

Surface Extraction from Point-Sampled Data

through Region Growing

Miguel Vieira∗ and Kenji Shimada
Mechanical Engineering Department, Carnegie Mellon University

Abstract

As three-dimensional range scanners make large point clouds a more common initial representa-
tion of real world objects, a need arises for algorithms that can efficiently process point sets. In this pa-
per, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized
set of points in space as input, our algorithm first uses principal component analysis to estimate the sur-
face variation at each point. After defining conditions for determining the geometric compatibility of a
point and a surface, we examine the points in order of increasing surface variation to find points whose
neighborhoods can be closely approximated by a single surface. These neighborhoods become seed
regions for region growing. The region growing step clusters points that are geometrically compatible
with the approximating surface and refines the surface as the region grows to obtain the best approxima-
tion of the largest number of points. When no more points can be added to a region, the algorithm stores
the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of
the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results
on large point clouds acquired from real-world objects.

Key Words: point-sampled geometry, surface reconstruction, surface extraction, segmentation, region
growing

1. Introduction

Point clouds are becoming an increasingly common initial digital representation of real-world

objects. This is due to the popularity of affordable and accurate scanning equipment that can quickly

digitize the geometry of a real-world object. However, the resulting point cloud representing an object’s

surface can often contain millions of three-dimensional points. This large size and the noise associated

with measurement can make processing the data difficult. Nevertheless, there are many applications

where it is necessary to create a computer model consisting of just a few simple surfaces from the point-

cloud data. Accurately reconstructing the object’s geometry in this way is often a difficult and time-

consuming task. In this work, we present a method for automatically extracting surfaces from point-

cloud data that works quickly and minimizes the memory overhead of handling large data sets. Our sur-

face extraction technique segments the point cloud and has the potential to be used in surface reconstruc-

tion, reverse engineering, industrial design, and rapid prototyping.

∗ Corresponding author:
Email: mcv@andrew.cmu.edu

(a) Surface variation (100,000 points)

(b) Points assigned to surfaces

(c) Extracted surfaces

Fig. 1. Different surface extraction steps for an automobile C-pillar.

Surface extraction through region growing is founded on the assumption of surface coherence

[11, 38]. This is the observation that, despite the presence of noise, almost every point sampled from an

object’s surface will be geometrically related to its nearby points in that they will all lie near a single,

smooth surface. Furthermore, it implies that the connectivity information of a triangle mesh can be re-

placed by spatial proximity of the sampled points if the point cloud is sufficiently dense. Our algorithm

exploits this property to automatically organize the point cloud into distinct regions approximated by

simple surfaces.

Our method iterates between region growing and surface fitting to automatically find sets of

points that can be closely approximated by single surfaces. Given a set of N points

sampled from a surface in R

},,{ 10 −= NxxX K

3 and a seed point our algorithm attempts to find a parametric surface

 and a maximal set of points such that every point in is geometrically compatible with

 We define a point to be geometrically compatible with a surface if its position and normal dif-

fer from the nearby surface by small amounts. In this presentation, we assume all points have consis-

tently oriented normals . If the normal data is not available, then it can be calculated

from a mesh representation, from the laser scanner acquisition process, or by estimating the tangent plane

of each point and then propagating normals along a minimum spanning tree as described in [19].

,ix

),(vub ,bR bR

).,(vub

},,{ 10 −= NnnN K

The algorithm presented here, summarized in Algorithm 1, first partitions the bounding box of

 into a cubical grid for efficient nearest-neighbor searching. Then it attempts to grow a region from

each point in order of increasing surface variation

X

Xx∈)(xkσ , determined by principal component

analysis. Region growing first checks if a small neighborhood, the seed region , around a point

can be approximated with a single surface . If so, the compatible points in the seed region

define a new region and the algorithm adds to this new region all nearby points geometrically

compatible with the surface. Once all compatible points have been added, the algorithm fits a new sur-

face to the entire region and repeats the region growing. A final surface is ex-

tracted when the number of points in the region stops increasing. The different steps of the algorithm

