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Abstract. Designated Confirmer signatures were introduced to lineitvérification property inherent to digi-
tal signatures. In fact, the verification in these signatiseeplaced by a confirmation/denial protocol between
the designated confirmeaind some verifier. An intuitive way to obtain such signatwressists in first gen-
erating a digital signature on the message to be signed ethamypting the result using a suitable encryption
scheme. This approach, referred to as the “encryption ajrasiire” paradigm, requires the constituents (en-
cryption and signature schemes) to meet the highest sgowtibns in order to achieve secure constructions.
In this paper, we revisit this method and establish the mergsand sufficient assumptions on the building
blocks in order to attain secure confirmer signatures. Quaystoncludes that the paradigm, used in its basic
form, cannot allow a class of encryption schemes, whichta $or the efficiency of the confirmation/denial
protocol. Next, we consider a slight variation of the pagadi proposed in the context of undeniable signa-
tures; we recast it in the confirmer signature framework @latith changes that yield more flexibility, and
we demonstrate its efficiency by explicitly describing isfirmation/denial protocol when instantiated with
building blocks from a large class of signature/encrypchemes. Interestingly, the class of signatures we
consider is very popular and has been for instance used tbdfticient designated verifier signatures.
Keywords: Designated Confirmer signatures, “Encryption of a sigrédtparadigm, Generic construction,
Reduction/meta-reduction, Zero Knowledge.

1 Introduction

Digital signatures capture most of the properties met bpatiges in the paper world, for instance,
universal verification. However, in some applicationss thioperty is not desired or at least needs to
be controlled. Undeniable signatures were introduced fd2ihis purpose; they proved critical in sit-
uations where privacy or anonymity is a big concern, suchcasnsing software [12], electronic cash
and electronic voting and auctions. In these signaturesyéhification can be only attained by means
of a cooperation with the signer, called the confirmationialeprotocol. Unfortunately, this very virtue
(verification with only the signer’s help) became its majooiticoming for many practical applications.
The flaw was later repaired in [10] by introducing the conagfptlesignated confirmer signatutels
fact, this concept involves three entities, namely theesigrho produces the signature, the designated
confirmer who confirms or denies an alleged signature andyfitied recipient of the signature. Desig-
nated confirmer signatures, or confirmer signatures forityreman have the additional feature of being
converted, by the confirmer, to ordinary digital signatures

1.1 Related work

Since the introduction of confirmer signatures, reseascheught ways of producing them from digi-
tal signatures and other cryptographic primitives suchresyption and/or commitment schemes. We
briefly review in this paragraph, in chronological ordeg thost important such attempts:

Okamoto (1994) [34].The result proposes a construction of confirmer signatumes fligital signa-
tures, public key encryption, bit-commitment schemes a®sligo-random functions. The construc-
tion was used to prove equivalence between confirmer sigggmtand public key encryption with
respect to existence. Thus, efficiency was not taken intowatan the framework.



Michels and Stadler (1998) [32].This approach builds efficient confirmer signatures fronmaigres
obtained from the Fiat-Shamir paradigm and from commitnsehtmes. Thus, The resulting con-
firmer signatures can be only proven secure in the randontearamdel (ROM), inheriting this prop-
erty from the use of the Fiat-Shamir paradigm, which coust#t their major shortcoming. Actually,
it is well known, according to [40], that most discrete-lagan-based signatures obtained from the
Fiat-Shamir technique are very unlikely to preserve thesskawvel of security in the standard model.

Camenisch and Michels (2000) [8]The authors present the “encryption of signature” ideagiwith
a security analysis of the resulting confirmer signaturefadt, they require existentially unforgeable
signatures and indistinguishable encryption in the seshgttack model (EUF-CMA signatures and
IND-CCA secure encryption) to achieve unforgeable, iflésiand transcript-simulatable confirmer
signatures. The major weakness of the construction liegenrésort, in the confirmation/denial
protocol, to general concurrent zero knowledge (ZK) prot®of NP statements.

Goldwasser and Waisbard (2004) [23]This result manages to circumvent partially the weakness
of the above construction. In fact, from a large class oftdigiignatures, the authors propose a
transformation to confirmer signatures by encrypting threnfr items under an IND-CCA secure
encryption during the confirmation protocol. They consediyeachieve an efficient confirmation,
but at the expense of the transcript-simulatability, thsibility and the length of the resulting sig-
natures. For instance, the signature contains at least tivcnumber of the confirmation protocol’'s
rounds of encryptions. Moreover, the denial protocol ofdbestruction has still recourse to general
concurrent ZK protocols of NP statements.

Gentry et al. (2005) [19].This work gives the possibility of building confirmer signets from digital
signatures, encryption (IND-CCA) and commitment schemdthiough the resulting construction
does not use random oracles, it still does not get rid comlpleif general ZK proofs since the
confirmer has to prove in concurrent ZK the knowledge of theryg®ion of an IND-CCA encryption
and of a string used for commitment.

Wang et al. (2007) [46].In this work, the authors present two constructions. Thé ding fixes some
flaws noticed in [19], however, it still requires concurréi€ the knowledge of NP statements. The
second construction does not require any encryption, bilteagxpense of the underlying security
assumption. In fact, it has its invisibility resting on thecikional Diffie-Hellman assumption, which
rules out using the scheme in bilinear groups and thus bimgefiom the attractive features they
present such as achieving short group elements. Moreteeconstruction suffers also the recourse
to the ROM. Finally, these constructions as well as the cooton in [19] are not anonymous, as
we will point later in this document.

El Aimani (2008) [14]. This construction is a slight variation of the “encryptioh a signature”
paradigm which uses cryptosystems from the KEM/DEM paradimd requires them to be only
IND-CPA secure. The author claims that this impacts padigivthe efficiency of the confirma-
tion/denial protocols by allowing homomorphic schemesimdesign. However, such a claim lacks
justification since the only illustrations provided in thager (or in its full version [29]) are generic
constructions from a class of pairing-based signatureschadre used with a specific cryptosys-
tem (EI Gamal encryption or the linear Diffie-Hellman KEM-BE: Furthermore, one of the con-
structions uses a cryptosystem which operates on message&.f (for some primep), thus, the
resulting signatures will be quite long because of the stdrast between ring cryptography and
elliptic-curve cryptography. This seems to violate the nmmaxpectation from appealing to elliptic
curve cryptography, namely achieve short signatures.

Summing up the state-of-the art in confirmer signatures, @geide that the most mountainous obstacle
that faces the potentially anonymous generic construstigithout ROM, namely those derived from
variants of the “encryption of a signature” paradigm, lieshe resort to general zero knowledge (ZK)
proofs of NP statements, e.g., proving in ZK the knowledgthefdecryption of an IND-CCA encryp-
tion. In this paper, we revisit this paradigm. We basicatigiess two questions: does the paradigm, used
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in its basic form [8], allow building blocks with weaker seity assumptions, for instance IND-CPA
cryptosystems and thus achieves efficient signatures imsetldn [14]? The second question concerns
the alleged efficiency of the construction in [14]; how imjgoit is the contribution of the IND-CPA
requirement to the efficiency of the confirmation/denialtpcol?

1.2 Our contributions

The results in this paper are twofold. First, we considermtlaen “encryption of a signature” paradigm
as described in [8]. We actually prove that EUF-CMA secugaaiures are a sufficient and necessary
requirement to obtain EUF-CMA secure convertible confirsignatures. Next, we show that indis-
tinguishable cryptosystems undeplaintext checking attackND-PCA) are already enough to obtain
invisible signatures under a chosen message attack (INYCNMhis contrasts the wide belief that
the cryptosystems should be IND-CCA secure. We also shoihiieaassumption on the cryptosys-
tem (IND-PCA secure) is necessary to obtain invisible digmes. This rules out automatically from
the design homomaorphic cryptosystems, a class of crypiesgswhich proved later to be vital for the
efficiency of the confirmation/denial protocol.

