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Abstract 
 

In order to model blending surfaces with curvature continuity, in this paper we apply sixth order 
partial differential equations (PDEs), which are solved with a composite power series based method. The 
proposed composite power series based approach meets boundary conditions exactly, minimises the errors 
of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that 
is the most accurate but achievable only for some simple blending problems. Since only a few unknown 
constants are involved, the proposed method is comparable with the closed form solution in terms of 
computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the 
satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and 
more efficient than numerical methods, more powerful than the analytical methods, and can be 
implemented into an effective tool for the generation and manipulation of complex free-form surfaces.  

 
Key Words: curvature continuity surface blending; sixth order partial differential equation; composite 
power series solution; weighted residual method 
 

1. Introduction 
 

Blending surfaces are widely used in product design. In general, two kinds of blending surfaces 

are commonly useful: those with tangent and curvature continuities. Although tangent continuity is 

sufficient for many cases, the ability to satisfy a higher degree of smoothness requirement is essential for 

various situations.  For instance, streamlined surfaces of an automobile are aesthetically appealing and 

those of an aircraft with curvature continuity can reduce the risk of flow separation and turbulence. 

Blending with curvature continuity has been investigated by a number of researchers. Boehm 

proposed a method to generate curvature continuous curves and surfaces by generalizing the well-known 

construction of the Bézier points of a cubic spline curve or surface [3]. Jones decomposed an -sided 

region into  rectangles and indicated that the rectangular patches are biseptic for curvature continuity 

[15]. Farin discussed how to construct 

n

n

curvature continuous planar curves consisting of conic segments 

represented in rational Bézier form [10]. Pegna demonstrated the design of second order smooth blending 

surfaces by requiring that normal curvatures agree along all tangent directions at the linkage curve of two 

patches [21]. By sweeping a (possibly variable) circular arc to represent blending surfaces, he gave a 

method which can guarantee continuity of the unit surface normal and of the normal radius of curvature 

along the linkage curve [22]. Later on, he and Wolter presented a Linkage Curve theorem that is 

pertaining to the design of curvature continuous blending surfaces [23]. Zheng et al. investigated the 

curvature continuity between two adjacent rational Bézier surfaces which may be either rectangular or 
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triangular [36]. Filkins et al. used an approximation method to blend surfaces which maintain curvature 

continuity to the underlying surfaces with a non-uniform rational B-spline (NURBS) surface [11]. 

Schichtel presented a technique for filling polygonal holes using a transfinite interpolant. This technique 

is to model the second-order smooth transitions at an arbitrary linkage curve between two surfaces [25]. 

Aumann proposed the so-called normal ringed surfaces to form curvature continuous connections of 

cones and/or cylinders [1]. Hartmann blended an implicit surface with a parametric surface and achieved 

-continuous transitions through introduction of a simple additional condition [12]. In his later work, 

he introduced a 

2G

method for curvature-continuous ( 2G ) interpolation of an arbitrary sequence of points on 

a surface (implicit or parametric) which can be used for  blending of curves on surfaces [13]. 

Recently, Hartmann proposed the implicit  vertex blending methods which can be applied to other 

surfaces such as parametrically defined surfaces [14]. By defining curvature continuous splines based on 

3-sided patches, Peters discussed how to construct smooth surfaces over irregular meshes [24]. Ye 

developed the Gaussian and mean curvature criteria which individually guarantee the curvature continuity 

along the linkage curve [27]. He also introduced a method for 

2G
nG

local construction of a curvature 

continuous ( ) piecewise polynomial surface through the interpolation of a given rectangular 

curvature continuous quintic curve mesh [28]. 

2GC

Bohl and Reif discussed conditions how degenerate 

triangular Bézier patches guarantee curvature continuity [4]. Kim et al. demonstrated how to extend a 

given surface with a piecewise smooth boundary and indicated the extended surface is 2C -continuity 

along the old boundary [16].

Blending surfaces can also be created using the solutions to PDEs, which has attracted an 

increasing amount of research efforts. Compared with other more mainstream approaches, this group of 

techniques prove very flexible in dealing with certain unusual blending problems in addition to the 

‘ordinary’ ones. For example, it can easily blend an open surface with a closed one (Fig. 6) and can also 

blend surfaces with creases. This would otherwise be extremely challenging for other techniques.  