)(xS

),(vuinitb

new,bR

),(vunewb),(vub

 EXTRACT-SURFACES() X

 Find x, y, z extents of and partition domain into a cubical grid X

 for each , calculate and store distance to k-nearest neighbors Xx∈

 for each , calculate and store Xx∈)(xkσ

 for each in order of increasing surface variation Xx∈

 if LABELED(x), continue (skip to next point)

 construct) and find (xS),(vuinitb

),(),(vuvu initnew bb =

 CLEAR() new,bR

 do

 newold ,, bb RR =

),(),(vuvu newold bb =

 REGION-GROWING(,) ,))(xS ,(vunewb new,bR

 while (oldnew ,, bb RR >)

 if oldnew ,, bb RR <

 old,bb RR =

),(),(vuvu oldbb =

 else

 new,bb RR =

),(),(vuvu newbb =

 create new region from and bR),(vub

Algorithm 1. Pseudocode for the surface extraction algorithm

are illustrated in Figure 1. Figure 1(a) shows the point colored by surface variation, Figure 1(b) shows

the points colored according to different underlying surfaces, and Figure 1(c) shows the extracted surfaces

painted with the same colors as the points they represent. Note that in all of our examples the point

clouds appear continuous because they are dense enough that there is more than one point per pixel.

Our region growing approach for surface extraction is intuitive, efficient, and straightforward to

implement. By reducing the data representation to only what is essential, we eliminate the need for a

mesh data structure and reduce the algorithmic complexity and memory requirements for processing the

data. This allows users to process larger data sets, including not just point clouds, but also parametric

and polygonal data, which one can easily convert into dense point clouds. Our algorithm can extract

parametric surfaces from sets of millions of points in minutes with guaranteed approximation errors.

Furthermore, one can speed up the surface extraction by simplifying the point cloud as in [29] without

creating a mesh. Finally, the region-growing algorithm can be easily adapted so that a user can simply

click on a point cloud to automatically extract surfaces from it.

2. Related Work

Surface reconstruction from point clouds has received considerable study and continues to do so.

There are several existing methods for generating a piecewise-linear mesh from a point cloud [13, 19, 5,

6]. There are also methods for reconstructing a smooth or piecewise-smooth surface from a point cloud

[16, 7, 27, 26, 12, 20]. However, for our target applications, creating an approximating mesh from the

point cloud is unnecessary. Furthermore, a fully automatic smooth or piecewise-smooth surface recon-

struction that results in an implicit surface or a tiling of many triangular or rectangular patches is difficult

for a designer or modeler to modify and cannot produce large surfaces of acceptable quality for consumer

product styling. More recently, point clouds have also received attention as a potential rendering primi-

tive because of their compactness and the increasing commonness of very large data sets [23, 31, 34, 4, 1,

2, 3].

Our region growing method is similar in principle to existing methods for automatically parti-

tioning meshes into regions that can be easily parameterized. For example, [24, 15] use an s-source ad-

aptation of Dijkstra’s shortest-path algorithm to segment a mesh. On point clouds, [28] grows regions

by enforcing a normal cone condition, requiring that the largest angle spanned by the point normals in a

region is below a certain threshold. The present region growing method is more specific than these,

requiring that both the positions and the normals of points are close to that of an underlying surface.

Our surface extraction algorithm can also be viewed as a complement to existing algorithms for

extracting features from point clouds [18, 30]. These papers apply principal component analysis to a

point cloud to detect features then use a minimum spanning graph of the feature points to extract sharp

edges. Pauly, et al, [30] further model the extracted edges with adaptive contour models. In our ap-

proach, we use principal component analysis to find the areas of smallest variation, then use region grow-

ing to find clusters of points lying near smooth surfaces. While feature extraction is most suitable for

mesh generation and non-photorealistic rendering, surface extraction is useful for reverse engineering,

surface reconstruction, and industrial design.

The concept of growing regions to find groups of points that can be approximated by surfaces

was introduced for images by [11, 10] and adapted for gridded height data in [36]. In [39, 38], the pre-

sent authors applied the region growing approach to segment dense, unstructured meshes. In this paper,

we further extend the region growing approach into a method for automatic surface extraction from point

clouds. As widespread use of modern measurement equipment makes very large data sets more ubiqui-

tous, operating directly on the point cloud becomes more desirable. By utilizing only the necessary data,

the amount of computer memory required for analysis becomes a fraction of what is required for main-

taining a mesh data structure.

The work done by Huang and Menq and Benkő and Várady is most similar to ours. The

method proposed by Huang and Menq [21, 22] first constructs a mesh from the point cloud, then seg-

ments it and fits B-spline surfaces to the segments. However, the assumptions and complexity of the

approach make it unfeasible for very large data sets. The method presented by Benkő and Várady [8, 9]

is more closely related to ours. It applies a hierarchy of tests to recursively subdivide a point cloud into

small regions that can be approximated by a single analytic surface such as a plane, cylinder, cone, sphere,

or torus. However, it is not clear that such an approach can be used on point clouds representing free-

form surfaces.

