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Genetic Algorithms and Ant Colony Approach for 
Gas-lift Allocation Optimization

Mohammad M. Zerafat, Shahab Ayatollahi＊, and Ali A. Roosta

EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, IRAN 

(Received July 8, 2008) 

Continuous gas-lift is one of the most commonly practiced artificial lift techniques.　It assists production 
enhancement by continuous injection of high-pressure gas into the well tubing, which lightens the oil column.　
Either gas limitation or compressor capacity makes it impossible to make all the network wells produce at the 
optimum rate; hence the need to determine the optimal gas distribution.　Gas allocation optimization is a type of 
nonlinear function maximization with gas injection rates as decision variables subject to physical restrictions.　
Various optimization methods are applied in previous works among which genetic algorithm (GA) has proposed 
the best efficiency for large networks.　In this work, various methods are performed as a comparison to GA.　
Besides, ant colony optimization (ACO) is applied to the network as a new optimization tool in oil industry, as a 
possible alternative for GA, already proved its capability in the optimization of water distribution networks.　The 
literature demonstrated the application capability of GA and ACO for gas-lift allocation optimization in small net­
works.　The results proved an availability of GA and ACO for this problem, and it showed the applicability to the 
optimization of large-scale networks.　The results are compared to similar calculations in the literature by other 
optimization techniques, which show promising agreement. 

Keywords 
Oil production, Gas-lift, Genetic algorithm, Ant colony optimization 

1.　Introduction in large networks they take much time and iteration pro­
cedure to determine the optimal allocation.　As a re-

Continuous gas-lift consists of high-pressure gas in- sult, stochastic techniques are advised to be applied to 
jection into the well tubing to lighten the oil column large networks.　In this paper, stochastic optimization 
and hence enhance well production2),3),17).　Excess gas techniques such as GA and ACO are applied to gas-lift 
injection is uneconomical as a result of gas price, com- optimization problem and compared to classic derivative­
pression expenses and the possible production reduc- based methods performed earlier in the literature. 
tion due to induced pressure drop in the well tubing.　
Inappropriate gas distribution to the oil-well network 2.　Network Optimization 
with limited available gas also reduces production and 
profitability19),21).　The optimal allocation of a limited An oil production network consists of a number of 
amount of gas to the well network, poses the gas-lift wells interconnected through a combination of pipe-
optimization problem.　While for a single well or other lines and compresors.　The production of each individ­
small networks, simple nodal analysis can be adequate, ual well in the network is affected by the back pressure 
large complex systems entail much more complex opti- induced by other wells.　It is common to neglect this 
mization approaches1),6),24).　Various optimization tech- effect if the network is small or the pipelines are not so 
niques are examined in the literature; both derivative- long as to induce a considerable pressure drop to the 
based such as sequential linear programming (SLP)18) network.　In this case each well can be considered to 
sequential quadratic programming (SQP)22) and general-

,
be non-affected by other wells in a production network 

ized reduced gradient (GRG)25),26) and stochastic methods and the GLPCs can be plotted individually.　A simpli­
such as genetic algorithm (GA)16),20). fied well network under gas-lift facilities is presented in 

Although classic derivative-based techniques prove Fig. 1. 
to be capable of handling gas-lift optimization problem, The individual GPLC curve can be obtained by simu­

lation using field specifications, oil-well dimensions 
＊ To whom correspondence should be addressed. and fluid properties.　These discontinuous points are 
＊ E-mail: shahab@shirazu.ac.ir fitted to be used as the feed to the optimization prob-

J. Jpn. Petrol. Inst., Vol.  52, No. 3, 2009



  

      

 

           
         

 
         
          

           
  

 

          
 

 

       
       

 

   

 

 

 

         
           

        
          

         
       

         
         

          
      

        
          

        
       

 

        
       

        
       
         

      
         

        
       

        
       

         
   

      
        

         
         

       
         

    
          

        
       
         

      
       

         
        
     

  

          
         
       

        
          

        

     

       

103 

Fig. 1　Network under Gas-lift Facilities 

lem.　Equation (1)1) is suggested to be helping: 

Q = c c Q g c Q ln (Qg + ) (1) o g c+ + +1 2 3
2

4 1 

Qo, is the oil production rate (STB/D) and Qg the gas 
injection rate (MMSCF/D) and also c1 to c4 are dimen­
sionless constants. 

