Dimethyl Ether Synthesis via Reforming of Steam/Carbon Dioxide and Methane

Masaki HIRANO^{†1),†4)}, Masahiko TATSUMI^{†1)*}, Toshinobu YASUTAKE^{†2)}, and Kennosuke KURODA^{†3)}

^{† 1)} Technical Research Center, The Kansai Electric Power Co., Inc., 1-7 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, JAPAN
^{† 2)} Hiroshima Research & Development Center, Mitsubishi Heavy Industries, Ltd.,

4-6-22 Kannon Shin-machi, Nishi-ku, Hiroshima 733-8553, JAPAN

^{†3)} Plant and Transportation Systems Engineering & Construction Center, Mitsubishi Heavy Industries, Ltd.,

3-3-1 Minato Mirai, Nishi-ku, Yokohama 220-8401, JAPAN

(Received January 11, 2006)

Dimethyl ether (DME) synthesis via the reforming of methane (CH₄) by carbon dioxide (CO₂) and steam (H₂O) was investigated using a model synthesis gas obtained by the reforming of CH₄. Reforming of CH₄ over Ni/ α -Al₂O₃, Ru/ α -Al₂O₃, Ni/MgO-Al₂O₃ and Ru/MgO-Al₂O₃ catalysts showed that CH₄ conversion was strongly affected by temperature, but not by CO₂/CH₄ and H₂O/CH₄ molar ratios. CO₂ conversion was strongly affected by temperature and CO₂/CH₄ and H₂O/CH₄ molar ratio. *M* value [H₂/(2CO+3CO₂) molar ratio] was strongly affected by temperature and CO₂/CH₄ molar ratio, but not by H₂O/CH₄ molar ratio. Using Ni/MgO-Al₂O₃ and Ru/MgO-Al₂O₃ catalysts, CH₄ conversion almost reached equilibrium in 800 h durability tests, and carbon deposition on the catalyst was very low. DME synthesis was investigated using the model synthesis gas obtained by the reforming of CH₄ by CO₂ and H₂O through two reactions, the one-step reaction with a hybrid catalyst structure and the two-step reaction with separated catalysts. The 2000 h durability tests showed that (methanol + DME) yield through the one-step reaction was higher in the first stage than through the two-step reaction, and decreased gradually with time. However, the (methanol + DME) yield hardly decreased through the two-step reaction for 2000 h. Moreover, the two-step reaction gave 20% or more higher (methanol + DME) yield and DME selectivity from the model gas containing CO compared to those from the mixed gas of H₂ and CO₂ not containing CO.

Keywords

Carbon dioxide, Methane, Reforming, Synthesis gas, Dimethyl ether, Methanol

1. 緒 言

大気中の二酸化炭素 (CO₂) の増大を主原因とする地球の温 暖化問題は近年,ますます深刻になってきている。CO₂濃度を 低減させるための技術として,CO₂排出源からの直接的なCO₂ 回収技術が開発されているが¹⁾,この技術は2001年の気候変動 枠組み条約第7回締約国会議で採択された「マラケシュ合意」 でも有効な方法の一つとして認定され,今後さらにその重要性 が増すものと考えられる。

筆者らはこの回収された CO_2 の有効利用技術として、 CO_2 と 水素 (H₂)から近年,新燃料として注目されているジメチルエー テル (CH₃OCH₃, DME と略す)を合成する技術の研究を行い, 触媒性能等について報告してきた^{2)~4)}。しかしながら, DME 合成に関する触媒製造技術上の課題は克服できたとしても,主 原料ガスの H₂を経済的に製造する CO_2 排出低負荷型プロセス の開発が必要となる。そこで筆者らは、DME 合成ガス製造プロセスとしてメタン(CH₄)のCO₂リフォーミング反応および 水蒸気(H₂O)リフォーミング反応に着目し、各種実験を行っ た。本プロセスの開発が成功すれば、外部からの導入CO₂の 化学的固定が図れるとともに、CO₂リフォーミング反応での炭 素(C)析出問題を克服できる触媒系が見出されれば、H₂O消 費量の少ない省エネ型のプロセス確立も併せて可能となり工業 的な寄与が大きいと考えられる。

本報では、メタンの CO₂, H₂O リフォーミング触媒の選定を 行い、リフォーミング特性を把握した結果について報告すると ともに、リフォーミング模擬ガスによる DME 合成試験結果に ついて報告する。

2. プロセス構成

CO₂と CH₄を原料とする DME を合成するプロセスは, CH₄ を CO₂と H₂O で改質して合成ガスを製造する前段部分(リ フォーミング工程)と, 合成ガスを原料として DME を合成す る後段部分(合成工程)から構成される。プロセス構成の概略 を Fig. 1に示す。

^{*} To whom correspondence should be addressed.

^{*} E-mail: tatsumi.masahiko@b5.kepco.co.jp

^{†4)}(Present) 5-15-25 Koueidai, Kita-ku, Kobe, 651-1142, JAPAN

Fig. 1 Schematic Flow Chart of the Process

各工程に関与する反応式は以下のとおりである。 <リフォーミング工程>

CH ₄ +CO ₂ →2CO+2H ₂ (CO ₂ リフォーミング反応)	(1)
CH ₄ +H ₂ O→CO+3H ₂ (H ₂ Oリフォーミング反応)	(2)
$CO + H_2O \rightarrow CO_2 + H_2$ (CO シフト反応)	(3)
<合成工程>	
	(\mathbf{A})

$4H_2 + 2CO \rightarrow CH_3OCH_3 + H_2O$	(4)
$6H_2 + 2CO_2 \rightarrow CH_3OCH_3 + 3H_2O$	(5)