PDE surface generation is a relatively new research topic in geometric modelling, however has 

already shown a great deal of potential. Bloor and Wilson investigated free-form surface generation with 

partial differential equations [2]. Lowe et al. created blending surfaces that satisfy certain given design 

conditions [18]. Dekanski et al. applied PDE method in generation of a properller blade geometry [7]. Du 

and Qin developed a technique for direct manipulation and interactive sculpting based on PDE and 

equation of motion [8]. They also considered geometric and physical constraints in dynamic PDE-based 

surface design [9]. Mimis et al. discussed shape parameterization of a two-stroke engine and optimization 

of scavenging properties of the engine [19]. Zhang and You applied PDE based approach in vase design 

[33] and surface blending [34]. Ugail and Wilson combined shape parametrisation with a standard method 

of numerical optimization and demonstrated the capability of setting up automatic design optimisation 

problems [26]. You and Zhang extended PDE surface modelling from static problems to dynamic ones 

[31]. Monterde and Ugail proposed a general PDE method to create Bézier surfaces from the boundary 

information [20]. These papers and many others employed a fourth order partial differential equation. 



 
 

Since the vector-valued parameter has a strong influence on the shape of the blending surfaces to be 

generated, an improved fourth order PDE was proposed by You and Zhang [29]. In this new PDE, three 

vector-valued parameters were introduced aiming to provide the designer with more control and 

flexibility on the created blending surfaces. However, these PDEs can only ensure the functional and 

tangential continuities at the linkage curves, i.e. the highest continuity is C1. This is because a fourth 

order PDE will not have enough degrees of freedom to satisfy curvature continuity requirements. In order 

to remedy this issue, sixth order partial differential equations were proposed by You et al. [32], Zhang and 

You [35], and Kubiesa et al. [17].  

An important question to be answered for the PDE based approach, however, is how to solve 

the partial differential equations efficiently and accurately. From the properties of PEDs, one can 

understand that closed form solutions do not exist for the majority of surface blending problems. 

Numerical methods such as the finite element method [5] and finite difference method [6] are usually the 

most obvious choice. However, due to the nature of discretization, these reported numerical methods 

cannot exactly satisfy the boundary conditions of the blending problems which is a minimum requirement 

for surface blending. Moreover, these methods usually involve a large number of unknowns which result 

in the resolution of a large set of linear algebra equations. It is therefore very time-consuming. This 

disadvantage in many cases has significantly hampered the use of the PDE based techniques, especially in 

situations where interactivity is required, such as real time graphics applications. In order to create 

surfaces quickly, we will propose a resolution method for solving sixth order PDEs. This solution is an 

extension of the work presented in [34] where only a fourth order PDE was involved. This method makes 

use of the composite power series expansion to approximate the blending surfaces. The basic features of 

our method are that it can satisfy boundary conditions exactly and minimize the error of the sixth order 

PDEs effectively. Since only a very small number of collocation points and unknown constants are 

involved, the proposed method is not only accurate, but also computationally very efficient. 

 

2. Composite power series solutions of sixth order partial differential 

equations  
 

Considering the effect of the vector-valued parameters on the shape of the blending surfaces, 

we use the following sixth order partial differential equations to produce curvature continuous blending 

surfaces 
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where , , [ ]Tzyx aaa   =a [ ]Tzyx bbb   =b [ ]Tzyx ccc   =c , [ ]Tzyx ddd   =d  are vector-valued shape 

control parameters,  represents a vector-valued position function and , [ ]Tzyx   =x u v  are the 

parametric variables.  



 
 

Next, we will define the boundary conditions. According to [23], curvature continuity across 

the linkage curve is achieved when the second fundamental tensors of the two connected patches are 

identical at all points of the linkage curve. That gives, 

−+ ++=++ )2()2( 2222 NdvMdudvLduNdvMdudvLdu           (2) 

where subscripts “+” and “−“ denote two adjacent surface patches, respectively. 

Since  and  are the differentials of two arbitrary parametric variables, Eqn (2) is 

equivalent to the following ones 

du dv
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Since the normal  will be shared by both surfaces, Eqn (3) will definitely be satisfied, if the 

following conditions hold,   
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Therefore, the boundary conditions for surface blending with up to curvature continuities will 

include position and tangent continuity conditions as well as Eqn (6). Thus the boundary conditions can 

be written as 
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After the above treatment, a blending surface  with curvature continuity can be created 

with the solution to PDE (1) subject to boundary conditions (7). 