Next, we consider the proposal in [14] which builds a unigéflysconvertible undeniable signature
scheme from secure digital signatures and IND-CPA secypasystems obtained from the KEM/DEM
paradigm. We propose a recast of the construction in therooerfisignature framework and we demon-
strate its efficiency by explicitly describing the confirivatdenial protocol when instantiated with a
large class of signature/encryption schemes. Interdgtitite class of signatures we consider has been
already defined as an ingredient of an efficient construatiotlesignated verifier signatures [43]. We
conclude that our recast of [14] betters the previous coastms of confirmer signatures in terms of
both efficiency and security. In fact, it gets rid of gener#l grotocols of NP statements in the con-
firmation and/or the denial protocol, oppositely to the ¢argdions in [34, 8, 23, 19, 46]. Moreover, the
resulting signatures are not proven secure in the randonieoaa in [32, 46], and they enjoy a strong
invisibility which captures both the traditional invisiity, defined [8], and anonymity which was defined
later in [17]. We prove for instance that the latter propéstgiot met by the constructions in [19, 46].

2 Convertible Designated Confirmer Signatures (CDCS)

Since their introduction, many definitions and security gledor CDCS have emerged. We consider the
default model adopted in most confirmer signature prop¢8a23, 19, 46, 14]. This model was primally
described in [8], where the sighenencrypt technique was first formally introduced.

We refer to Appendix A for the necessary cryptographic piras that will come into use, that are,
digital signatures, public key encryption schemes, KEM¥Diechanisms, and finallif’ protocols.

2.1 Syntax
A CDCS scheme consists of the following procedures:

Key generationGenerates probabilistically key paifsks, pkg) and(skc, pk) for the signer and for
the confirmer respectively, consisting of the private ardpthblic key.

ConfirmSign.On inputskg, pko and a message:, outputs a confirmer signature signatyrethen
interacts with the signature recipient to convince him efvhalidity of the just generated signature.

Confirmation/Denial protocolThese are interactive protocols between the confirmer anetifiev.
Their common input consists of, in addition gkg andpk., the alleged signature, and the mes-
sagem in question. The confirmer uses his private kky to convince the verifier of the validity
(invalidity) of the signaturg: onm. At the end, the verifier either accepts or rejects the proof.
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Selective conversiofThis is an algorithm run by the confirmer usisky-, in addition topk andpkg.
The result is eithell or a string which can be universally verified as a valid digitgnature.

Selective verificationThis is an algorithm for verifying converted signaturesinfiuts the converted
signature, the message apid; and outputs eithed or 1.

2.2 Security model.

The above algorithms must be complete. Moreover the configm$onfirmation and denial protocols
must be complete, sound and non transferable (simulatég#e)[8]). In the sequel, we describe further
properties that a CDCS scheme should meet.

Security for the signer (unforgeabilitylt is defined through the following game: the adversarys
given the public parameters of the CDCS scheme, nampielyand pk., in addition toskc. A is
further allowed to query the signer on polynomially many sagges, say,. At the end, A outputs
a pair consisting of a message that has not been queried yet, and a styingd wins the game if
w is a valid confirmer signature on. We say that a CDCS scheme(ise, ¢,)-EUF-CMA secure if
there is no adversary, operating in timéhat wins the above game with probability greater than

Security for the confirmer (invisibility)nvisibility against a chosen message attack (INV1-CMA) is
defined through the following game between an attackemd his challengeR: after A gets the
public parameters of the scheme fr@ he startf?hase lwhere he queries the signing, confirma-
tion/denial, selective conversion oracles in an adaptiag WnceAd decides thaPhase 1is over, he
outputs two messages, m; that have not been queried before to the signing oracle aneests
a challenge signature*. R picks uniformly at random a b# € {0,1}. Thenu* is generated us-
ing the signing oracle on the message. Next, A starts adaptively querying the previous oracles
(Phase 2, with the exception of not querying, m; to the signing oracle angn;, u*), i = 0,1,
to the confirmation/denial and selective conversion osdk the end,A outputs a bit’. He wins
the game ifb = /. We defineA’s advantage asdv(A) = |Pr[b = V'] — 1|. We say that a CDCS
scheme igt, €, s, qv, gsc)-INV1-CMA secure if no adversary operating in tim@ssuinggs queries
to the signing oracley, queries to the confirmation/denial oracles andqueries to the selective
conversion oracle wins the above game with advantage gribatie.

Anonymity of signaturesn some applications, it is required that the confirmer digres are anony-
mous, i.e., do not leak the identity (public key) of the sighée refer to [17] for the formal definition
of anonymity of confirmer signature under a chosen mess&aekgiANO-CMA).

A stronger notion of invisibilityTo capture both anonymity and invisibility, Galbraith an@dlintro-
duced in [17] a notion, which we denote INV2-CMA, that regsithe confirmer signatures to be
indistinguishable from random elements in the signatuseespThis new notion is proven to imply
both INV1-CMA and ANO-CMA (Theorem 1 and Theorem 4 respeativof [17]).

3 The Plain “Encryption of a Signature” Paradigm

The paradigm devises a CDCS scheme by producing a digitaaisige on the message to be signed,
then encrypting the result using a suitable cryptosystemreMprecisely, Let be a digital signature
scheme given by .keygen which generates a key pair (private key=sk, public key=2X".pk), X'.sign
andX .verify. Let furthermorel” denote a cryptosystem described/byeygen that generates the key pair
(private key =I"sk, public key=1I".pk), I'.encrypt and I .decrypt. A confirmer signature on a message
m is issued by first producing a digital signature= Y'signy. . (m) onm, then encrypting it using
I'.pk. The result isu = Iencrypty (o). It is obvious that¥.sk forms the (DCSC) signer’s private
key, whereas¥'.pk is his public key. To confirm (deny) a confirmer signaturethe confirmer uses
I'sk to prove the knowledge of the decryption @fwhich does (not) satisfy the equation defined by
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the algorithmX'.verify. Such a proof of knowledge is possible as the considerednséaits are in NP
(co-NP), and therefore accept zero knowledge proof sysfeees[20]).

This technique was described and formally analyzed in {8kas shown that the construction is
EUF-CMA secure if the underlying (digital) signature scleeisialso EUF-CMA secure. Moreover, it is
INV1-CMA secure if the underlying cryptosystem is IND-CCAcsire. Finally, completeness, sound-
ness and non-transferability of the involved protocolsofelfrom using ZK proofs of knowledge.

In the sequel, we prove that the condition on the underlyiggature scheme (EUF-CMA secure) is
also necessary to achieve EUF-CMA secure confirmer sigemtiurthermore, we prove that IND-PCA
secure cryptosystems are already enough, though mandatachieve INV1-CMA signatures.

Theorem 1. The above generic construction is{, ¢;)-EUF-CMA secure if and only if the underlying
digital signature scheme is, (e, ¢s)-EUF-CMA secure.

We provide the proof in Appendix B.

Invisibility. In this paragraph, we prove that IND-PCA secure cryptosystare mandatory and enough
to achieve INV1-CMA secure undeniable signatures. To pthigeassertion, we proceed as follows. We
first show that the INV1-CMA security of the resulting sigmags cannot rest on the NM-CPA secu-
rity of the underlying cryptosystem. We do this by means oéfiicient meta-reductiorrelating such a
reduction (the algorithm reducing NM-CPA breaking the uhdeg cryptosystem to INV1-CMA break-
ing the construction) to the NM-CPA security of the cryptstgyn. Thus, under the assumption that the
cryptosystem is NM-CPA secure, the meta reduction forbhidseixistence of such a reduction. In case
the cryptosystem is not NM-CPA secure, such a reductionbeiluseless. This result will rule out au-
tomatically all the other notions that are weaker than NMAQkamely, OW-CPA and IND-CPA. Next,
we use a similar technique to exclude the OW-CCA notion. Tdh security notion to be considered is
IND-PCA. Luckily, this notion turns out to be sufficient totain INV1-CMA secure signatures.