ここで合成ガス中の H₂, CO, CO₂各成分について M 値=(H₂ のモル数) / [2(CO のモル数) +3(CO₂のモル数)] 比と定義す ると,合成工程における H₂/CO/CO₂比が化学量論比の場合は M 値=1であるので,リフォーミング工程では得られる合成ガ スが M 値=1になるように原料の CH₄/CO₂/H₂O 比を制御する 必要がある。ちなみに合成ガスの M 値は, CO₂がゼロの場合, H₂/CO 比=2 (mol/mol) のとき1になる。また, Eqs.(1) およ び (2) の組合せで H₂/CO 比=2となるのは,下記式から化学量 論的には CH₄/CO₂/H₂O 比=3/1/2の場合である。

 $CH_4 + CO_2 \! \rightarrow \! 2CO + 2H_2$

$$2CH_4 + 2H_2O \rightarrow 2CO + 6H_2$$

 \exists [†] 3CH₄+CO₂+2H₂O→4CO+8H₂

ただし、実際のリフォーミング反応ではCH4の熱分解反応 による触媒上のC析出防止の目的から、H2Oは化学量論に対 して過剰に供給するのが一般的である。

CH₄の CO₂ と H₂O によるリフォーミング反応の 平衡計算

2. での化学量論検討に基づき、CO₂/CH₄比= $1/3 \approx 0.33$ で圧 力0.1 MPa における CH₄の CO₂と H₂O によるリフォーミング 反応の平衡計算結果を Fig. 2に示す。また、H₂O の供給量であ るが、ここでは H₂O/CH₄比=2を選定した。Fig. 2より温度が 高いほど CH₄転化率は高くなり、700°C 以上で90% 以上となる。 また、リフォーミング後のガス中の残存 CH₄濃度は700°C 以上 で2% 以下となる。

Figs. 3および**4**に温度700°C, 圧力0.1 MPaにおける平衡計 算結果を示す。CH₄転化率はH₂O/CH₄比が大きいほど, また

0.1 MPa, H_2O/CH_4 ratio = 2.0 mol/mol, CO_2/CH_4 ratio = 0.33 mol/mol.

Fig. 2 Effect of Temperature on Equilibrium of CO₂ and H₂O Reforming of CH₄

 CO_2/CH_4 比が大きいほど高くなり、 CO_2 転化率は H_2O/CH_4 比が 大きいほど低下する。 CO_2 転化率がマイナスになるのは、高 H_2O/CH_4 比において CO シフト反応が進み、 CO_2 の生成量が増 加するためである。M 値は H_2O/CH_4 比が大きくなっても大き な変化は示さないが、 CO_2/CH_4 比が大きくなると低くなる。ま た、残存 CH_4 濃度は H_2O/CH_4 比が大きいほど、 CO_2/CH_4 比が 大きいほど低下する。Fig. 5に H_2O/CH_4 比=2、 CO_2/CH_4 比= 0.33における平衡計算結果を示す。DME 合成における化学量 論比である M 値=1に近づけるためには、 H_2O/CH_4 比=2、 CO_2/CH_4 比=0.33においてリフォーミング温度を700°C 以上 (CH_4 転化率を90% 以上)にする必要がある。

4. 実 験

4.1. 流通式マイクロリアクターを用いたリフォーミング実 験

4.1.1. 触媒

CH₄のH₂Oリフォーミングは水素製造,アンモニア合成, メタノール合成などの工業プロセスで使用されており,リ

Fig. 3 Effect of H₂O/CH₄ Ratio on Equilibrium of CO₂ and H₂O Reforming of CH₄ (Part 1)

Fig. 4 Effect of H₂O/CH₄ Ratio on Equilibrium of CO₂ and H₂O Reforming of CH₄ (Part 2)

0.1 MPa, H_2O/CH_4 ratio = 2.0 mol/mol, CO_2/CH_4 ratio = 0.33 mol/mol.

Fig. 5 Effect of Temperature on Equilibrium *M* Value and CH₄ Conversion of CO₂ and H₂O Reforming of Methane

フォーミング触媒としては主に α- アルミナを担体とする Ni 系 触媒が使用されている。一方、CH4の CO2リフォーミングがメ インとなるプロセスが工業化されている例はないようである が、これは触媒の耐久性が課題となっているためである。CH4 の CO2リフォーミング反応は H2O リフォーミング反応に比較 してカーボン析出が起こりやすいとされており、特に最近では CO2問題と絡めて、C 析出防止を目的として触媒成分に Ni, Ruを用い,担体にアルミナ,MgOなどを用いた基礎研究など がなされている^{5)~7)}が,実用にはまだ相当の期間が必要と考 えられる。なお,本報においてのCO₂はCH₄のH₂Oリフォー ミング反応のみでは,DME 合成に必要なH₂が余剰(M値>1) となるため炭素源補充のアシストとしての役割も兼ねている。