),( vux

Clearly, the closed form solution of PDE (1) under boundary conditions (7) does not exist for 

general cases. Here we use the same methodology which we developed in [34] to find the approximate 

analytical solution. In order to simplify the solving process for PDE (1), we firstly define a linearly 

independent basic function as those consisting of constant 1, the parametric variable , its various 

elementary functions excluding polynomials, and their combinations not in a polynomial form. Then, we 

can write the following linearly independent basic functions from the boundary conditions (7),  
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With the above preparation, we propose to approximate the blending surface, i.e. the solution of 

Eqn (1) subject to boundary conditions (7) with the same composite power series expansion used in [34] 

whose form is given by 
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where  represent the numbers of the terms of the power series taken for the  

components, respectively. 

zkyjxi MMM   ,  , k  ,  , zyx ji

If a linearly independent basic function of the boundary conditions (7) is 1, say for example 

, the corresponding exponent  takes values from 0 to 5, because these 6 unknown constants 

can be uniquely determined by the boundary conditions given in Eqn (10). 
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Taking the x  component as an example, referring to Eqn (9), the boundary conditions for 
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Substituting  of Eqn (9) into Eqn (10), we find that ),( vuxi (v)ga
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∂
 in Eqn (10) for both 0=u  and 1=u  are redundant.  

Similar to the treatment given in [34], we can now solve Eqn (10) for the unknown constants 

. They are given by  )5 ,,2 ,1 ,0(  L=mpim
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Here )5 ,... 2, ,1 ,0( =nain  are known constants. Replacing  of 

 in the first expression of Eqn (9) with Eqn (11), one obtains the following 
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),( vuxi x  component that 

satisfies boundary conditions (10) exactly 
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Since Eqn (9) is an approximate solution of Eqn (1) under boundary conditions (7), Eqn (1) is 

not accurately satisfied by substituting Eqn (9) into (1). The error can be described with a residual 

function (error function). Still taking the x  component as an example, its residual function can be 

formulated by 
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Assuming that the blending region is defined by 10 uuu ≤≤  and 10 vvv ≤≤ , choosing  

collocation points in this region and substituting the values of  and 

N

u v  at these collocation points into 

Eqn (13), the residual values ) , ,2 ,1()( Nn  ,vuR nn L=  at these collocation points can be computed by 

[30] 
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where  are  arrays consisting of the residual values, unknown constants and constant 

terms, respectively, and  is a  matrix consisting of the coefficients of the unknown 

constants . 
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The squared sum of the residual values of Eqn (16) is  
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And the blending surface minimising the error of PDE (1) can be determined by 
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which leads to the following set of linear algebraic equations 

BAACA TT =                 (19) 

Eqn (19) contains  unknown constants. Solving these linear algebra equations 

determines all the unknown constants of the 
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x  component. The  and y z  components can be 

obtained similarly. 

 

3. Accuracy and computational efficiency  
 

In this section we will examine the accuracy and computational efficiency of the above-

proposed composite power series method through two blending examples. The first is to blend a circular 

torus and an elliptic hyperboloid of one sheet and the second example is to blend an open surface and a 



 
 

plane. Although the first is straightforward, the second would be very challenging for other blending 

techniques. From this point of view, one can also sense the versatility and powerfulness of the PDE based 

blending approach. 

It is well known that the closed form solution of a PDE is the most accurate and efficient among 

all possible solutions. For the first example, the closed form solution of PDE (1) under boundary 

conditions (20) is obtainable, if the vector-valued shape control parameters are set to those presented 

below. We will solve PDE (1) using both the presented method and the closed form solution method, and 

compare the accuracy and computational efficiency of both approaches.  

The boundary conditions for this blending example are*
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From the boundary conditions, it can be seen that the linearly independent basic functions are 

vcos  for the x  component,  for the  component and 1 for the vsin y z  component. Therefore, the 

solution of Eqn (1) takes the form of 
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Using the method introduced in the previous section, we can determine all the unknown 

constants of Eqn (21). Let us evenly distribute 9 collocation points within the rectangular region of and 

, and take the numbers of the power series terms of the 

u

v x  and  components to be 

. This means that there are only 2 unknown constants in the solving equation (19) to be 

determined. When setting the vector-valued parameters to be 

y

700 == yx MM

1==== yyxx baba  and 

, the blending surface is obtained and depicted in Fig. 1a.  1−==== yyxx dcdc

                                                      
*  Undefined symbols used in the examples throughout this paper are geometric parameters of the 
relevant example. 



 
 

Substituting the same vector-valued shape control parameters into PDE (1), the sixth order 

partial differential equations for the x  and  components of Eqn (1) become y
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Under the same boundary conditions, the closed form solution of Eqn (22) exists which has the 

following form 
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It should be pointed out that the closed form solutions of Eqn (1) under the same boundary 

conditions for arbitrary values of the vector-valued parameters are usually not obtainable. 