3. Surface extraction algorithm

3.1. Seed point selection

Our algorithm begins with a single point, called a seed point, for the extraction of each surface.

A small neighborhood around the seed point is then used to find an initial surface approximation for re-

gion growing. Intuitively then, region growing will be most effective when the seed point is interior to a

large group of points lying near a single surface. We choose a simple, fast heuristic method to select

seed points, first estimating the surface variation at each point in the point cloud, then examining the

points in order of increasing surface variation. This makes the reasonable assumption that region grow-

ing will be more successful in areas with low variation than in areas with high variation. In addition, as

surfaces are extracted from the point cloud, potential seed points can simply be skipped if they are already

assigned to regions.

The surface variation at each point is calculated using principal component analysis, a technique

commonly used to estimate local surface properties of point clouds [29, 18, 30]. It is illustrated in Fig-

ure 2. The technique can be understood as analogous to finding the mean and variance of a one-

dimensional distribution. Let be the k-nearest neighbors of a point)(ixN Xx ∈i . Denoting by x

the centroid of , we can define the)(ixN 33× covariance matrix by C

∑
∈

−⋅−=
)(

)()(
i

T

xNy
xyxyC . (1)

This matrix is symmetric and positive semi-definite with real eigenvalues 210 λλλ ≤≤ and correspond-

ing eigenvectors , , forming an orthogonal basis of R0v 1v 2v 3. The eigenvalues lλ measure the

variance of in the directions In particular, estimates the surface normal of (up to

sign) and the plane through

)(ixN .lv 0v ix

x spanned by and approximates the tangent plane at [29, 19]. 1v 2v ix

(a) Input point cloud (200,000 points)

(b) Surface variation using few
nearest neighbors

(c) Surface variation using many
nearest neighbors

Fig. 2. The effects of varying neighborhood size on surface variation estimation for a golf club head.

Therefore, 0λ quantifies the deviation of from the tangent plane and we can define the scale-

invariant surface variation of the k-nearest neighbors as

)(ixN

210

0)(
λλλ

λσ
++

=ik x . (2)

As shown in Figure 2, this measure of variation distinguishes clearly between curved and flat regions.

3.2. Region growing

Region growing first finds a small set of points near the seed point and approximates this

neighborhood with an initial surface. The region then grows by clustering points that are geometrically

compatible with the approximating surface. Once all compatible points have been added, the algorithm

fits a new surface to the region to improve the approximation. The algorithm then uses this new surface

to re-grow the region. This process is repeated until the region size stops increasing.

As we progress through the point cloud, we attempt to approximate the neighborhood of each

point with a surface. We first check if has been labeled as belonging to a region. If so, we

simply skip it. If not, we construct a seed region of all the unlabeled points within a radius
ix ix

)(ixS Sρ

of : ix

{ }unlabeledisandii xxxXxxS Sρ<−∈=)(.

A seed region is illustrated in 2D in Figure 3. If does not contain enough points for surface fit-

ting, we move on to the next seed point, leaving unlabeled. Otherwise, we fit a surface to the seed

region as described in Section 3.3. The radius

)(ixS

ix

)(ixS Sρ should be chosen to allow enough points for

surface fitting but not so many that it includes points that may correspond to other surfaces. We discuss

its selection in Section 4.

Fig. 3. Seed region selection. The points in the

seed region are filled with gray. The initial surface

is fit only to the points in the seed region.

Fig. 4. Geometric compatibility. Only one point, filled

with gray, is geometrically compatible with the surface.

The dotted curves represent the G0 compatibility thresh-

old.