Note that meta-reductions have been successfully usedumber of important cryptographic re-
sults, e.g., the result in [7] which proves the impossipibf reducing factoring to the RSA problem,
or the results in [40, 38] which show that some well known atgres, which are proven secure in the
random oracle, cannot conserve the same security in thessthmodel. All those impossibility results
are partial as they apply only for certain reductions. Osulteis in a first stage also partial since it
requires the reductio®, trying to attack a certain property of a cryptosystem gilsgrihe public key
I'.pk, to provide the adversary against the confirmer signatutie thve confirmer public key.pk. We
will denote such reductions tkey-preservingeductions, inheriting the name from a wide and popular
class of reductions which supply the adversary with the spnidic key as its challenge. Such reduc-
tions were for instance used in [39] to prove a separatiowdsn factoring and IND-CCA-breaking
some factoring-based cryptosystems in the standard mOdekestriction to such a class of reductions
is not unnatural since, to our best knowledge, all the rednststemming the security of the generic con-
structions of confirmer signatures from the security ofrthi@iderlying components, feed the adversary
with the public keys of these components (signature scheneyption scheme, commitment scheme).
Next, we use simular techniques to [39] to extend our imaggi results to arbitrary reductions.

Lemma 1. Assume there exists a key-preserving reducibthat converts an INV1-CMA adversary
A against the above construction to an NM-CPA adversary agahe underlying cryptosystem. Then,
there exists a meta-reductiol that NM-CPA breaks the cryptosystem in question.

Let us first interpret this result. The lemma claims that uride assumption of the underlying cryptosys-
tem being NM-CPA secure, there exists no key-preservingatazh R that reduces NM-CPA breaking
the cryptosystem in question to INV1-CMA breaking the camdion, or if there exists such an algo-
rithm, the underlying cryptosystem is not NM-CPA securesthendering such a reduction useless.
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Proof. LetR be a key-preserving reduction that reduces NM-CPA breakiagryptosystem underlying
the construction to INV1-CMA breaking the constructioneifs We will construct an algorithm\1t
that usesk to NM-CPA break the same cryptosystem by simulating an di@cwf the INV1-CMA
adversary4 against the construction.

Let I" be the cryptosysteroV is trying to attack.M launchesR over I' with the same pub-
lic key, sayI.pk. M, acting as the INV1-CMA adversaryl against the construction, queri&s on

mg, mq il {0, 1}* for confirmer signatures. Then he queries the resultinggdyio, 111 (correspond-
ing to the confirmer signatures ong andm, respectively) for a selective conversion. legtand o

be the output (digital) signatures emy andm, respectively. At that pointM inputsD = {og,01}

to his own challenger as a distribution probability from @fthe plaintexts will be drawn. He gets in
response a challenge encryptiph, of eithero or o7 underI".pk, and is asked to produce a cipher-
text u’ whose corresponding plaintext is meaningfully relatedhi® decryption ofu*. To do this, M

chooses uniformly at random a it {0,1}. Then, he queries the presumed confirmer signattire
onm,, for a selective conversion. If the result is different frami.e., u* is the encryption oé, then
M will output I"encrypt ., (75) (5 refers to the bit-complement of the elemegp} and the relationt::
R(m,m’) = (m’ = m). Otherwise, he will outpul".encrypt . . (51-5) and the same relatioR. Finally
M aborts the game (stops simulating an INV1-CMA attackerregjdhe generic construction). 0O

Lemma 2. Assume there exists a key-preserving reductibthat converts an INV1-CMA adversary
A against the above construction to a OW-CCA adversary ag#émesunderlying cryptosystem. Then,
there exists a meta-reductiolt that OW-CCA breaks the cryptosystem in question.

As previously, this result claims that under the assumptiothe underlying cryptosystem being OW-

CCA secure, there exists no key-preserving reducRahat reduces OW-CCA breaking the cryptosys-
tem in question to INV1-CMA breaking the construction, athiére exists such an algorithm, the under-
lying cryptosystem is not OW-CCA secure, thus renderingnsueduction useless.

Proof. The proof technique is similar to the one above. Iethe the key-preserving reduction that
reduces OW-CCA breaking the cryptosystem underlying thestcoction to INV1-CMA breaking the
construction itself. We will construct an algorithm that usesk to OW-CCA break the same cryp-
tosystem by simulating an execution of the INV1-CMA adveysd against the construction.

Let I" be the cryptosystenM is trying to attack.M gets his challenge and is equipped with a
decryption oracle that he can query on all ciphertexts ofhace except of course on the challengé.
launchesR over I" with the same public key'.pk and the same challenge Obviously all decryption
qgueries made b, which are by definition different from the challenge cifgbgt c, can be forwarded
to M’s own challenger. At some pointy1, acting as an INV1-CMA attacker against the construction,
will output two messages:, m1 and gets as response a challenge signattinghich he is required to
tell to which message it corresponds. With overwhelmingophility, ©* # ¢, in fact, the challenge
is not the encryption of a certam such thato is a valid (digital) signature on the messageg or the
messagen;. Therefore M queries his own challenger for the decryption;¢f (he can issue such a
query since it is different from the challenge cipherteki® checks whether the result, sayis a valid
(digital) signature onm*. Then, he will simply output the result of this verificatidrinally, whenR
outputs his answer, decryption of the cipheriext will simply forward this result to his challenger.

0

Theorem 2. The cryptosystem underlying the above construction muat le&ast IND-PCA secure, in
case the considered reduction is key-preserving, in oml@chieve INV1-CMA secure signatures.

Proof. We proceed in this proof with elimination. Lemma 1 rules ¢ hotions NM-CPA and thus the
notions IND-CPA and OW-CPA. Moreover Lemma 2 rules out OWACAhd thus OW-PCA (and also
OW-CPA). Thus, the next notion to be considered is IND-PCA. O
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Remark 1.The above theorem is only valid when the considered notimnghase obtained from pairing
a security goal GOALe {OW,IND,NM} and an attack model ATKc {CPA PCA CCA}. Presence
of other notions will require an additional study, howevesmmas 1 and 2 will be always of use when
there exists a relation between these new notions and tlenead@W-CCA, NM-CPA.

To extend the result to arbitrary reductions, we use the gaommiques as in [39]. Namely, we first
define the notion ofion malleability of a cryptosystem key generatmough the following two games:
In Game Q we consider an algorithri®R trying to break a cryptosysterfi , w.r.t. a public keyI".pk,
in the sense of NM-CPA (or OW-CCA) using an adversatywhich solves a problem A, perfectly
reducible to OW-CPA breaking the cryptosystémin this gameR lunchesA over his own challenge
key I'.pk and some other parameters chosen freelyRbywe will denote byadvy(R4) the success
probability of R in such a game, where the probability is taken over the randpes of bothk and.A.
We further defineucc$*m(A) = maxg advo(R*) to be the success iBame 0of the best reduction
R making the best possible use of the adversdryn Game 1, we consider the same entities as in
Game Q with the exception of providin@R with, in addition to.4, a OW-CPA oracle (i.e. a decryption
oracle corresponding té) that he can query w.r.t. any public kdypk’ # I'.pk, wherelpk is the
challenge public key oR. Similarly, we defineadv,(R*) to be the success & in such a game, and
succ®mel(A) = maxg advo(R*) the success iGame 1of the reductioriR making the best possible
use of the adversary and the of decryption (OW-CPA) oracle.

Definition 1. A cryptosysteni” is said to have a non malleable key generator if
A = maz g|succ$2™e (A) — succ$m0(A)| is negligeable in the security parameter.

This definition informally means that a cryptosystem hasramalleable key generator if NM-CPA (or
OW-CCA) breaking it w.r.t. a kepk is no easier when given access to a decryption (OW-CPA)®racl
w.r.t. any public keypk’ # pk.

Theorem 3. If the cryptosystem underlying the above construction hasramalleable key generator,
then it must be at least IND-PCA secure in order to achievelHDMA secure confirmer signatures.

We provide the proof in Appendix C

One can give an informal explanation to the result above Bews. It is well known that con-
structions obtained from the sighenencrypt paradigm are netrongly unforgeablel.e., a polynomial
adversary is able to produce, given a valid confirmer sigeatn a certain message, another valid con-
firmer signature on the same message without the help of gnersiindeed, given a valid confirmer
signature on a message, an attacker can request its cordaspaligital signature from the selective
conversion oracle, then he encrypts it under the cryptesygiublic key and obtains a new confirmer
signature on the same message. Therefore, any redugtivom the security of the underlying cryp-
tosystem to the invisibility of the construction will needore than a list of records maintaining the
gueried messages along with the corresponding confirmedigitdl signatures. Thus the insufficiency
of notions like IND-CPA. In [8], the authors stipulate thhetgiven reduction would need a decryption
oracle (of the cryptosystem) in order to handle the queriadarby the INV1-CMA attacker, which
makes the invisibility of the construction rest on the IN&security of the cryptosystem. In our work,
we remark that the queries made Hyare not completely uncontrolled 5. In fact, they are encryp-
tions of some data already releasediyprovided the digital signature scheme is strongly unfabig
and thus known to him. Therefore, a plaintext checking eraaffices to handle those queries.