Introducing Eqn (23) into (22), we can obtain x  and  components. The y z  component can 

be taken to be  the third of Eqn (21) which satisfies the sixth order PDE of the z  component. Therefore 

the closed form solution of Eqn (1) is 
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where all the unknown constants can be determined by the boundary conditions of this blending problems. 

With Eqn (24), we generated the blending surface and depicted it in Fig. 1b. Visually, the 

images shown in both figures look identical.  

     
          a                               b 

Fig. 1. Blending between a circular torus and an elliptic hyperboloid of one sheet

 

Excellent agreement of the blending surfaces between the proposed composite power series 

method and closed form solution can be further demonstrated through a quantitative comparison. We use 

the Euclidean norm to measure the difference. Choosing  and  points respectively in the uI vJ x  and 

 directions within the blending region, the Euclidean norm can be written as  y
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where the x ,  and y z  components without “~” stand for the closed form solutions and those with 

“~” for the composite power series solutions.  

Equation (25) is a measurement of the absolute errors between two surfaces. We can also use 

relative errors between two surfaces to measure the difference between the proposed composite power 

series solution and the closed form solution. The equation of the relative errors takes the form of 
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Uniformly choosing  points within the blending region, i.e., , the 

Euclidean norm between these two blending surfaces is only  and the difference from 

Eqn (26) is 

9999× 99== vu JI

310111.6 −×=E
310135.3 −×=E . It suggests that with even a small number of collocation points and power 

series terms, the proposed composite power series method can generate blending surfaces almost as 

accurately as the closed form solution method. Considering how the method works, the reason is easy to 

comprehend: since the proposed composite power series method always satisfies the boundary conditions 

exactly up to the order of curvature continuity, the discrepancy at the interior region of the blending 

surface will have very limited effect both visually and functionally. Moreover, this discrepancy is further 

reduced by the least square minimisation, leaving almost no room for errors.  

It is also worthy mentioning that the computing efficiency of the proposed method is much 

higher than that of the other numerical methods such as the finite element method and the finite 

difference method. The finite element method, for example, uses a large number of elements or nodes to 

achieve reasonable accuracy, which involves with many unknowns. As a consequence, the resolution of 

the linear equations is inevitably time-consuming. The proposed method on the other hand, only needs to 

solve a small number of linear equations. With the above-chosen number of the collocation points and 

power series terms, the resolution process took less than  second for the proposed composite power 

series and closed form resolution methods on an ordinary PC. This is also true even if we chose 

 collocation points and 

610−

6488 =× 900 == yx MM  power series terms. Thus we can conclude that the 

proposed composite power series method can generate blending surfaces almost as accurately and fast as 

the closed form solution method. The computational efficiency is the same also for the problems whose 

closed form solutions do not exist, thus making many previously unsolvable problems solvable. 

For the second example, the boundary conditions are given by 
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The vector-valued parameters in Eqn (1) were taken to be 1=ia , , , 

 ( ) and . The image obtained from the proposed composite power series and 

closed form solutions were depicted in Figs. 2a and 2b, respectively. Again both methods produced 

identical images.  

23pbi =
43pci =

6pdi = zyxi  , ,= 3=p

  
             a                                               b 

Fig. 2. Blending between an open surface and a plane 

 

4. Influences of vector-valued shape control parameters on surface 

shapes 

 
By using different values of the vector-valued shape control parameters, the solution to PDE (1) 

is changed which will lead to different surface shapes. In this section, we will use two examples to 

highlight their effects.  

 The first example is to blend a sphere and an ellipsoid. The boundary conditions for this 

blending task are given below  
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The solution of Eqn (1) under these boundary conditions has the same form as that of Eqn (21). 

We will take  collocation points and 2 unknown constants. Initially, we set the vector-valued 

parameters to 

33×

1======== yyyyxxxx dcbadcba . The obtained blending surface is depicted in 

Fig. 3a. Then making  and keeping all other parameters unchanged, we obtain the 

blending surface in Fig. 3b.  

410== yx cc

      
                  a                                  b    

Fig. 3. Blending between a sphere and an ellipsoid 

 The second example is to blend a conical frustum with an elliptic cylinder. The boundary 

conditions for this blending task are taken as  
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 Using the above described procedure, the solution of Eqn (1) under these boundary conditions 

takes the form of 
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 Using the proposed method, the unknown constants of Eqn (30) can be similarly determined. 