Each region formed by the algorithm is a set of points geometrically compatible with the re-

gion’s underlying surface. We define geometric compatibility in a G0 and G1 sense. For a point a

parametric surface and parameters

,x

),,(vub),(vu that minimize the distance from to we

say the point is G

x),,(vub
0 compatible with the surface if

0),(ε<− vubx (3)

and G1 compatible if
11),(cos ε<−

bnn , (4)

where is the point normal, is the surface normal at n bn),(vu ,

),(),(
),(),(

vuvu
vuvu

vu

vu
bb
bbnb ×

×
= , (5)

and is in radians. All the different possible cases of compatibility and non-compatibility are shown

in Figure 4. The dotted lines show the shortest paths to the surface and thus imply the direction of the

surface normal at the position on the surface nearest to each point. When point normals deviate too

much, the points are incompatible with the surface. The compatibility thresholds and are the

only user-defined parameters. They can be determined automatically as described in [38], but to in-

crease interactivity and to decrease computation, we leave them to the user in this presentation. The

parameters

1ε

bn
0ε 1ε

),(vu of the point on the surface closest to are determined by first coarsely sampling

points on the surface and then using the closest point to as the initial value for a Newton iteration that

minimizes the distance from the surface to A detailed description of this process is given in [32].

x

x

.x

Now that we have defined geometric compatibility, we can present the algorithm for region

growing. Given a seed region and a parametric surface the first region growing step)(ixS),,(vub

REGION-GROWING(,) ,))(ixS ,(vub bR

 CLEAR() bR

 CLEAR() Q

 for each)(ixSx∈

 if compatible with x),(vub

 LABEL(x)

 INSERT(,) bR x

 ENQUEUE(Q ,) x

 GROW(, ,) bR Q),(vub

GROW(, ,) bR Q),(vub

 while NOT-EMPTY() Q

 x ← DEQUEUE(Q)

)(xN ← k-nearest neighbors of x

 for each)(xNy∈

 if unlabeled and compatible with y

),(vub

 LABEL(y)

 INSERT(,) bR y

 ENQUEUE(,) Q y

 Algorithm 2. This function grows a region

 given a seed region and an initial approximating

 surface.

 Algorithm 3. The GROW function, called in

 Algorithm 2, uses a queue and nearest-neighbor

 searching to grow the region.

labels all the compatible points in and adds them to the region . These points are also in-

serted into a queue used for region growing. The algorithm dequeues points and checks their k-

nearest neighbors for any unlabeled points. If any of these unlabeled points are compatible with

 the algorithm inserts them into the queue. This continues until the queue is empty. This can

be written in pseudocode as an Algorithm 2, where the function GROW that grows each region can be

written as in Algorithm 3.

)(ixS bR

Q

),,(vub

Once the region growing is complete, we fit a new surface to the points in and repeat the

region growing process with and the new surface. As shown in Algorithm 1, we temporarily

store the region points and underlying surface for each iteration until the region size does not increase

from one iteration to the next. In this case, we stop region growing and use the larger of the current and

previous regions and its corresponding underlying surface. This iterative procedure maximizes the size

of each region while improving the quality of the approximating surface.

bR

)(ixS

3.3. Surface fitting

The region growing framework is quite general and can be used with a variety of surfaces.

The algorithm can be used with any class of surfaces that allows approximation (for surface fitting), dif-

ferentiation, and point projection (for testing geometric compatibility). We implemented the region

growing algorithm with non-rational bicubic Bézier surfaces because they are easy to manage yet repre-

sentative of surfaces commonly used in computer-aided design. They can be expressed as

∑∑
= =

=
3

0

3

0

33
,)()(),(

i j
jiji vBuBvu pb , 1,0 ≤≤ vu , (6)

where the are the n)(uBn
i

th-degree Bernstein polynomials. Given parameters for each point in

the region we can write an overdetermined system of linear equations that can be solved for the

control points using linear least squares [17, 33]. However, determining quality parameters for

each point is often subtle [37, 25].

),(vu

,bR

ji,p

We adopt a fast and simple scheme for point parameterization that has given good results in all

our test cases. Given the points in a region, we calculate the plane perpendicular to a weighted

average of the point normals. We first find the centroid
bR

x of the points in the region and the maximum

squared distance from any point to the centroid,
22

max max i
i

d xx
bRx

−=
∈

. (7)

The plane normal is the Gaussian-weighted average of the point normals in the region

∑
∑

∈

∈=

b

b

Rx

Rx
n

n

i

i

i

ii

w

w
,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

2

2
1exp

σ
i

iw
xx

, (8)

where σ is chosen such that 1.0)](2/1exp[22
max ≈− σd . We then project the points in onto the

plane defined by
bR

x and n and rotate them in-plane so that the area of their axis-aligned bounding box

is minimized. The in-plane coordinates are then linearly scaled so that each point in is assigned

parameters such that
bR

),(vu .1, αα −≤≤ vu The constant α is necessary because the Bézier sur-

faces are only defined for and the region needs room to grow. In our implementation, we

use

1,0 ≤≤ vu

25.0=α .