Theorem 4. The above construction is,€, s, v, gsc)-INV1-CMA secure if the underlying digital sig-
nature is(t, €, ¢;)-SEUF-CMA secure and the underlying cryptosysten is ¢sqsc(qsc + qv), € - (1 —
6/)(qsc+l1v)7 QSC(QSC + qv))-lND—PCA secure.



The proof is provided in Appendix D.

Unfortunately, requiring the encryption scheme to be atlfdD-PCA secure seems to impact neg-
atively the efficiency of the construction as it excludes bororphic schemes from use (a homomorphic
cryptosystem cannot be IND-PCA secure). In fact, such sekeran be (as we will show later in this
document) efficient decryption verifiable, i.e., they ad¢agfficient ZK proofs of knowledge of the de-
cryption of a given ciphertext. In the next section, we dgscan attempt to circumvent this problem.

Remark 2.There exists a simpler way to exclude homomorphic encrgdtiom the design which con-
sists in proceeding as follows:

First rule out the notions OW-CPA, IND-CPA and OW-PCA by rekirag that EIGamal’s encryption
meets all those notions (under the CDH, DDH and GDH assumpésp. ) but still cannot be used as
an ingredient in the construction. In fact, EIGamal offdrs possibility of, given a ciphertext, creating
another ciphertext for the same message (multiply the firstponent by", for somer, and the second
one byy", where(sk = z,pk = y = ¢%) is the key pair of the scheme). Now, Lgt, mg, m;) be a
challenge to an INV-CMA adversapt. By construction. is an EIGamal encryption of sonmee which

is a digital signature on eithen, or m,. By the argument aboved can create another confirmer sig-
naturey/, that is another encryption of, and that he can query (w.rzo for example) to the selective
conversion oracle and then answer his own challenge.

Next, conclude that the cryptosystem in constructionssddrirom the “encryption of signature” paradigm
must be at least OW-CCA or NM-CPA secure in order to lead targeconstructions. Finally, conclude
by the fact that a homomorphic scheme cannot be NM-CPA sexur®W-CCA secure

However, in order to determine the exact security neededHm®ae secure constructions from the men-
tioned paradigm, there seems no known simpler way to exast e study provided in this section.

4 Efficient KEM/DEM-based Constructions

One attempt to circumvent the problemstfong forgeabilityof constructions obtained from the plain
“encryption of a signature” paradigm can be achieved byihmthe digital signature to its encryption.
In this way, from a digital signature and a message:, an adversary cannot create a new confirmer
signature onn by just reencryptings. In fact, o forms a digital signature om and some data, say
which uniquely defines the confirmer signaturerenMoreover, this data has to be public in order to
issue the confirmSign/confirmation/denial protocols. Saclidea has been implemented in [14] in the
undeniable signature framework, using the KEM/DEM paradim fact, given a message, one first
fixes the session kel and its encapsulation then generates a digital signatur@n the “augmented”
messagen||c, finally encryptso usingk and outputs the result as an undeniable signature.on

In this section, we propose a recast of this constructiornén@DCS framework. We also allow
more flexibility without compromising the overall securlty encrypting only one part of the signature
and leaving out the other part, provided it does not revdarmmation about the key or the message.
Moreover, we demonstrate the efficiency of the resultingstrostion by explicitly describing its con-
firmSign/confirmation/denial protocols when the undedysomponents belong to a wide class of en-
cryption and digital signature schemes. Interestingly,dlass of digital signatures we consider has been
already used in a recent proposal [43] as an ingredient fenarc construction of designated-verifier
signatures. Finally, we conclude with a comparison withekisting generic constructions.

! Let E be a cryptosystem such thatn, m’ € M: E.encrypt(m+m') = E.encrypt(m) o E.encrypt(m’), whereM is the
message spacencrypt is the encryption algorithm and finallyando are some group laws defined Byon the message
and ciphertext spaces resp. kdie the NM-CPA challenge. An adversary can simply choosedormamessage:’ £ M,
encrypt itinc’ and finally outputo ¢’ and the relatior? = x. Now, letc be a OW-CCA challenge, an adversary can choose
again a random messaggé E M, encrypt itin¢’ and then query x ¢’ to the decryption oracle. Let” be the result, the
adversary can simply output” + m’~! as the decryption of (we assume that the inverse computatiorMhis efficient).



4.1 The construction

Let X be a digital signature scheme given.bykeygen which generates a key paiE(sk, X.pk), X.sign
and X .verify. Let furthermorelC be a KEM given byiC.keygen which generates a key paiC(pk, £ .sk),
K.encap andK.decap. Finally, we consider a DEND given byD.encrypt andD.decrypt.

Without loss of generality, we consider that a digital sigim@o generated using’ on a message
m, can written on the formr = (s, r) wherer reveals no information about nor about( X .sk, X.pk).
l.e., there exists an algorithm that inputs a messaged a key paif X'.sk, X.pk) and outputs a string
indistinguishable from:, where the probability is taken over the message and the &eyspaces con-
sidered byY'. Note that every signature scheme produces signatures giwan form, since a signature
can be always written as the concatenation of itself andigyestring (the message-key-independent
part). We assume thatbelongs to the message spacéof

Letm € {0,1}* be a message, we propose the following recast of the cotistruno [14].

Key generation. Call X'.keygen and K.keygen to generate}’.sk, X'.pk, K.pk and K.sk respectively.
Set the signer key pair t@¥.sk, X'.pk) and the confirmer key pair tgC.sk, K.pk).

ConfirmSign. Fix a keyk together with its encapsulatian Then compute a (digital) signatuse =
Y.signy g (mlle) = (s,r) onmlle. Finally, outputy = (e, D.encrypt,(s),r) and prove the knowl-
edge ofs, decryption of(e, D.encrypt,(s)), which satisfies together with X.verify. This proof is
possible because the signer kndnand(s, r), and the last assertion defines an NP language which
accepts a ZK proof system.

Confirmation/Denial protocol. To confirm (deny) a purported signature = (w1, u2, 13), issued
on a certain message, the confirmer first computds = K.decapy ¢ (¢11) then callsX.verify on
(D.decrypty, (u2), ps) andm|| g usingX'.pk. According to the result, the signer issues a ZK proof of
knowledge of the decryption @f:1, o) that, together withus, passes (does not pass) the verification
algorithm X.verify. Again this proof is possible because the given assertimnsither NP or co-NP
statements and therefore accept a ZK proof system.

Selective conversionTo convert a given signatune = (uq, 9, pu3) issued on a certain message
the signer first checks its validity. In case it is valid, tigner computeg = K.decapy ¢ (¢1) and
outputs(D.decrypt;, (u2), p3) otherwise he outputs.

Theorem 5. The above construction is,¢, ¢gs)-EUF-CMA secure if the underlying digital signature
scheme ist( ¢, ¢;)-EUF-CMA secure.

Theorem 6. The proposed construction i§ €, gs, ¢», gsc)-INV2-CMA secure if it uses@, €', g5 )-EUF-
CMA secure digital signature, an INV-OT secure DEM ané-aq; (g, +gsc), €- (1 —¢€’) % T4<)-IND-CPA
secure KEM.

The proofs are similar to those provided in [29]. Note that $frong unforgeability of the underlying
signature scheme is not needed here to achieve invisiltiitiact, if the adversary can come up with
another digital signature’ on a givenm/||c, there is just one way to create the corresponding confirmer
signature, namely, encrypt it usihig= K.decap(c). Therefore, the reduction is able to handle a query
requesting the confirmation/denial or selective conversibsuch a signature by just maintaining a list
of the queried messages, the issued confirmer signaturgbeindorresponding digital signatures.