本報でのCH₄のCO₂およびH₂Oによるリフォーミング実験 には、α-Al₂O₃を担体とする12wt%Ni/α-Al₂O₃(DRC-1)およ び2wt%Ru/α-Al₂O₃(DRC-2),耐カーボン析出性の向上をねらっ て MgO-Al₂O₃ 複合酸化物を担体として用いる 12 wt%Ni/ $MgO-Al_2O_3$ (DRC-3) および2 wt%Ru/MgO-Al_2O_3 (DRC-4) の 計4種類の触媒を用いた。DRC-3, DRC-4でアルカリ性金属を 添加したのは添加により酸点を中和し、炭化水素の熱分解反応 によるカーボン析出を抑制することがねらいである^{5)~9)}。 DRC-1とDRC-2については、1 mol (102 g) の α -Al₂O₃ (直径 3 mm) を, DRC-1の場合は0.29 mol (84.4 g)のNi(NO₃)₂・ 6H₂O を 500 g の純水に溶解した水溶液に, DRC-2 の場合は 0.03 mol (6.3 g) の Ru(NO₃)₂·6H₂O を 100 g の純水に溶解した 水溶液に浸漬して、蒸発乾固させ、500℃で5時間焼成して調 製した。DRC-3および DRC-4については,まず1 mol(102 g) の γ-Al₂O₃を500gの純水に懸濁,分散したスラリーに1 mol (256 g)の Mg(NO₃)₂·6H₂Oを500 gの純水に溶解した水溶液を 混ぜ、撹拌混合しながら蒸発乾固させ、さらに1100℃で24時 間焼成して MgO-Al₂O₃を調製した。次いで、この MgO-Al₂O₃ の1 mol (142 g) を 500 g の純水に溶解した水溶液と, DRC-3 の場合は0.29 mol (84.4 g)のNi(NO₃)₂·6H₂Oを500 gの純水に 溶解した水溶液を, DRC-4の場合は0.03 mol (6.3 g) の Ru(NO₃)₂・6H₂O を100gの純水に溶解した水溶液を撹拌混合し て, 生じた沈殿物を沪過し乾燥した後, 500°C で5時間焼成し て調製した。

4.1.2. 実験装置と実験方法

改質実験には Fig. 6に示す流通式マイクロリアクターを用いた。

反応器への触媒充填量は4.5g(3.0 cm³)とした。触媒形状は DRC-1とDRC-2は4.1.1.で調製した直径3 mmのものを用い, DRC-3とDRC-4は4.1.1.で調製した粉末を直径3 mm,長さ 3 mmのタブレット状に打錠成型したものを用いた。

触媒の還元には3%水素/窒素ガスを用い,GHSV= 1000 h⁻¹,400℃で3時間流通させることにより行った。

リフォーミング実験では各触媒を用いて,温度,原料ガスの CO₂/CH₄比および H₂O/CH₄比などの条件が反応特性に与える影 響を把握する反応特性試験と触媒の耐久性を把握するための耐 久性試験を行った。実験は触媒の還元後,H₂Oと原料ガスを所 定流量で流通させながら,目的温度まで昇温し,4時間後に物 質収支を測定した。反応器出口ガス組成は通常のガスクロ法で 分析した。

実験結果は下記式で定義される項目で評価した。ここで量の 単位は mol/h, 濃度の単位は mol% である。

 CH_4 転化率(%) = $[1 - 反応器出口 CH_4 量/反応器出口 (CH_4 + CO_2 + CO) 量 × {1/(CO_2/CH_4 比 + 1)}] × 100$

 CO_2 転化率 (%) = $[1 - 反応器出口 CO_2 量/反応器出口 (CH_4 + CO_2 + CO) 量 × {(CO_2/CH_4 比) / (CO_2/CH_4 比 + 1)}] × 100$

J. Jpn. Petrol. Inst., Vol. 50, No. 1, 2007

Fig. 6 Schematic Diagram of the Microflow Reactor

M値(一) = 反応器出口ガス中 H₂濃度 / (2×反応器出口ガス
 中 CO 濃度 + 3×反応器出口ガス中 CO₂濃度)

なお,800時間の耐久性試験後のCH₄リフォーミング触媒 DRC-3およびDRC-4について,X線回折による結晶状態の解 析および触媒表面上へのC析出量の測定を行い,新品触媒と の比較を行った。X線回折の解析にはリガク(株)製X線回折装 置RINT-2500を用い,C析出量の測定にはRECO社製炭素・ 硫黄分析装置CS-400を用いた。

4.2. DME 合成実験

4.2.1. 触 媒

筆者らは、CO₂とH₂を原料とするメタノール合成触媒とし て CuO/ZnO/Al₂O₃/Ga₂O₃/MgO (M-1, 原子比: Cu/Zn/Al/Ga/Mg= 100:50:5:4:1), メタノール脱水による DME 合成触媒とし て ZrO₂/Al₂O₃ (D-4, 原子比: Zr/Al=8:92) を開発してき た^{2)~4),10)}。本研究における合成ガスを原料とするメタノール合 成触媒、メタノール脱水による DME 合成触媒にもこれらと同 じ触媒を用いた。各触媒は直径3mm,長さ3mmの打錠成型 品を実験に供した。DME 合成実験には後述するように流通式 マイクロリアクターおよび循環式ベンチスケールリアクターを 用いたが、流通式マイクロリアクターではメタノール合成触媒 (M-1) とメタノール脱水触媒 (D-4) を複合化して,一つの共 通温度でメタノール合成反応とメタノール脱水反応を同時に行 わせる1段反応実験と、メタノール合成触媒(M-1)を反応器 の上段に、メタノール脱水触媒 (D-4) を下段に分離して充填し、 異なる温度でメタノール合成反応とメタノール脱水反応を逐次 に行わせる2段反応実験を行った。1段反応実験における触媒 の複合化は、触媒層上層にメタノール合成触媒(M-1)を、下 層にメタノール合成触媒(M-1)とメタノール脱水触媒(D-4) の混合触媒を充填する構造(MD-13)とした。1段反応実験お よび2段反応実験のいずれにおいても反応器へのメタノール合 成触媒(M-1)とメタノール脱水触媒(D-4)の充填比は50: 50 wt%とし、1段反応実験の場合には複合触媒構造(MD-13) の上層部にメタノール合成触媒(M-1)1.4gを,下層部へメタ ノール合成触媒(M-1)とメタノール脱水触媒(D-4)の混合 触媒(混合比33:67 wt%)4.2gを充填した。2段反応実験の場 合には反応器上段にメタノール合成触媒(M-1)を,下段にメ タノール脱水触媒(D-4)を各々2.8g充填した。循環式ベンチ スケールリアクターでは2段反応実験のみを行い、メタノール 合成触媒(M-1)とメタノール脱水触媒(D-4)を各々50g充 填した