The total oil production from a network of n wells, 
which is the sum of individual well productions, is a 
function of gas injection rate to the wells and can be 
shown as follows: 

QoT = ∑
n

Qoi = f (Qg ) = f (Qg1,Qg2 ,...., Qgn ) (2) 
i=1 

Gas injection rates can be shown by some n dimensional 
column vector: 

Q = (Q Q Q n
T

g g g g1 2, ,...., ) (3) 

Hence, the gas allocation optimization problem to pro­
duce the maximum oil production can be written: 

MaxQ oT = Max f (Qg ) (4) 
Qg 

By the following constraints: 

∑
n

Qgi ≤ Qg Available (5) 
i=1 

gi 1 2,....., Q ≥ Qgi min i = , n (6) 

gi 1 2,....., Q ≤ Qgi max i = , n (7) 

It is worth mentioning that the wells are naturally pro­
ducing or almost dead at the time the gas-lift process is 
initiated.　When the production is dead there is always 
a minimum amount of injection needed to restart the oil 
production shown by Qg min.　There is also a maximum 
amount, a balance between gravitational and frictional 
forces, beyond which the gas injection causes the oil 
production to get reversed shown by Qg max.　A sample 
problem found in the literature is the Nishikiori’s 5-well 
problem.　The problem consists of 5 wells inter­
connected with GLPCs presented in Fig. 2.　The pur­
pose is to find the minimum gas injection rate that max­
imizes the oil production rate.　The parameters for this 
problem are also given in Table 1. 

Fig. 2　The GLPCs for Nishikiori’s 5-Well Problem 

3.　Genetic Algorithm 

Genetic algorithm (GA) is a robust search technique, 
utilizing the analogies to biology and genetics.　Survival 
of the fittest among a population of individuals, selec­
tion, and reproduction strategies are concepts borrowed 
from natural processes and utilized as operators in the 
GA13),14).　A defined fitness function determines the 
capability of the parents to produce the next generation 
or to be omitted.　Possible reproductive strategies are a 
combination of reproduction, mating or crossover and 
mutation.　One of the easiest ways to apply the re­
production operator is the roulette wheel selection.　In 
this way an individual vector of parameters could be 
analogous to a chromosome4),9). 

The n-point crossover determines random crossover 
sites on the entire chromosome, while the uniform 
crossover generates one bit at a time.　Each bit is in­
herited from one of the parents according to the cross­
over probability.　Mutation is designed to avoid the 
loss of valuable genetic material, which may result from 
reproduction and crossover12),14).　Mutation’s unique 
role is to create a mechanism by which information or 
small segments of parameter strings can be reinserted 
into a population.　Mutation is highly disruptive by na­
ture and the assumption of very low values is recom­
mended.　Strategies with no crossover and high muta­
tion rate may produce a fairly robust search10),23). 

The data needed to produce the best results by apply­
ing GA to gas-lift allocation optimization problem is 
also given in Table 2. 

4.　Ant Colony Optimization 

ACO is a subset of swarm intelligence, in which ants 
act as agents and analogies to social insects’ behaviors 
are used to handle the optimization problems.　Any in­
dividual ant chooses one path randomly among all pos­
sible routes from the nest to the food source.　Each ant 
contributes its own experimental data to the colony, 

J. Jpn. Petrol. Inst., Vol.  52, No. 3, 2009 
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Table 1　Well Data for Example 5-Well System19) 

Well 1 Well 2 Well 3 Well 4 Well 5 

1. Well depth [ft] 7000 6000 7000 7500 8000 

2. Reservoir pressure [psia] 2500 2100 2500 3000 3200 

3. Bubble point pressure [psia] 1400 1200 1500 1800 2000 

4. Formation gas liquid ratio [SCF/STB] 250 100 100 75 100 

5. API oil gravity [API] 30 32 35 25 30 

6. Water cut [％] 50 25 25 50 50 

7. Bottom hole temperature [°F] 150 160 170 180 200 

8. Well head temperature [°F] 110 100 100 100 120 

9. Tubing I.D. [inch] 1.995 1.995 2.441 2.441 2.992 

10. Casing I.D. [inch] 4.500 4.500 5.500 6.000 6.000 

11. P.I. [STB/D/psi] 1.00 2.00 2.00 1.50 1.00 

12. Well head flowing pressure [psia] 200 200 200 200 200 

13. Specific gravity of produced water 1.07 

14. Specific gravity of injected gas 0.70 at 14.7 psia and 60°F 

15. Surface operating gas pressure 1200 psia 

16. Well deviation Straight well 

17. No mandrel in-place, no safety valve, no flow-line 

18. Inflow performance below bubble point is given by Vogel’s equation 

Table 2　The Optimal Parameters for GA 

Primary 
Crossover Mutation Iteration 

population 

20 0.8, 2-points 0.2, Gaussian 51 

through indirect communication by pheromones and 
foraging behavior, thus the colony determines the short­
est path between the nest and the food source over time.　
Because more trips may be made along shorter paths 
the ever-inreasing pheromone density attracts other ants 
to these paths.　Besides, shorter paths will retain higher 
pheromone densities as a result of pheromone density 
decrease over time due to evaporation.　The shortest 
path represents the global optimum and all the possible 
paths represent the feasible region of the problem5). 