4.2 Efficient Instantiations using Certain Signatures and @yptosystems

In this paragraph, we define the classes of signaturesg@ystems that yield efficient instantiations of
the construction defined earlier in this section. The clésisgital signatures we consider is very similar
to the one defined by [43] in the context of designated vesfgmatures, whereas the class of considered
cryptosystems spotlights the importance of homomorphatygaion in the framework.
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Definition 2. (The class S of signatures) S is the set of all digital signatures for which there exists a
pair of algorithms,Convert and Retrieve, whereConvert inputs a public keyk, a messagen, and a
valid signatures onm (according topk) and outputs the paifs, r) such that:

1. there exists an algorithm that inputs a public kdyfrom the key space and a messagdrom the
message space, and outputs a string statistically indjstshable fromr.
2. there exists an algorithf@ompute that on the input the public keyk, the message: andr, com-
putes a description of ane-way functionf : (G, x) — (H, oy):
— where(G, *) is group andH! is a set equipped with the binary operation,
- V8,58 eG: f(S*S) = f(S)os f(S).
and an! € H, such thatf(s) = I.

and Retrieve is an algorithm that inputek, m and the correctly converted pafs, r) and retrieves the
signaturec onm.

The classS differs from the clas§€, introduced in [43], in the condition required for the onepianction
f.Infact, in our description d$, the functionf should satisfy a homomorphic property, whereas in the
classC, f should only possess an efficienitprotocolfor proving knowledge of a preimage of a value in
its range. We show in Theorem 7 that signatureS accept also efficient’ protocolsfor proving knowl-
edge of preimages, and thus belong to the clas€onversely, one can claim that signature€iare
also inS, at least from a practical point of view, since it is not knolaow to achieve efficient’ proto-
cols for proving knowledge of preimages pivithout having the latter item satisfy some homomorphic
properties. It is worth noting that similar to the clasSeand C is the class of signatures introduced
in [23], where the condition of having an efficieit protocol for proving knowledge of preimages is
weakened to having onlywitness hidingoroof of knowledge. Again, although this is a weaker assump-
tion on f, all illustrations of signatures in this wider class happeme also inC andS. Our resort to
specify the homomorphic property gnwill be justified later when describing the confirmation/dén
protocols of the resulting construction. In fact, theseqrols are parallel composition &f protocols
and therefore need a careful study as it is known that zeraletge is not close under concurrent
composition. Finally, the classencompasses most proposals that were suggested so fal-B843],
Schnorr [44], GHR [18], Modified EIGamal [41], Cramer-Shd@], Camenisch-Lysyanskaya-02 [24]
and most pairing-based signatures such as [6, 25, 4, 48, 47].

1. The prover chooses £ G, computes and sends = I o, f(s’) to the verifier.

2. The verifier chooses - {0, 1} and sends it to the prover.

3.1f b= 0, the prover sends’. I
Otherwise, he sendsx s’.

4. If b = 0, the verifier checks that is computed as in Step 1.
Otherwise, he verifier acceptsfi{s * s') = t1.

Fig. 1. Proof system for membership to the langudge f(s) = I} Common input: I andPrivate input : s

Theorem 7. The protocol depicted in Figure 1 is an efficiextprotocol, ZK close under parallel com-
position, for proving knowledge of preimages of the fumctialescribed in Definition 2.

The proof will be given in Appendix E.1.

Definition 3. (The class E of cryptosystems) E is the set of encryption schemgs obtained from the
KEM/DEM paradigm that have the following properties:

10



1. The message space is a group= (G, ) and the ciphertext spacgis a set equipped with a binary
operationo,.

2. Letm € M be a message andts encryption with respect to a kek. On the common input. and
¢, there exists an efficient zero knowledge proofolbeing the decryption of with respect topk.
The private input of the prover is either the private kkycorresponding tek or the randomness
used to encrypin in ¢ (the randomness which is input to the KEM encapsulationrélyo).

3. Ym,m' € M, Vpk: Iencrypty, (m * m’) = Iencrypt,,(m) o Iencrypt,,(m’). Moreover, given
the randomness used to encryptin I".encrypt,, (m) andm’ in I"encrypt,,(m’), one can deduce
(using only the public parameters) the randomness useddypgim * m’ in I".encrypty, (m * m’).

Examples of cryptosystems in the above class are ElGanradiygtion [15], or the cryptosystem de-
fined in [5] which uses the linear Diffie-Hellman KEM. In fatioth cryptosystems are homomorphic
and possess an efficient protocol for proving that a cipkedecrypts to a given plaintext: the proof of
equality of two discrete logarithms [11]. Paillier's [37fyptosystem cannot be viewed as an instance
of this class as it is not based on the KEM/DEM paradigm, havév Appendix E.2, we provide a
modified variant which belongs to the cldssind thus is suitable for use in the construction.

1. The prover chooses <X G, computes and sends = Tencrypt(s’) o (c, s) to the verifier

2. The verifier chooses < {0, 1} and sends it to the signer.
3. If b = 0, the prover sends and the randomness used to encri/gincrypt(s’).
Otherwise, he sends * s and proves that, is an encryption o’ x s. |
4. If b = 0, the verifier checks thab is computed as in Step 1.
Otherwise, he checks the proof of decryptiontof
It it fails, he rejects the proof.

Fig. 2. Proof system for membership to the langudge, si): 3m : m = I'.decrypt(e, si)} Common input: (e, sk, I".pk)
andPrivate input: I".sk or randomness encrypting in (e, sx)

Theorem 8. Let I' be a cryptosystem from the above classlet furthermorec be an encryption of
some message under some pupkc The protocol depicted in Figure 2 is an efficiedtprotocol, ZK
close under parallel composition, for proving knowledgéhef decryption o.

The proof is similar to the one of Theorem 7. a

The confirmation/denial protocol We combine an EUF-CMA secure signature schethe S and

a cryptosysten?” € E, where the underlying KEMC and DEMD are IND-CPA and INV-OT secure
respectively, in the way descried in Section 4. Namely, wa iompute an encapsulatientogether
with its corresponding key. Then compute a signatuee on the message to be signed concatenated
with e. Finally converto to (s, r) using theConvert algorithm described in Definition 2 and encrypt
usingk. The resulting confirmer signature (is, D.encrypt,(s),r). We describe in Figure 3 the confir-
mation/denial protocols corresponding to the resultingstwction. Note that the confirmation protocol
can be also run by the signer who wishes to confirm the valafity just generated signature.

Remark 3.The prover in Figure 3 is either the confirmer of the signature;, ) who can run the above
protocols with the knowledge of his private key, or the sigmko wishes to confirm the validity of a just
generated signature. In fact, with the knowledge of the semtkss used to encryptin (e, si), where

(s, r) is the converted pair obtained fram= X'sign(m/|e), the signer can issue the above confirmation
protocol thanks to the properties satisfied/by

11



1. The prover and verifier, given the public input, compltes defined in Definition 2.

2. The prover chooses <= G, computes and sends = f(s")os IT'and
to = Iencrypt(s’) oe (e, si) to the verifier
3. The verifier chooses - {0,1} and sends it to the prover.
4.1f b = 0, the prover sends and the randomness used to encffin I.encrypt(s’).
Otherwise, he sends * s and proves that, is an encryption o’ x s.
5. If b = 0, the verifier checks thdt andt. are computed as in Step 1.
Otherwise, he checks the proof of decryptiornt af
It it fails, he rejects the proof.
Otherwise:
If the prover is confirming the signature, the verifier acedpff (s’ x s) = t1.
If the prover is denying the given signature, the verifiereguts the proof iff (s” x s) # ¢1.

Fig. 3. Proof system for membership (non membership) to the largydg, sk, r): 3s : s = I.decrypt(e,sk) A
X .verify(Retrieve(s, r), m|le) = (#£)1} Common input: (e, sk, r, X.pk, I.pk) andPrivate input: I".sk or randomness en-
cryptings in (e, sx)

Theorem 9. The confirmation protocol (run either by the signer on a jusherated signature or by
the confirmer on any signature) described in Figure 3 i5 @rotocol which is ZK close under parallel
composition.