4.2.2. 実験装置と実験方法

DME 合成実験には, **4.1.2**. で述べた流通式マイクロリアク ターと Fig. 7に示す未反応ガスをリサイクル可能な循環式ベン チスケールリアクター(以下, ベンチプラントと称する)を用 いた。

流通式マイクロリアクターを用いた DME 合成実験では、原 料ガスにはリフォーミング反応で得られる合成ガスの模擬ガス として組成 $H_2/CO_2/CO/CH_4$ 比=69.0/7.5/23.3/0.2 mol% の混合ガ スを用いたが、これは CO/CH₄比=0.33 (mol/mol)、 H_2O/CH_4 比=2 (mol/mol) のガスを 800°C で改質して得られる平衡合成 ガス組成に相当している。実験はまず、触媒を 150~200°C で H_2 還元した後、原料ガスで目的反応圧力(4 MPa)まで昇圧し、 次に原料ガスを所定流量流通させながら目的温度まで昇温さ せ、6時間後に物質収支を測定した。ガスの分析にはガスクロ マトグラフを用いたが、条件は4.1.2.と同様である。

ベンチプラントでは、2段反応による CO リッチの上記合成 ガスの模擬ガスと CO を含まない H₂/CO₂=75/25 mol% 原料ガ スとの反応特性の比較を行った。触媒の還元後原料ガスを流通

1: Mixed gas cylinder, 2: Pressure regulator, 3: Mass flow controller, 4: Mixer, 5: Vessel, 6: Make-up gas compressor, 7: Recycled gas compressor, 8: Heater, 9: Reactor, 10: Thermocouple, 11: Condenser, 12: Trap.

Fig. 7 Schematic Diagram of the Bench Plant

させ、合成ガス圧縮機で目的圧力まで昇圧し(以下、これをメ イクアップガスと称する)、そのまま、あるいはリサイクルガ スと混合し、加熱器で予熱した後反応器へ供給した。反応器を 出たガスは、コンデンサーにて5℃に冷却後、分離器にて未凝 縮ガスと DME およびメタノールを含む水溶液を分離した。未 凝縮ガスは一部をパージガスとして排出し、残りをリサイクル ガスとしてリサイクルガス圧縮機で目的圧力まで昇圧し、メイ クアップガスと混合して反応器へ供給した。ベンチプラントに よる DME 合成実験では、未凝縮ガスを反応器へリサイクルし ないワンパス反応実験とリサイクルするリサイクル反応実験を 行った。

DME 合成実験の結果は下記の式で定義される項目で評価した。ここで供給量および生成量の単位は mol/h である。

 (メタノール+DME) 収率(%)=[(メタノール生成量+ 2×DME 生成量)/(CO+CO₂供給量)]×100
 DME 選択率(%)=[2×DME 生成量/(メタノール生成 量+2×DME 生成量)]×100

5. 実験結果と考察

5.1. リフォーミング実験

流通式マイクロリアクターを用いて行った, CO₂と H₂O に よる CH₄のリフォーミング実験結果を Table 1 に示す。

実験結果から、H₂O/CH₄比=1.5、CO₂/CH₄比=0.33の条件下 での触媒 DRC-2、DRC-3およびDRC-4の性能に対する反応温 度の影響を Figs. 8、9に示す。どの触媒でも600~800°Cの範 囲では、温度を上げることにより CH₄転化率、CO₂転化率とも に上昇し, 800℃ において CH₄転化率は90% 以上となる。なお Fig. 9より,本実験温度の範囲では,ほぼ平衡 CH₄転化率と一 致し, *M* 値は700℃ 以上でどの触媒でもほぼ1となることがわ かった。

DRC-2触媒を使用した場合の温度700°C における CO₂/CH₄比 および H₂O/CH₄比の反応特性に与える影響を各々 Figs. 10 およ び11 に示す。CO₂/CH₄比=0.2~1.0の範囲では CH₄転化率は 80%前後でほぼ一定であるが、CO₂転化率は CO₂/CH₄比の増加 とともに高くなり、M 値は CO₂/CH₄比の増加とともに低下し、 CO₂/CH₄比=0.33付近で1となった。また、H₂O/CH₄比=1.5~ 2.5の範囲では H₂O/CH₄比の増加に伴い CH₄転化率は若干増加 するのみで、大きな変化はないが、CO₂転化率は H₂O/CH₄比の 増加に伴い大きく低下する。M 値は H₂O/CH₄比が増加しても 大きな変化はなく、ほぼ1に近い値であった。Figs. 3、4との 比較から Fig. 11の条件では CH₄転化率、CO₂転化率、M 値の いずれもほぼ平衡値に近いことが判明した。

以上の結果から CH₄転化率は温度の影響を大きく受けるが CO₂/CH₄比および H₂O/CH₄比の影響はあまり受けず, CO₂転化 率は温度, CO₂/CH₄および H₂O/CH₄比のいずれの影響も大きく 受け, *M* 値は温度と CO₂/CH₄比の影響を大きく受けるが H₂O/ CH₄比の影響はあまり受けないことが分かった。