Once we have found parameters for each point, we can perform surface fitting with linear least

squares. Although this initial surface approximation is often adequate, we can improve the fit accuracy

by projecting the points back onto to find new parameters for them. These new parameters can

then be used to fit a new surface to the region with linear least-squares. We use three iterations of this in

our implementation.

),(vub

4. Results and implementation

We implemented the algorithm as described in Section 3. Our current program can take in

mesh or point-normal data and output control points for the parametric surfaces approximating the data.

For principal component analysis and region growing, we find the k-nearest neighbors with

. To make the nearest neighbor searches faster, we precompute the radius 10=k iρ of the ball that

contains the 10-nearest neighbors of each point . This eliminates the need for sorting or maintaining

a priority queue when making nearest neighbor queries. For creating seed regions, we use the points in a

ball of radius

ix

ρρ 3=S .

Table 1. Results with execution times and memory usage.

Model Num.

Points

Thresh.

Angle

Peak

RAM

Time

(secs)

C-pillar 99,790 5° 25 MB 24

Rear Fender 1,065,886 6° 90 MB 255

Front Door 1,497,459 5° 125 MB 288

Table 1 shows the memory use and time for region growing. We do not include the time re-

quired for principal component analysis because it is a standard analysis tool and takes only a few sec-

onds for even the largest models. A threshold distance of 0.3 mm was used for all the examples, so it is

also elided. In practice, threshold distance can be easily determined based on the laser-scanner toler-

ances. The threshold angle is more application dependent. The algorithm extracts surfaces from rela-

tively small models in seconds and takes just minutes for the largest models. Also, processing a point

cloud takes considerably less RAM than processing a mesh. Our implementation approaches approxi-

mately 80 bytes per point for large models. In our experience, this is less than 25% of the RAM re-

quired to hold a mesh data structure with faces and edges representing the same data. Our tests were run

on an AMD Athlon 64 2.2 GHz processor with 2 GB of RAM.

Figure 5 shows point clouds on the left and extracted surfaces on the right. The points in each

region and their underlying surface have the same color. Notice that the algorithm can extract surfaces

from large regions, often with a single surface representing hundreds of thousands of points. For visu-

alization clarity we rendered the surfaces for 75.0,25.0 ≤≤ vu . The surfaces have otherwise not been

trimmed to correspond to the point-set geometry.

Figure 6 demonstrates the quality of the extracted surfaces by simulating reflection lines on the

point cloud. The figure was created by using the point normals to map a cylindrical light-strip texture

onto the points. For the results, we projected labeled points onto the surfaces and assigned them the

corresponding surface normals. Note that, in general, not all points were assigned to regions. In the

figures, only labeled points are displayed.

(a) Rear Fender (1 million points)

(b) Front Door (1.5 million points)

Fig. 5. The point clouds colored by region labels and the extracted surfaces.

5. Discussion

Our implementation processes point clouds in-core, requiring the entire point cloud in main

memory. The most important requirement of the data structure for processing the point cloud is fast and

efficient nearest-neighbors queries. For this, one can use hierarchical space-partitioning data structures

such as octrees [35] or kd-trees [14], but finding nearest neighbors with these is logarithmic in For

a large point cloud, region growing may make hundreds of millions of nearest-neighbors queries, making

logarithmic time complexity unacceptable. Therefore, we exploit the fact that our data is somewhat uni-

formly distributed and use a simple cubical 3D grid data structure that allows nearest-neighbor queries in

constant time with modest memory overhead. We first find the axis-aligned bounding box of the input

data and calculate its volume. Then, we use the volume to partition it into

.N

K cubes where

This partitioning induces a hash on the point coordinates, and each cube in the grid contains pointers to

the points it contains. If the radius that contains the k-nearest neighbors is pre-computed, as in our im-

plementation, then the nearest neighbors may be found without sorting, making k-nearest neighbors que-

ries an operation.

.NK ≈

)(kO

(a) Reflection lines on C-pillar raw data (100,000 points)

(b) Reflection lines on extracted surfaces

(c) Reflection lines on rear fender raw data (1,000,000 points)

(d) Reflection lines on extracted surfaces

Fig.6. Simulated reflection lines on point cloud data before and after surface extraction.