Theorem 10. The denial protocol described in Figure 3 is*aprotocol, ZK close under parallel com-
position, under the assumption of the underlying cryptiesgsbeing IND-CPA-secure.

The proofs of both theorems are given in Appendices E.3 ahddSpectively.

4.3 Comparisons and possible extentions

sign.thenencrypt variants. The construction presented in this section improves tha plaradigm [8]

as it weakens the assumption on the underlying cryptosylstambeing IND-CCA secure to only being
IND-CPA secure. This impacts positively the efficiency ad ttonstruction from many sides. In fact, the
resulting signature is shorter and its generation cost @lemsince IND-CPA cryptosystems are sim-
pler and allow faster encryption and shorter ciphertexas ttND-CCA ones. An illustration is given by
ElGamal’s encryption and its IND-CCA variant, namely CrarSB&oup’s encryption where the cipher-
texts are at least twice longer than ElIGamal’s ciphertédtn, there is a multiplicative factor of at least
two in favor of ElIGamal’s encryption/decryption cost. Mover, the confirmation/denial protocols are
rendered more efficient by the allowance of homomorphic togystems as shown in 4.2. Such cryp-
tosystems were not possible to use before, since a homomagireme can never attain the IND-CCA
security. Besides, even when the IND-CCA cryptosystem @ygion verifiable, e.g., Cramer-Shoup
or the IND-CCA variant of Paillier's encryption [9], the iolwed protocols are much more expensive
than the ones corresponding to their IND-CPA variant: ireaalsEIGamal, this protocol amounts to a
proof of equality of two discrete logarithms, and in case wf modified variant of Paillier (Appendix
E.2), this protocol comes to a proof of knowledge offéfth root. The construction achieves also better
performances than the proposal of [23], where the confirigaeagture comprisek commitments andk
IND-CCA encryptions, wheré is the number of rounds used in the confirmation protocol. ddwer,
the denial protocol presented in [23] suffers the resortromfs of general NP statements (where the
considered encryption is IND-CCA). Finally, the resultisignatures are not invisible.

Commitment-based constructionQur construction does not use ROM, unlike the constructiofi32,
46]. Moreover, it enjoys the strongest notion of invisityil(INV2-CMA) which captures both invisibil-
ity as defined in [8], and anonymity as defined in [17]. As mamdid in subsection 2.2, anonymity can
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be an important requirement for confirmer signatures in ssatngs. Unfortunately, many of the effi-
cient generic constructions are not anonymous. In factsteoctions like [32, 19, 46] have a confirmer
signature containing a commitment on the message to bedsigme a valid digital signature on this
commitment. Therefore, such constructions leak alwaystaopehe signing key, namely the public key
of the underlying digital signature. More precisely, an ity attackerA, will get two public keys
and a confirmer signature on a given message and has to tkéythander which the confirmer signature
was created. To answer such a challengewill simply check the validity of the digital signature on
the commitment (both are part of the confirmer signaturef) wagard to one public key (the confirmer
signature public key includes the public key of the undedydigital signature). The result of such a
verification is sufficient fot4 to conclude in case the two confirmer public keys do not sheesame
public key for the digital signature scheme.

The upshot is, our recast of the construction [14] achiewdls Imaximal security (strong invisibility)
without random oracles, and efficiency in terms of the sigreatength, generation, confirmation/denial
and conversion cost. Furthermore, the construction neadilends talirected signature$30] or unde-
niable confirmer signaturef28] by simply having the confirmer share his private key vtita signer.

5 Conclusion

We provided the first thorough analysis of the “encryptioraaignature” paradigm. In fact, we set the

necessary and sufficient assumptions on the building bioakgler to achieve unforgeable and invisible

or designated confirmer signatures under a chosen message &text, we improved and reshaped a
recent result [14] in the confirmer signature framework. &wer, we demonstrated the efficiency of our
recast by explicitly giving the confirmation/denial protbof the resulting signatures when instantiated
with building blocks from a large class of signatures/cogystems. The next direction of research might
be to check the minimality of the assumptions, in light of pinevious study, required for the security of

the proposed framework or of the constructions that use doment schemes.
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A Preliminaries

A.1 Digital signatures

A signature schemé&’ comprises three algorithms, namely the key generatiorrighgo keygen, the
signing algorithnsign, and the verification algorithwerify. The standard security notion for a signature
scheme is existential unforgeability under chosen mesatigeks (EUF-CMA), which was introduced
in [22]. Informally, this notion refers to the hardness adfiem a signing oracle, producing a valid pair of
message and corresponding signature such that messags haemqueried to the signing oracle. There
exists also the stronger notion, SEUF-CMA (strong exigaéninforgeability under chosen message
attack), which allows the adversary to produce a forgery preaiously queried message, however the
corresponding signature must not be obtained from thersjgmiacle.

A.2 Public key encryption schemes

A public key encryption (PKE) scheme consists of the key gaien algorithmkeygen, the encryp-
tion algorithmencrypt and the decryption algorithrlecrypt. The typicalsecurity goalsa cryptosystem
should attain are: one-wayness (OW) which correspondsitfieutty of recovering the plaintext from

a ciphertext, indistinguishability (IND) which refers tioet hardness of distinguishing ciphertexts based
on the messages they encrypt, and finally non-MalleabihiylY which corresponds to the hardness of
deriving from a given ciphertext another ciphertext suct the underlying plaintexts are meaningfully
related. Conversely, the typicattack model&n adversary against an encryption scheme is allowed to
are: Chosen Plaintext Attack (CPA) where the adversary oarypt any message of his choice. This
is inevitable in public key settings, Plaintext Checkindatk (PCA) in which the adversary is allowed
to query an oracle on pairsn( c) and gets answers whether is really encrypted in: or not, and fi-
nally Chosen Ciphertext Attack (CCA) where the adversarglli®sved to query a decryption oracle.
Pairing the mentioned goals with these attack models yieilds security notions GOAL-ATK for
GOAL € {OW,IND,NM} and ATK € {CPA PCA CCA}. We refer to [2] for the formal definitions of
these notions as well as for the relations they satisfy.

A.3 Key/Data encapsulation mechanisms (KEM/DEMS)

A KEM comprises three algorithms: the key generation atborikeygen, the encapsulation algorithm
encap and the decapsulation algorithdecap. The typical security goals that a KEM should satisfy
are similar to the ones defined for encryption schemes. &ilpjilwhen conjoined with the three attack
models CPA, PCA and CCA, they yield nine security notions sehdefinitions follow word-for-word
from the definitions of the encryption schemes notions. A DEBImply a secret key encryption scheme
given by the same algorithms forming a cryptosystem (PKEMs could be efficiently combined with
DEMs to build secure encryption schemes. This paradigmllisccthe Hybrid encryption paradigm and
we refer to [26] for the necessary and sufficient conditionsghe KEMs and the DEMs in order to
obtain a certain level of security for the resulting hybricte/ption scheme. For instance, to obtain an
IND-CPA secure cryptosystem, it suffices to combine an INPAGecure KEM andhdistinguishable
under a one time attack (IND-ODEM. Finally, we need to define a further notion for DEMs:
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Definition 4. A DEM is said to benvisible under a one time attack (INV-OT)no polynomial adver-
sary A wins the following game (running in three phases) with nogligeable probability.Phase 1.
The challenger runs the algorithf®.keygen to obtain a keyD.sk. Challenge. The adversary outputs
eventually a message*. The challenger picks uniformly at random a bifrom {0,1}. If b = 0, he
encryptsm”*, in e*, underD.sk. Otherwise, he chooses a string uniformly at random fronctipkertext
spacePhase 2. A outputs a bit’, representing his guess ef being the encryption of:* and wins the
game ifb = b'. We defined’s advantage asdv(A) = | Pr[b = V'] — 1|, where the probability is taken
over the random choices of the adversatyand the challenger.

A.4 X protocols

A X protocol is an argument of knowledge which is complete, daamd Honest Verifier Zero Knowl-
edge (HVZN), which is close under parallel composition. \&fer to [20] for more information.