触媒 DRC-3 および DRC-4を対象に,GHSV=10,000 h⁻¹という条件で800時間の耐久性試験を実施した結果を Fig. 12 に示す。両触媒とも800時間後でも CH4転化率,CO2転化率ともに顕著な変化は見られなかった。CH4転化率はGHSV=10,000 h⁻¹という高い流速条件でも平衡値に近い高い値で安定していた。

Catatyse [MPa] [h ⁻¹] [mol/mol] [mol/mol/mol] [mol/mol/mol/mol/mol] [mol/mol/mol/mol/mol/mol] [mol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	H ₂ O/CH ₄ CO ₂ /CH ₄ Temp.	CH4	CO2	M		Reformed ga	as composit	ion [mol%]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[mol/mol] [mol/mol] [°C]	coversion [%]	conversion [%]	value	H_2	CO	CO_2	H_2O	CH_4
$ \begin{array}{cccccccc} (12 \ wt\% \ Ni/\alpha-Al_2O_3) \\ DRC-2 & 0.1 & 1000 & 1.5 & 0.33 \\ (2 \ wt\% \ Ru/\alpha-Al_2O_3) & & & & & & & & & & & & & & & & & & &$	2.0 1.0 600	72.4	-2.9	0.51	40.5	12.3	18.3	24.1	4.9
$\begin{array}{cccccccc} DRC-2 & 0.1 & 1000 & 1.5 & 0.33\\ (2 wt% Ru/\alpha \cdot Al_2O_3) & & 0.1 & 1000 & 1.5 & 0.33\\ & 0.1 & 1000 & 1.5 & 0.5 & & \\ & 0.1 & 1000 & 1.5 & 0.33\\ DRC-3 & 0.1 & 1000 & 1.5 & 0.33\\ & 0.1 & 1000 & 1.5 & 0.33\\ DRC-4 & 0.1 & 1000 & 1.5 & 0.33\\ & DRC-4 & 0.1 & 1000 & 1.5 & 0.33\\ \end{array}$	200	96.7	19.2	0.59	46.3	19.2	13.4	20.5	0.5
$\begin{array}{cccccccc} DRC-2 & 0.1 & 1000 & 1.5 & 0.33\\ (2 wt\% Ru/\alpha Al_2O_3) & 0.1 & 1000 & 1.5 & 0.2\\ & 0.1 & 1000 & 1.5 & 0.5\\ & 0.3 & 0.3 & 0.3 & 0.3\\ & 0.1 & 1000 & 1.5 & 0.33\\ (12 wt\% Ni/MgO-Al_2O_3) & 0.1 & 1000 & 1.5 & 0.33\\ & DRC-4 & 0.1 & 1000 & 1.5 & 0.33\\ & DRC-4 & 0.1 & 1000 & 1.5 & 0.33\\ & 0.1 & 0.00 & 0.5 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.5 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.1 & 0.00 & 0.33\\ & 0.00 & 0.00 & 0.33\\ & 0.00 & 0.00 & 0.33\\ & 0.00 & 0.00 & 0.33\\ & 0.00 $	800	99.7	31.9	0.58	46.3	22.4	11.6	19.7	0.0
$ (2 \text{ wt% } \text{Ru/}\alpha\text{-Al}_2\text{O}_3) $ $ (2 \text{ wt% } \text{Ru/}\alpha\text{-Al}_2\text{O}_3) $ $ 0.1 1000 1.5 0.2 $ $ 0.1 1000 1.5 0.33 $ $ 0.3 0.3 0.3 0.3 $ $ 0.1 1000 1.5 0.33 $ $ 0.3 0.3 0.3 0.3 $ $ 0.1 1000 1.5 0.33 $ $ 0.3 0.3 0.3 0.3 $ $ 0.1 1000 1.5 0.33 $ $ 0.3 0.3 0.3 0.3 0.3 $ $ 0.1 1000 1.5 0.33 $ $ 0.3 0.3 0.3 0.3 0.3 0.3 $	1.5 0.33 600	48.9	-38.9	0.85	46.3	10.0	11.6	18.3	13.9
0.1 1000 1.5 0.5 0.1 1000 1.5 0.5 1.0 2.1 0.33 0.3 1000 1.5 0.33 0.1 1000 1.5 0.33 (12 wt% Ni/MgO-Al ₂ O ₃) (12 wt% Ru/MeO-Al ₂ O ₃) 0.1 1000 1.5 0.33 0.3 0.33 0.3 0.33 0.1 1000 1.5 0.33 0.3 0.33 0.1 1000 1.5 0.33 0.3 0.33 0.3 0.33 0.3 0.3 0.33 0.3 0.3 0.33 0.1 1000 1.5 0.33 0.3 0.33 0.3 0.33 0.3	700	80.7	10.5	1.02	57.6	19.1	8.3	10.5	4.5
0.1 1000 1.5 0.5 0.5 0.5 0.5 1.0 2.1 0.3 2.1 0.3 2.1 0.3 2.1 0.3 2.1 0.3 2.1 0.3 2.5 0.3 2.5 0.3 2.5 0.3 2.5 0.3 2.5 0.3 2.3 0.3 1.0 1.5 0.3 0.3 1.0 1.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	800	95.1	29.0	1.04	62.8	23.0	4.7	8.4	1.1
0.1 100 1.5 0.5 1.0 2.1 0.33 2.1 0.33 2.1 0.33 2.1 0.33 2.1 0.33 2.1 0.33 2.5 0.33 2.5 0.33 1.0 1.5 0.33 1.0 1.5 0.33 1.0 1.5 0.33 DRC-3 0.1 1000 1.5 0.33 DRC-4 0.1 1000 1.5 0.33 DRC-4 0.1 1000 1.5 0.33	0.2 700	78.5	-38.2	1.13	60.3	17.7	6.0	10.7	5.3
1.0 2.1 0.33 2.1 0.33 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	1.5 0.5 700	83.4	20.7	0.84	55.9	20.9	8.1	11.3	3.7
2.1 0.33 2.5 0.33 2.5 0.33 2.5 0.33 2.5 0.33 0.1 1000 1.5 0.33 (12 wt% Ni/MgO-Al ₂ O ₃) DRC-4 0.1 1000 1.5 0.33 DRC-4 0.1 1000 1.5 0.33	1.0 700	82.2	42.3	0.56	46.3	22.7	12.3	15.7	3.0
2.5 0.33 0.3 1000 1.5 0.33 DRC-3 0.1 1000 1.5 0.33 (12 wt% Ni/MgO-Al ₂ O ₃) DRC-4 0.1 1000 1.5 0.33 DRC-4 0.1 1000 1.5 0.33	2.1 0.33 700	81.6	-35.3	1.00	55.8	15.2	8.5	16.6	3.9
0.3 1000 1.5 0.33 DRC-3 0.1 1000 1.5 0.33 (12 wt% Ni/MgO-Al ₂ O ₃) DRC-4 0.1 1000 1.5 0.33 C wt% Bu/MeO-Al ₂ O ₃)	2.5 0.33 700	91.6	-34.6	1.07	55.1	13.7	8.0	21.8	1.4
DRC-3 0.1 1000 1.5 0.33 (12 wt% Ni/MgO-Al ₂ O ₃) (12 wt% Ni/MgO-Al ₂ O ₃) DRC-4 0.1 1000 1.5 0.33 (2 wt% Ru/MeO-Al ₃ O ₃)	1.5 0.33 700	61.6	-3.0	0.94	51.0	15.3	7.9	16.1	9.7
(12 wt% Ni/MgO-Al ₂ O ₃) DRC-4 0.1 1000 1.5 0.33 (2 wt% Bu/MeO-Al ₃ O ₃)	1.5 0.33 600	52.4	-48.6	0.78	45.5	9.6	13.0	19.4	12.6
DRC-4 0.1 1000 1.5 0.33 (2 wt% Ru/MeO-Al-Oa)	200	84.7	-8.2	0.95	57.4	18.3	8.0	12.9	3.4
DRC-4 0.1 1000 1.5 0.33 (2 wt% Bu/MeO-Al-O.)	800	97.9	21.9	1.00	60.6	22.2	5.4	11.3	0.4
(2.wt% Bu/MgO-A1-O2)	1.5 0.33 600	48.9	-47.7	0.76	43.4	8.9	13.1	20.9	13.7
	700	84.7	-8.2	0.95	56.5	18.0	7.9	14.3	3.4
	800	97.9	18.3	0.99	61.2	22.2	5.7	10.4	0.5