With the collocation points and the unknown constants unchanged, the blending surface in Fig. 4a is 
obtained when all the vector-valued parameters are set to 1, and Fig. 4b created when parameters ,  

and  are set to 100 and the others are kept the same.  
xb yb

zb

   
           a                                b 

Fig. 4.  Blending between a conical frustum and an elliptic cylinder



 
 

 

It is evident that the vector-valued shape control parameters in Eqn (1) have a strong influence 

on the shape of the blending surfaces. By changing their values, we can generate different surface shapes. 
 

5. More complex examples 
 

Two more complex examples of surface blending will be presented to demonstrate the strength 

of the proposed approach. The first is to blend two intersecting cylinders, whose PDE was solved only 

with the finite element method or finite difference method in existing literature, which is numerically 

expensive. The second example is to determine the transition surface between an open surface and a plane 

interpolating a specified curve.  

  For the blending between two intersecting cylinders, the boundary conditions at the linkage 

curves are as follows 

( )
( ) ( )

( )

( )
( )

3 22
1

2

42
1

22
1

2

2

2

2

22
1

2

2
122

1
2

2

2

1

2

2

1

3 222
1

2
1

222
1

2

2

222
1

1222
1

2

2

2

2

cos)(

cos)(
                                                                                                           

cos)(

cos      
cos

cos)(
      cos         

0                                 sin                    sin)(          

0                                cos                    cos)(   1

cos

)(
                                                                                                             

cos

1      
cos

     cos          

0                                       0                              sin          

0                                       0                             cos   0

vlsr

vls

vlsr

v
u

z

vlsr

vls
u
zvlsrz

u
yv

u
yvlsy

u
xv

u
xvlsxu

vskr

kr

vskru
z

vskr

kr
u
zvskrz

u
y

u
yvsy

u
x

u
xvsxu

+−

+
−

+−
=

∂

∂

+−

+
=

∂
∂

+−=

=
∂

∂
=

∂
∂

+=

=
∂

∂
=

∂
∂

+==

−+

+
−

−+
=

∂

∂

−+

+
=

∂
∂

−+=

=
∂

∂
=

∂
∂

=

=
∂

∂
=

∂
∂

==

   (31) 

  According to these boundary conditions, we can obtain the linearly independent basic functions 

and construct the following composite power series solution of Eqn (1)  
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  On determining the unknown constants of the above equation, the blending surface generated is 

depicted in Fig. 5. 

 

Fig. 5.  Blending between two intersecting cylinders 

 

  For the blending between an open surface and a plane at a specified curve, the parametric 

equation of the open surface are taken to be 
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    Taking  in the above equation and specifying the curve on the plane to be blended, we 

can obtain the boundary conditions of this blending task  
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  The composite power series solution of Eqn (1) corresponding to the linearly independent basic 

functions in these boundary conditions can be taken to have the following form 
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Specifying the values of all the geometric parameters in the boundary conditions and then 

determining all the unknown constants in Eqn (35) with the above proposed method, the blending surface 

obtained is given in Fig. 6. 

 

Fig. 6. Blending between an open surface and a plane at a specified curve 

 



 
 

6. Conclusions 
 

By solving sixth order partial differential equations with four vector-valued shape control 

parameters subject to blending boundary conditions, we have presented a method for surface blending 

with up to curvature continuities. In comparison with our previous work [34], we are able to solve a 

higher order (sixth order) PDE as efficiently as a lower order one, and offer better smoothness.  

  Traditionally, PDE based methods are only applicable to a limited number of applications. This 

is due to the fact that the closed form solution of a PDE is either extremely difficult to obtain or does not 

exist. Existing numerical methods are computationally expensive. This is rather regrettable, as such 

methods do offer many advantages over other surface blending approaches. In order to overcome this 

limitation and make our proposed PDE approach practicable to a large number of blending problems, we 

have developed an efficient and accurate resolution method using the composite power series expansion 

and the weighted residual technique. This method can satisfy the boundary conditions exactly and 

minimise the errors at the interior region of the surface. With this method, the generated blending surface 

shares the exact position, tangent and curvature values with the primary surfaces at the linkage curves. It 

was found that this method has almost the same accuracy and computational efficiency as the closed form 

solutions.  

  The influences of the vector-valued shape control parameters on the shape of the blending 

surfaces have also been examined. Their variations have a strong influence on the shape of the generated 

blending surfaces, and thus can be potentially exploited to serve as user interface tools for shape 

manipulation. 
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