B Proof of Theorem 1

Proof. Thelf direction has been already proved in [8]. We prove now the other doectiet(m*, o*)

be an existential forgery against the digital signatureeseh One can derive a forgery against the con-
firmer signature by simply encrypting the signatureusing the public key of the confirmer. Simulation
of the attacker’s environment is easy; the reductiofEUF-CMA attacker against the confirmer sig-
nature) will forward the appropriate parameters (thoseceomnng the underlying digital signature) to
the EUF-CMA attacker against the underlying signature sehaedenotedd. For a signature query on

a messagen, R will first request his challenger for a confirmer signaturéhat he decrypts using the
universal trapdoor (the cryptosystem private keyy i forms the result output tal. a

C Proof of Theorem 3

The proof is similar to a combination of Lemma 1 and Theorem [39]

Proof. We first note that the purpose Glame Ois to include all the key-preserving reductions which
feed the adversaryl with the same challenge public key in addition to some otlzeameters. Next
we remark that the advantage of the meta-reducfidnin the proof of Lemma 1 (Lemma 2) is the
same as the advantage of any key-preserving redu®ioaducing NM-CPA (OW-CCA) breaking a
cryptosysteml” to breaking the invisibility of a given confirmer signatufer instance, this applies to
the reduction making the best use of an invisibility adversé against the construction. Therefore we
have:
succ$™0(A) < succ(NM — CPA[I)

wheresucc(N M —C PA[I']) is the success of breakirgin the NP-CPA sense. We also havec$m0(A) <
succ(OW — CCAIIL).

Next, we prove that for angrbitrary reductionR that NM-CPA (OW-CCA) breaks a cryptosystem
I', given access to an invisibility adversadyagainst the construction (of a confirmer signature using
I"), we have

adv(R) < succ$mel(A)

In fact, assume thak breaks the NM-CPA (OW-CCA) security. We construct an altoni M that
plays Game 1with respect to perfect oracle fot and succeeds in breaking the NM-CPA (OW-CCA)
security ofI” with similar success probability. Algorithoé gets a challenge w.r.t. a public ke and
launchesR over the same challenge and the same public kefy. ¢hlls A on pk, then M will call his
own oracle for.A. Otherwise, ifR calls.4 on pk’ # pk, M will invoke his own decryption oracle for
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pk’ (OW-CPA oracle) to first decrypt the confirmer signature dmahtcheck whether the result is a valid
digital signature on the message in question. The outpieo¥erification algorithm is sufficient fok1
to answer such queries. Finally, whBnoutputs the result td1, the latter will output the same result to
his own challenger.

Now, LetR be an arbitrary reduction from NM-CPA (OW-CCA) breaking gptosysteml”, with a
non malleable key generator, to INV1-CMA breaking the cargion. We have

adv(R) < succmel(4)
< succ$mO(A) + A
<succ(NM — CPA[I'])(succ(OW — CCA[T])) + A

sinceA is negligeable, then under the assumptiof’ dfeing NM-CPA (OW-CCA) secure, the advantage
of R is also negligeable. a

D Proof of Theorem 4

Proof. Let A be an attacker that (e, ¢s, ¢u, ¢sc)-INV1-CMA breaks the invisibility of the above con-
firmer signature, believed to bg, ¢, ¢s)-EUF-CMA secure. We will construct an algorith® that
IND-PCA breaks the underlying cryptosystem as follows.

Phase 1

Key generation. R will get the public parameters of the target cryptosystesmfhis challenger, that
areI'.pk , I'.encrypt and I".decrypt. Then he will choose an appropriate signature sché&nhweith
parameters..pk, X .sk, X.sign and X .verify.

ConfirmSign queries. For a signature query on a messageR first computes a (digital) signatuse
onm using his secret key'.sk. Then, he encrypts and outputs the result td. Besides;R issues
a ZK proof of knowledge ofr that satisfies the equation defined byerify. Such a proof is pos-
sible for R to provide since he knows the randomness used to enargpid the relation between
I'encrypt(o) ando defines an NP language and thus accepts a zero knowledgegysiefm ac-
cording to [21]. Finally;R will maintain a listL of the queries (messages), the corresponding digital
signatures and finally the signatures he issued.

Selective conversion querie§or a putative confirmer signatugeon m, R will look up the list L.

We note that each record df comprises three components : (1) the queried messagR) o;
corresponding to a digital signature ew; (3) I"encryptr.,(0i) = p;, which corresponds to the
confirmer signature issued an;. If no record having as first component the messagappears in

L, thenR will output L. Otherwise, let be the number of records having as first component the
messagen. R will invoke the plaintext checking oracle (PCA) furnisheg liis own challenger on
(o4, 1), for 1 < i < t, whereo; corresponds to the second component of such records. IfGhe P
oracle identifieg: as a valid encryption of some, 1 < i < t, thenR will return o;, otherwise he
will return L. This simulation differs from the real one when the sigrnajuis valid and was not
obtained from the signing oracle. Since the only ways toteraavalid confirmer signature which
was not issued bR is either to encrypt a digital signature obtained from thevession oracle or

to come up with a new fresh pair of message and corresponijngtsare(m, ;). R can handle the
first case using his PCA oracle and list of recofdsn the second case, we can distinguish two sub-
cases: eithem has not been queried to the signing oracle in which case thé:pau) corresponds

to an existential forgery on the confirmer signature schentethus to an existential forgery on
the underlying digital scheme according to Theorem kpdras been queried to the signing oracle
but I".decrypt(p) is not an output of the selective conversion oracle, whiahesponds to a strong
existential forgery on the underlying digital signaturdiefefore, the probability that this scenario
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does not happen is at leddt— €')%= because the underlying digital signature schentg, i, g )-
SEUF-CMA secure by assumption.

Verification (Confirmation/denial) queries R will proceed exactly as in the selective conversion with
the exception of simulating the denial protocol insteadetfiming L, or the confirmation protocol
instead of returning the converted digital signatuRecan issue such proofs without knowing the
private key of the cryptosystem using the rewinding techei(See [35] for an illustration) because
the protocols are zero knowledge and thus simulatable,ing ukesignated verifier proofs [27] in a
registrated key model. Analogously, the probability th#atloes not query a valid signature he has
not obtained from the signing oracle is at legist- ¢')?-.

Challenge.Eventually,.4 he will output two challenging messages andm;. R will then compute
two signaturesry and o, on mgy andm; respectively, which he gives to his own challenggrwill
receive then the challengg, as the encryption of either, or 1, which he will forward toA.

Phase 2.4 will continue issuing queries to the signing, confirmata®wial and selective conversion
oracles andR can answer as previously. Note that in this phasés not allowed to query the signing
oracle for a signature omg, m; or the selective conversion, confirmation/denial oracle(nn, 11*),

i = 0,1. Also, R is not allowed to query his PCA oracle ¢n*,0;), i = 0, 1. If during the selective
conversion or confirmation/denial queries madebyR is compelled to query his PCA oracle on
(u*,04), i = 0,1, he will simply output L in case of a selective conversion query or simulate the
denial protocol in case of a verification query. This difféiem the real scenario when* is a valid
confirmer signature on some message# {mg, m; }, which corresponds to an existential forgery on
the underlying signature scheme. Again, this happens withgbility at most’?sc+4v,

Final output. When.A outputs his answer € {0, 1}, R will forward this answer to his own challenger.
ThereforeR will IND-PCA break the underlying cryptosystem with advame at least- (1 —e/)(%ﬂsc),

in time at most + ¢sqsc(qv + gs¢) after at mostys.(gsc + ¢») queries to the PCA oracle. ad

E Efficient Instantiations using Certain Signatures and Cryptosystems

E.1 Proof of Theorem 7

We first remark that the functiofiused in the definition of the claSsnduces a group law ifil = f(G)
for the operatior,. Moreover, we haveéy = f(1g) andvs € G: f(s)~! = f(s71).