J. Jpn. Petrol. Inst., Vol. 50, No. 1, 2007

39

0.1 MPa, GHSV = 1000 h⁻¹, H₂O/CH₄ ratio = 1.5 mol/mol, CO₂/CH₄ ratio = 0.33 mol/mol.

0.1 MPa, GHSV = 1000 h⁻¹, H₂O/CH₄ ratio = 1.5 mol/mol, CO₂/CH₄ ratio = 0.33 mol/mol.

Fig. 9 M Value on Reforming Catalysts

DRC-2 catalyst, 700°C, 0.1 MPa, GHSV = 1000 h⁻¹, H₂O/CH₄ ratio = 1.5 mol/mol.

Fig. 10 Effect of CO₂/CH₄ Ratio on Reforming Reaction

次に、DRC-3およびDRC-4の寿命予測を試みた結果を Fig. 13に示す。吸熱反応であるリフォーミング触媒の劣化挙 動の推測は温度吸熱ピークの推移から求められると考え¹¹⁾,本 実験で得られた吸熱ピークの推移速度を必要触媒量(W/F)に 換算した。改質反応は吸熱反応であり、劣化に伴い吸熱ピーク の位置が後流側に移動することになり、この移動速度からおお よその寿命を予測することができると考えられる。Fig. 13に

DRC-2 catalyst, 700°C, 0.1 MPa, GHSV = 1000 h⁻¹, CO₂/CH₄ ratio = 0.33 mol/mol.

Fig. 11 Effect of H₂O/CH₄ Ratio on Reforming Reaction

750°C, 0.1 MPa, GHSV = 10,000 h⁻¹, H₂O/CH₄ ratio = 2 mol/mol, CO₂/CH₄ ratio = 0.33 mol/mol.

Fig. 12 Durability Testing of Reforming Catalysts

おける破線は GHSV = 10,000 h⁻¹で運転時のリフォーミング触 媒の寿命を仮に2年(使用時間 16,000時間)とした場合の必要 触媒量(W/F)と,初期活性時の必要触媒量を結んだ予測線で ある。なお、GHSV = 10,000 h⁻¹で寿命2年という設定について は、大型プラントでの使用実績から考えて妥当な値であると考 えられる。それに対し、実線は触媒層温度分布の実測値から必 要触媒量を W/F に換算した線である。実線が破線上にある場 合はちょうど2年で充填触媒を使い切ることになるが、DRC-3 および DRC-4とも実験から得られる W/F 予測線は寿命2年を 想定した W/F 予測線の下にあり、2年以上の寿命が期待できる ものと考えられる。