For each of the points, we store the position and normal information along with the region

number and the radius for nearest neighbor searching. The grid requires approximately

bytes, where on 32-bit architecture and

N

)(KNB +

4=B 8=B on 64-bit architecture and K is the number of

grid cubes. We note in passing that, if there is sufficient memory, pointers to nearest neighbors can be

stored explicitly for each point, making nearest-neighbor searching an operation during region

growing. This can speed up the algorithm dramatically.

)1(O

Also during region growing, when fitting a parametric surface to a large number of points (over,

say, 105), the normal equations for linear least-squares can become ill-conditioned and numerically unsta-

ble [17]. Because some regions in our tests could contain over a million points, we use only a relatively

small (≈ 104) random sample of the points in a region for parameterization and surface fitting. This adds

to the numerical stability of the algorithm and decreases the processing time, yet makes no apparent dif-

ference in the results.

6. Conclusions and future work

We have presented a method for efficiently extracting surfaces from large point clouds with lit-

tle user interaction. By taking advantage of the density of a point cloud, we can reliably find groups of

points that can be approximated by single surfaces. The extracted surfaces can easily be output in an

industry-standard format for designers and modelers to create a final design. Furthermore, the region

growing algorithm can be implemented in an interactive setting where the user selects seed points for

region growing. This would not require calculating the surface variation, of course.

We emphasize that the output of the algorithm is a disjoint set of surfaces to be used in down-

stream applications. In future work, we hope to adapt the surface extraction approach presented in this

paper to create a full reconstruction of the scanned object. In particular, we would like to blend and in-

tersect the extracted surfaces by using an implicit partition of unity approach to create a piecewise-smooth

reconstruction of the scanned object [26]. After surface extraction, we could subdivide the domain into,

say, cubical cells and then use the labeling of the points in each cell to determine whether to use one ex-

tracted surface in the cell, join two or more extracted surfaces in the cell, or fit a new surface to the points

in the cell. Then the approximations in each cell would be blended with an implicit partition of unity.

This approach should also handle sharp edges and holes in the segmentation.

7. Acknowledgements

This work is based in part on work supported by an NSF CAREER Award (No. 9985288). We

would like to thank Cyberware for the Golf Club data set used in our testing.

References

1. A. Adamson and M. Alexa (2003), Ray Tracing Point Set Surfaces, Proceedings of Shape Modeling

International 2003, 272-279.

2. A. Adamson and M. Alexa (2003), Approximating and Intersecting Surfaces from Points, Proceedings

of EUROGRAPHICS '03, 245-254.

3. A. Adamson and M. Alexa (2004), Approximating Bounded, Non-Orientable Surfaces from Points,

Proceedings of Shape Modeling International 2004, 243-252.

4. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva (2001), Point Set Surfaces, IEEE

Visualization 2001, 21-28.

5. N. Amenta, M. Bern and M. Kamvysselis (1998), A New Voronoi-Based Surface Reconstruction Algo-

rithm, Proceedings of SIGGRAPH 98, 415-422.

6. M. Attene and M. Spagnuolo (2000), Automatic Surface Reconstruction from Point Sets in Space, Pro-

ceedings of EUROGRAPHICS 00, 457-465.

7. C. Bajaj, F. Bernardini and G. Xu (1995), Automatic Reconstruction of Surfaces and Scalar Fields from

3D Scans, Proceedings of SIGGRAPH 95, 109-118.

8. P. Benkõ and T. Várady (2002), Direct Segmentation of Smooth, Multiple Point Regions, Proceedings

of Geometric Modeling and Processing, 169-178.

9. P. Benkõ and T. Várady (2004), Segmentation Methods for smooth point regions of conventional engi-

neering objects, Computer-Aided Design 36(6), 511-523.

10. P. Besl (1988), Surfaces in Range Image Understanding, Springer -Verlag.

11. P. Besl and R. Jain (1988), Segmentation Through Variable-Order Surface Fitting, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 167-192.

12. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans

(2001), Reconstruction and Representation of 3D Objects with Radial Basis Functions, Proceed-

ings of SIGGPRAH 2001, 67-76.

13. B. Curless and M. Levoy (1996), A Volumetric Method for Building Complex Models from Range

Image, SIGGRAPH 96, 303-312.

14. M. de Berg, M. van Krevald, M. Overmars, and O. Schwarzkopf (2000), Computational Geometry.

15. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle (1995), Multiresolution

Analysis of Arbitrary Meshes, Proceedings of SIGGRAPH 95, 173-182.

