges representing the same data.  Our tests were run 

on an AMD Athlon 64 2.2 GHz processor with 2 GB of RAM. 

Figure 5 shows point clouds on the left and extracted surfaces on the right.  The points in each 

region and their underlying surface have the same color.  Notice that the algorithm can extract surfaces 

from large regions, often with a single surface representing hundreds of thousands of points.  For visu-

alization clarity we rendered the surfaces for 75.0,25.0 ≤≤ vu .  The surfaces have otherwise not been 

trimmed to correspond to the point-set geometry.  

Figure 6 demonstrates the quality of the extracted surfaces by simulating reflection lines on the 

point cloud.  The figure was created by using the point normals to map a cylindrical light-strip texture 

onto the points.  For the results, we projected labeled points onto the surfaces and assigned them the 

corresponding surface normals.  Note that, in general, not all points were assigned to regions.  In the 

figures, only labeled points are displayed. 

 



 
 

   
(a) Rear Fender (1 million points) 

 

   
 

(b) Front Door (1.5 million points) 
 

Fig. 5. The point clouds colored by region labels and the extracted surfaces. 

 

5. Discussion 
 

Our implementation processes point clouds in-core, requiring the entire point cloud in main 

memory.  The most important requirement of the data structure for processing the point cloud is fast and 

efficient nearest-neighbors queries.  For this, one can use hierarchical space-partitioning data structures 

such as octrees [35] or kd-trees [14], but finding nearest neighbors with these is logarithmic in   For 

a large point cloud, region growing may make hundreds of millions of nearest-neighbors queries, making 

logarithmic time complexity unacceptable.  Therefore, we exploit the fact that our data is somewhat uni-

formly distributed and use a simple cubical 3D grid data structure that allows nearest-neighbor queries in 

constant time with modest memory overhead.  We first find the axis-aligned bounding box of the input 

data and calculate its volume.  Then, we use the volume to partition it into

.N

K cubes where   

This partitioning induces a hash on the point coordinates, and each cube in the grid contains pointers to 

the points it contains.  If the radius that contains the k-nearest neighbors is pre-computed, as in our im-

plementation, then the nearest neighbors may be found without sorting, making k-nearest neighbors que-

ries an  operation.  

.NK ≈

)(kO



 
 

 

 
(a) Reflection lines on C-pillar raw data (100,000 points) 

 

 
(b) Reflection lines on extracted surfaces 

 
 
 

 
(c) Reflection lines on rear fender raw data (1,000,000 points) 

 
 

 
(d) Reflection lines on extracted surfaces 

 

Fig.6. Simulated reflection lines on point cloud data before and after surface extraction. 

 

For each of the points, we store the position and normal information along with the region 

number and the radius for nearest neighbor searching.  The grid requires approximately  

bytes, where  on 32-bit architecture and 

N

)( KNB +

4=B 8=B  on 64-bit architecture and K  is the number of 

grid cubes.  We note in passing that, if there is sufficient memory, pointers to nearest neighbors can be 

stored explicitly for each point, making nearest-neighbor searching an  operation during region 

growing.  This can speed up the algorithm dramatically. 

)1(O

Also during region growing, when fitting a parametric surface to a large number of points (over, 

say, 105), the normal equations for linear least-squares can become ill-conditioned and numerically unsta-

ble [17].  Because some regions in our tests could contain over a million points, we use only a relatively 

small ( ≈ 104) random sample of the points in a region for parameterization and surface fitting.  This adds 

to the numerical stability of the algorithm and decreases the processing time, yet makes no apparent dif-

ference in the results. 

 

 



 
 

6. Conclusions and future work 
 

We have presented a method for efficiently extracting surfaces from large point clouds with lit-

tle user interaction.  By taking advantage of the density of a point cloud, we can reliably find groups of 

points that can be approximated by single surfaces.  The extracted surfaces can easily be output in an 

industry-standard format for designers and modelers to create a final design.  Furthermore, the region 

growing algorithm can be implemented in an interactive setting where the user selects seed points for 

region growing.  This would not require calculating the surface variation, of course. 

We emphasize that the output of the algorithm is a disjoint set of surfaces to be used in down-

stream applications.  In future work, we hope to adapt the surface extraction approach presented in this 

paper to create a full reconstruction of the scanned object.  In particular, we would like to blend and in-

tersect the extracted surfaces by using an implicit partition of unity approach to create a piecewise-smooth 

reconstruction of the scanned object [26].  After surface extraction, we could subdivide the domain into, 

say, cubical cells and then use the labeling of the points in each cell to determine whether to use one ex-

tracted surface in the cell, join two or more extracted surfaces in the cell, or fit a new surface to the points 

in the cell.  Then the approximations in each cell would be blended with an implicit partition of unity.  

This approach should also handle sharp edges and holes in the segmentation.    
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