800時間の耐久性試験後の DRC-3 および DRC-4 触媒の X 線 回折パターンを Fig. 14 に示す。DRC-3 触媒については Ni, NiO, α -および γ -Al₂O₃の回折パターンが検出され, DRC-4 触 媒については Ru, α -および γ -Al₂O₃の回折パターンが検出さ れた。MgO のパターンは検出されなかったことから, MgO は アモルファス状態で存在すると推定される。

なお, DRC-3および DRC-4触媒の800時間耐久性試験後の C 析出量はともに0.04 wt% であり, 触媒寿命を2年(16,000時間), 炭素析出量が運転時間に比例するとした場合には0.8 wt% と極 めて少量である。メタノール合成など大型プラントで使用され ている触媒の交換サイクルが数年であることから,本条件にて

J. Jpn. Petrol. Inst., Vol. 50, No. 1, 2007

800°C, 0.1 MPa, GHSV = 10,000 h⁻¹, CO₂/CH₄ ratio = 0.33 mol/mol, H₂O/CH₄ ratio = 2.0 mol/mol.

Fig. 13 Life Estimate of Reforming Catalysts

Fig. 14 X-Ray Diffraction Patterns of Reforming Catalysts

用いる場合は実用触媒として十分期待できるものと考えられ る。

4 MPa, GHSV = 1000 h⁻¹, H₂/CO₂/CO/CH₄ ratio = 69.0/7.5/ 23.3/0.2 mol%.

Fig. 15 Durability Testing of DME Synthesis Catalysts

5.2. DME 合成実験

マイクロリアクターを用いて実施した, 複合触媒構造型1段 反応と触媒分離型2段反応による DME 合成触媒システムの約 2000時間の耐久性比較試験の結果を Fig. 15 に, また平衡計算 結果を Table 2に示す。原料には合成ガスの模擬ガスを用い, 反応はワンパスで実施した。(メタノール+DME) 収率は反応 初期では複合触媒構造による1段反応の方が高かったが、経時 的に徐々に低下し、初期の約50%から2000時間後には約20% まで低下した。なお、触媒分離による2段反応では(メタノー ル+DME)収率は2000時間後でもほとんど低下は見られなかっ た。一方, DME 選択率については1段反応, 2段反応ともに 2000時間後もほとんど変化がないことがわかった。1段反応に おける活性低下は, DME 選択率の変化がないことからメタノー ル合成反応を行う触媒に起因すると考えられる。メタノール合 成反応における触媒劣化の主要因としては温度による熱シンタ リングが考えられるが、今回は1段反応、2段反応で同じ温度 履歴であることから本要因ではない。劣化の要因についてはま だはっきりとしないが、1段反応と2段反応の相違点は1段反 応では触媒が区分けされておらず、メタノール合成触媒とメタ ノール脱水触媒が混在している点であり、メタノール合成触媒 が微量副生成分を含めた反応生成物により被毒している可能性 もある。

次に、ベンチプラントを用いた2段反応による DME 合成実 験の結果を Figs. 16および17に示す。Fig. 16はワンパス実験、 Fig. 17はリサイクル実験の結果である。(メタノール+DME) 収率、DME 選択率とも原料ガスとして COを含む合成ガスの 模擬ガスを使う方が、COを含まない H₂、CO₂混合ガスを使用 するよりも20% 以上高くなることが判明した。このことは CO の反応活性が CO₂よりも高いことからも窺える。

6. 結 言

CH₄の CO₂および H₂O によるリフォーミング実験と改質に より得られた合成ガスの模擬ガスを用いた DME 合成実験を 行った。

リフォーミング実験は12 wt% Ni/α-Al₂O₃ (DRC-1), 2 wt% Ru/α-Al₂O₃ (DRC-2), 12 wt% Ni/MgO-Al₂O₃ (DRC-3) および 2 wt% Ru/MgO-Al₂O₃ (DRC-4) の計4種類の触媒を用いて行っ

Table 2 Equilibrium Composition of DME Synthesis Reaction

	Equilibrium composition [mol%]							MeOH	DME	(MeOH + DME)	DME
	H_2	$\rm CO_2$	CO	H_2O	CH_4	MeOH	DME	[%]	[%]	[%]	[%]
One-step reaction with hybrid catalyst structure	65.42	20.50	2.05	8.55	0.37	3.11	15.33	5.52	54.44	59.97	90.79
Two-step reaction with separated catalysts	57.80	9.59	14.58	8.07	0.27	21.12	7.57	5.12	36.54	41.67	87.70

4 MPa, 250°C, GHSV = 1000 h⁻¹, H₂/CO₂/CO/CH₄ = 69.0/7.5/23.3/0.2 mol%.

MeOH synthesis catalyst bed temperature = 250° C, 4 MPa, GHSV = 2000 h^{-1} , H₂/CO₂/CO/CH₄ ratio = 69.0/7.5/23.3/0.2 mol%.