Proof. For completeness, it is clear that if both parties follow ginetocol, the prover will always be
able to provide a proof that the verifier will accept.
For soundness, we show that the prover can cheat with a glibpabmost2~! in one round. In fact,
suppose that the prover can answer both challenges for the sammitment;. Let s; ands; be the
responses of the prover to the challenemnd 1 respectively in Step 3. Since the verifier accepts the
proof, we havet; = f(so)os I = f(s1). Thus,f(s1)os f(s0) ™! = f(s1 s, ") = I. Hence, the prover
would know a preimage of. We conclude that a cheating prover can cheat with at m@stprovided
f is one-way and the verifier is honest (chooses the bit ¢ unifofrom {0, 1}). Repeating the protocol
[ times leads to a soundness error which is at raokt

To prove that the proof is ZK, we provide the following simtola

1. Generate uniformly a random kite z {0,1}. If ¢ = 0, chooses’ € G and sends$; = f(s') x I,
otherwise, choose’ €r G and sendg; = f(s”) to the verifier.

2. Getc from the verifier. Ifc = ¢: if ¢ = 0, the simulator sends back, otherwise, it sends”. If
c # ,itgoes to Step 1.

The prover’s first message is always the functfoapplied to a random valu€¢’ € G, and so is the first
message of the simulator. Sinceis chosen uniformly at random frog0, 1}, the probability that the
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simulator rewinds the verifier is:

1-Pric=d]=1—(Prle=0,d =0]+Prle=1,d =1]) =1 - (%p—i— %(1 -p)=1-
wherep = Pr[c = 0]. Therefore, the expected number of rewinds is 2 and as a qoesee, the
simulator runs in expected linear time. Finally, the disttion of the answers of the prover and of the
simulator is again the same. We conclude that the protocKidt also remains ZK if it is runl times
in parallel, wherd is either constant or logarithmic in the security paramdtefact, the simulator of
the parallel composition of the protocol will be the paraiemposition of the above simulator. Thus,
the expected running time of the new simulato/igprobability of not rewinding the verifier i8~*),
which is either constant or polynomial in the security pagten O

E.2 A variant of the Palillier encryption in the KEM/DEM frame work

The Palllier encryption [37] operates on messagesnn whereN is a safe RSA modulus. Encryption
of a message. is done by picking a random € Z}, and then computing the ciphertext= V(1 +
mN) mod N?2. We propose the following KEM/DEM-based variant. To ent¢rgpnessagen € Zy;,
first pick a randonk € Zy, encrypt it inc using Paillier's encryption and then output £ + m) as
the encryption ofn. Decryption is done by first “decapsulating’to recoverk, and then subtracting
from the second component of the ciphertext.

The new cryptosystem is iB since the product. of two arbitrary ciphertexts is the ciphertext
corresponding to the sum of their underlying plaintexts. d&&ne the product. in wa x Zy to be
(a,b) o¢ (¢,d) = (ac mod N2,b+ d mod N). Moreover, ifry andr; are the randomness used in two
arbitrary ciphertextgy andc;, thenryry is the randomness used to encrypt the sum of the plaintexts
corresponding tey andc; resp incg o, c;.

Moreover, the new cryptosystem is IND-CPA secure providexd driginal one is also IND-CPA
secure. In fact, lefd be an IND-CPA adversary against the new cryptosystem. Wd bad IND-CPA
adversaryR against the original cryptosystem as follows. Wh&moutputs his two challenge messages
mgo andmy. R will choose a randonky €r Zy, then computé, = mg + ko — my and finally output
ko andk; to his challengerR will get ¢*, as the encryption of eithdy or k1, that he will forward taA
along withky + m (equal tok, +m; by construction). The output of is sufficient forR to conclude.

We discuss now the security of the underlying KEM and DEM. €&oning the KEM, we need to
prove that it is IND-CPA secure. i.e., prove that given someapsulatiorr, it is difficult to distinguish
decap(c) from a random element in the corresponding space. Notehtbatdrresponding space is given
by the security parameter and not by a specific modiNudMoreover, we know that given an encap-
sulatione, which corresponds to an encryption of some, elenkert Z using Paillier's encryption,
it is hard to distinguishk from a random element i# y if the Decisional Composite Residuosity As-
sumption (corresponding to distinguishingth residues from random element<Zr- see [37]) holds.
Therefore, one way to extend this indistinguishability engents in the ciphertext space (given only
by the security parametéN|, i.e., the bit length of the modulu¥’), one can use the recent technique,
used in the area of undeniable signatures by [36] (Sectiby) which consists in using “close enough”
moduli, i.e., moduli with common high leading bits, say ab8wi (It is known how to generate moduli
N with about|N|/2 leading bits [1]). In this way, the ciphertext space is alibetsame (in the view
of a polynomial attacker) for all the considered moduli aneréfore indistinguishability of some ele-
ment w.r.t. some modulus will induce indistinguishabilfor w.r.t. the other moduli. Finally the DEM
used in the above cryptosystem is obviously INV-OT securdatt, by constructiork is random and
since the DEM encryption function is one-to-one, then sdésresultm + k. Therefore, ciphertexts
obtained from the DEM are statistically indistinguishafstem random elements i y. We extend this
indistinguishability to the ciphertext space by the sangeiarent of the “close enough” moduli.
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E.3 Proof of Theorem 9

Proof. The confirmation protocol depicted in Figure 3 is a paraltehposition of the proofs depicted
in Figures 1 and 2. Therefore completeness and soundnéms fs a direct consequence of the com-
pleteness and soundness of the underlying proofs (see [20])

To prove that the protocol is ZK. We provide the following silator (for one execution):

1. Generate’ € {0,1}. If ¢ =0, chooses’ e G and sends$; = f(s’) = I andty = encrypt(s’) *
(e, si), otherwise, choosg’ € G and sends$; = f(s”) andts = encrypt(s”) to the verifier.

2. Getc from the verifier. Ifc = ¢: if ¢ = 0, the simulator sends bagk and the randomness used to
encryptencrypt(s’), otherwise, it sends” and simulates the proof @§ being an encryption of”
(this proof is simulatable since it is by assumption ZK): K ¢/, it goes to Step 1.

The prover’s first message is an encryption of a random vdluer G, in addition tof(s”), and so is
the simulator’s first message. Therefore the distributmfrthe prover and of the simulator are the same
in the first round of the proof. Moreover, the expected nundferewinds is two Pr(c # ) = %),
making the simulator run in an expected linear time. Theribistion of the prover's messages in the
third round are also similar to those of the simulator. Wechatte that the confirmation protocol is
ZK. Parallel execution of the protocol will remain also ZKtlife number of executionsis constant or

logarithmic in the security parameter (see the above proof) O

E.4 Proof of Theorem 10

Proof. With the standard techniques, we prove that the denial pobtiepicted in Figure 3 is complete
and sound with error probability~! (I is the number of rounds) provided the verifier is honest aed th
cryptosystem is one way. Similarly, we provide the follogrgimulator to prove the ZK property.

1. Generate’ €; {0,1}. If ¢ =0, chooses’ € G and send$; = f(s') x I andty = I'encrypt(s’) *
(e, sk ), otherwise, choose’ €r G and arandont; € f(G) andty = I'encrypt(s”).

2. Getc from the verifier. Ifc = ¢’: if ¢ = 0, the simulator sends baek and the randomness used to
encryptl.encrypt(s’), otherwise, it sends’ and simulates the proof of being an encryption of”
(this proof is simulatable since it is by assumption zerokedge). Ifc # ¢, it goes to Step 1.

The prover's first message is an encryption of some randoneyéland the elemerty = f(s”*s71)o;

I. The simulator’s first message is an encryption of a randdoevd, and in casé = 0 the element

t; = f(s" * s71) o4 I, whereas in the cage= 1, it is the element; € f(G) (independent of").
Distinguishing these two cases it at least as hard as bigak@IND-CPA security of the underlying
cryptosystem. In fact, if the verifier is able to distinguitiese two cases, it can be easily used to break
the cryptosystem in the IND-CPA sense. Therefore, undesigsiemption of the IND-CPA security of the
cryptosystem, the simulator’'s and prover’s first messagegillitions are indistinguishable. Moreover,
the simulator runs in expected linear time, since the nurobeewinds is2. Moreover, the distribution
of the prover's and the simulator's message in the last raredagain, by the same argument, indis-
tinguishable under the IND-CPA security of the cryptosyst&inally, with same argument as above,
parallel execution of the protocol remains also ZK if the fn@mof executions is constant or logarithmic
in the security parameter. O
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