16. M. Eck and H. Hoppe (1996), Automatic Reconstruction of B-Spline Surface of Arbitrary Topological

Type, Proceedings of SIGGRAPH 96, 325-334.

17. G. Farin (2002), Curves and Surfaces for CAGD, Academic Press, A Harcourt Science and Technol-

ogy Company.

18. S. Gumhold, X. Wang, and R. MacLeod (2001), Feature Extraction from Point Clouds, Proceedings of

the 10th Int. Meshing Roundtable.

19. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle (1992), Surface Reconstruction

from Unorganized Points, SIGGRAPH 92, 71-78.

20. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle

(1994), Piecewise Smooth Surface Reconstruction, Proceedings of SIGGRAPH 94, 295-302.

21. J. Huang and C.-H. Menq (2001), Automatic Data Segmentation for Geometric Feature Extraction

from Unorganized 3-D Coordinate Points, IEEE Transactions on Robotics and Automation, 268-

279.

22. J. Huang and C.-H. Menq (2002), Automatic CAD Model Reconstruction from Multiple Point Clouds

for Reverse Engineering, Journal of Computing and Information Science in Engineering, 160-170.

23. M. Levoy and T. Whitted (1985), The Use of Points as a Display Primitive, University of North Caro-

lina at Chapel Hill Tech. Rept., TR 85-022.

24. B. Lévy, S. Petitjean, N. Ray, and J. Maillot (2002), Least Squares Conformal Maps for Automatic

Texture Atlas Generation, Proceedings of SIGGRAPH 02, 362-371.

25. W. Ma and J. P. Kruth (1995), Parameterization of randomly measured points for least squares fitting

of B-spline curves and surfaces, Computer-Aided Design 27(9), 663-675.

26. Y. Ohtake, A. Belyaev, M. Alexa, G. Turk and H.-P. Seidel (2003), Multi-Level Partition of Unity Im-

plicits, Proceedings of SIGGRAPH 2003, 463-470.

27. Y. Ohtake, A. Belyaev and H.-P. Seidel (2004), 3D Scattered Data Approximation with Adaptive

Compactly Supported Radial Basis Functions, Shape Modeling International 2004, 31-39.

28. M. Pauly and M. Gross (2001), Spectral Processing of Point-Sampled Geometry, Proceedings of

SIGGRAPH 01, 379-386.

29. M. Pauly, M. Gross and L. Kobbelt (2002), Efficient Simplification of Point-Sampled Geometry,

IEEE Visualization 02.

30. M. Pauly, R. Keiser and M. Gross (2003), Multi-scale Feature Extraction on Point-Sampled Surfaces,

EUROGRAPHICS 2003.

31. H. Pfister, M. Zwicker, J. v. Baar and M. Gross (2000), Surfels: Surface Elements as Rendering Primi-

tives, Proceedings of SIGGRAPH 2000, 335-342.

32. L. Piegl and W. Tiller (1997), The NURBS Book, Springer-Verlag.

33. W. Press, S. Teukolsky, W. Vetterling and B. Flannery (1997), Numerical Recipes in C, Second Edi-

tion, Cambridge University Press.

34. S. Rusinkiewicz and M. Levoy (2000), QSplat: A Multiresolution Point Rendering System for Large

Meshes, Proceedings of SIGGRAPH 2000, 343-352.

35. H. Samet (1990), Applications of Spatial Data Structures, Addison-Wesley.

36. N. Sapidis and P. Besl (1995), Direct Construction of Polynomial Surfaces from Dense Range Images

through Region Growing, ACM Transactions on Graphics, 171-200.

37. B. Sarkar and C.-H. Menq (1991), Parameter Optimization in Approximating Curves and Surfaces to

Measurement Data, Computer Aided Geometric Design, 267-290.

38. M. Vieira and K. Shimada (2004), Surface Mesh Segmentation and Smooth Surface Extraction

Through Region Growing, Computer Aided Geometric Design, (in print).

39. M. Vieira and K. Shimada (2004), Segmentation of Noisy Laser-Scanner Generated Meshes with

Piecewise Polynomial Approximations, Proceedings of the ASME Design Automation Conference.

	Abstract
	Introduction
	Related Work
	Surface extraction algorithm
	3.1. Seed point selection
	3.2. Region growing
	3.3. Surface fitting

	Results and implementation
	Discussion
	Conclusions and future work
	Acknowledgements
	References