Fig. 16 DME Synthesis Test Result with One-path Operation

たが、CH₄転化率は温度の影響が大きく800°Cにおいて90%以上となったが、CO₂/CH₄比およびH₂O/CH₄比の影響はあまり受けなかった。CO₂転化率は温度、CO₂/CH₄比およびH₂O/CH₄比の影響も強く受けた。また、M値はH₂O/CH₄比の影響はあまり受けないが温度とCO₂/CH₄比の影響を強く受け、700°C以上、CO₂/CH₄=0.33でほぼ1となった。DRC-3およびDRC-4触媒は800時間の耐久性試験においてほぼ平衡に近い安定したCH₄転化率を示し、温度分布の推移から2年以上の寿命を有するものと推定された。また、DRC-3およびDRC-4触媒の800時間耐久性試験後のC析出量は0.04 wt%と極めて少量であった。

さらに、複合触媒構造型1段合成反応と触媒分離型2段反応 による DME 合成触媒システムでの約2000時間の耐久性比較試 験を行った結果、(メタノール+DME) 収率は反応初期では複 合触媒構造による1段反応の方が高かったが、活性は経時的に 徐々に低下したのに対し、触媒分離による2段反応では(メタ ノール+DME) 収率は2000時間後でもほとんど低下しなかっ た。1段反応における活性低下の原因として、メタノール脱水 反応で生成した副生物によるメタノール合成触媒に対する被毒 作用が考えられる。DME 選択率は1段反応でも2段反応でも 2000時間安定に推移した。このことからメタノール脱水触媒 の劣化はなかったと思われる。また、ベンチプラントを用いた 2段反応による DME 合成実験の結果、(メタノール+DME) 収率、DME 選択率とも原料ガスとして CO を含む合成ガスの

MeOH synthesis catalyst bed temperature = 250° C, 4 MPa, GHSV (make-up gas base) = 1000 h^{-1} , Recycle ratio = 4.

Fig. 17 DME Synthesis Test Result with Uncondensed Gas Recycle Operation

模擬ガスを使う方が、COを含まないH₂、CO₂混合ガスを使用 するよりも20%以上高くなることが判明した。

References

- Mimura, T., Nojyou, T., Iijima, M., Mitsuoka, S., Kagaku Kogaku Ronbunshu, 27, (5), 588 (2001).
- Hirano, M., Imai, T., Yasutake, T., Kuroda, K., J. Jpn. Petrol. Inst., 45, (3), 169 (2002).
- Hirano, M., Imai, T., Yasutake, T., Kuroda, K., J. Jpn. Petrol. Inst., 47, (1), 11 (2004).
- Hirano, M., Yasutake, T., Kuroda, K., J. Jpn. Petrol. Inst., 48, (4), 197 (2005).
- Tomishige, K., Fujimoto, K., Sekiyu Gakkaishi (J. Jpn. Petrol. Inst.), 44, (2), 65 (2001).
- Tamura, Y., Nitta, M., Miyamoto, Y., Shiotani, M., *Hiroshima Kougyou Daigaku Kenkyu Kiyou*, 35, 207 (2001).
- Edward, J. H., Maitra, A. M., Natural Gas Conversion II, 291 (1994).
- 8) Tsang, S. C., Catalysis Today, 23, 3 (1995).
- Numaguchi, T., Shoji, K., Yoshida, S., Appl. Catal. A: General, 133, 24 (1995).
- 10) Hirano, M., Imai, T., Yasutake, T., Kuroda, K., *Kagaku Kogaku Ronbunshu*, **27**, (1), 15 (2001).
- Catalysis Society of Japan, "Catalysis Course Vol. 5, Catalysis Design," Kodansya, Tokyo (1985), p. 270-271. 触媒学会編, "触媒講座第5巻, 触媒設計,"講談社, 東

J. Jpn. Petrol. Inst., Vol. 50, No. 1, 2007

.....

要 旨

水蒸気/二酸化炭素とメタンのリフォーミングを経由するジメチルエーテル合成

平野 正樹^{†1),†4)},辰巳 雅彦^{†1)},安武 聡信^{†2)},黒田 健之助^{†3)}

¹⁾ 関西電力(株)電力技術研究所 環境技術研究センター, 619-0237 京都府相楽郡精華町光台1-7けいはんなプラザ ラボ棟12F

^{†2)} 三菱重工業(株)広島研究所, 733-8553 広島市西区観音新町4丁目6番22号

*3) 三菱重工業(株)プラント・交通システム事業センター, 220-8401 横浜市西区みなとみらい3丁目3番1号

^{†4)}(現在, 自宅)651-1142 神戸市北区甲栄台5-15-25

メタン (CH₄) の二酸化炭素 (CO₂) および水蒸気 (H₂O) によるリフォーミング実験とリフォーミングにより得られた合 成ガスの模擬ガスを用いたジメチルエーテル (DME) 合成実 験を行った。

Ni/α-Al₂O₃, Ru/α-Al₂O₃, Ni/MgO-Al₂O₃ および Ru/MgO-Al₂O₃ 触媒を用いた改質実験では、CH₄転化率は温度の影響が大きく、 CO₂/CH₄比および H₂O/CH₄比の影響はあまり受けなかったが、 CO₂転化率は温度、CO₂/CH₄比および H₂O/CH₄比のいずれの影 響も強く受けた。また、M 値 [H₂/(2CO+3CO₂) 比] は H₂O/ CH₄比の影響はあまり受けないが温度と CO₂/CH₄比の影響を強 く受けた。Ni/MgO-Al₂O₃および Ru/MgO-Al₂O₃触媒は800時間 の耐久性試験においてほぼ平衡に近い CH₄転化率を示し、C 析 出量も極めて少量であった。

改質で得られる合成ガスの模擬ガスを用いた複合触媒構造型 1段反応と触媒分離型2段反応による DME 合成触媒システム での約2000時間の耐久性比較試験の結果,(メタノール+ DME)収率は反応初期では1段反応の方が高かったが,活性は 徐々に低下したのに対し,2段反応ではほとんど低下しなかっ た。一方,DME 選択率は1段反応でも2段反応でも2000時間 安定に推移した。また2段反応では,(メタノール+DME)収率, DME 選択率とも原料ガスとして CO を含む模擬ガスを使う方 が,CO を含まない H₂,CO₂の混合ガスを使用するよりも20% 以上高くなった。

.....