The first ant colony simulation algorithm was devel­
oped by Dorigo7) to solve the classic traveling salesman 
problem (TSP) in 1992.　In the TSP, the goal is to find 
a closed tour of minimal length passing through n given 
cities while each city must be visited once and only 
once.　Dorigo compared the results of their ACO algo­
rithm applied to the TSP problem with a genetic algo­
rithm.　Results from several types of TSP problems 
show that ACO can identify solutions better than the 
GA.　Gutjahr proved that under certain conditions, so­
lutions from ant-based optimization converge to the 
global optimum with a probability close to unity11). 

In the TSP, Each ant in city i places pheromone on a 
visited path, and then chooses to visit the next town j 
with a probability that is a function of the town dis­
tance, dij and of the pheromone density.　τij, represents 
the pheromone on edge (i, j) at iteration, t, which is up­
dated according to the equation: 

τ ( ) = ( − ρ τ) ( ) + ∆τ • ∆τ (8)ij ij ij ij
et t e+ +1 1

(1－ρ), represents the decay of pheromone between 
iterations t and t＋1, and 

∆τ ∑
m

(9)∆τij ij
k=

k=1

Where ∆τ ij 
k is the change in pheromone due to ant k se­

lecting city j; and m is the total number of ants in one 
colony.　The quantity ∆τ ij 

k is given by 

∆τ ij 
k { (10) 

kQ L k i j
=

/ ( , )if ant uses edge in the iteration tt
0 else

Where Q is a constant related to the quantity of trail 
laid by ants, Lk is the total tour length by ant k.　The 
3rd part is called elitist ant strategy, where, e is co­

e efficient of elitist pheromone, it is a small integer; ∆τ ij 

is the pheromone of best ant a t each i tera t ion, 
e∆τ ij = Q Le where Le is the total tour length by elitist 

ant.　This will direct ants’ colony toward the best solu­
tion with higher a possibility.　Next, the ant can decide 
the next city j from i by transition rule by the following 
Eq. (11): 

[τ ij (t )] (kPij (t ) =
)ηα β

α β (11)
∑ k∈allowed [τ ij (t )

ij

] (ηijj )
Where, defines the “visibility” ηij as 1/dij, dij is the dis­
tance between two cities.　α and β are parameters that 
control the relative important of pheromone and visibil­
ity.　The translation probability is a trade off between 
the visibility, which is greedy heuristic strategy, and the 
pheromone15). 

ACO with its simpler algorithm and high optimum 
searching capacity can be compared to genetic algo-

J. Jpn. Petrol. Inst., Vol. 52, No. 3, 2009 
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rithm as a possible alternative in analogous problems.　
ACO is applied to the network as a new optimization 
tool in oil industry, which has already proved its capa­
bility in the optimization of water distribution networks. 

5.　Results and Discussion 

In order to check the compatibility of GA to solve 
gas-lift optimization problem, Nishikiori’s 5-well prob­
lem is solved and the results are compared to previous 
gradient optimization techniques.　The objective func­
tion can be considered to be 1/Qo that is to become min­
imal through a stochastic search procedure.　The re-

By pass of time the iterative procedure causes the most 
chosen paths to attain higher pheromone concentrations 
and as a result attracting more ants.　Relative gas 
injection represents the available gas division among 
the individual wells and the sum of these relative 
amounts equals or is less than the available gas.　In this 
way, the optimal path which is the minimum gas injection 

Best 0.00021568 and Mean 0.00021579 
0.00035 

0.0003 

0.00025 

Best f(x) 

Mean f(x) 

sults obtained by GA optimization after 51 generations 
are given in Table 4.　As it is obvious from Table 4 
the results produced by GA lie between GRG and SQP Fi

tn
es

s 
va

lu
e 

0.0002 

0.00015 

that is; GA gives a higher production rate than SQP but 0.0001 

fewer than GRG.　GA mainly shows its capability in 
0.00005 

large production networks where the gradient methods 
either fail or drown into rigorous manipulations.　
Figure 3 represents the best component in each itera­
tion and is also compared to the average value in the 
generation.　The minimal value in successive genera­
tions decreases till finally stopping at a general value.　
Figure 4 shows the number of children and it is obvi­
ous, as the children number reaches 1 or 2 the algorithm 
has achieved steadiness.　The optimal parameters for 
GA are also given in Table 2. 

Another stochastic search technique applied to gas-
lift optimization problem is ACO.　Figure 5 shows a 
schematic view of the way ACO can be applied to a 
gas-lift optimization problem.　Each ant selects a ran­
dom path on the well network.　Initially, a homo­
geneous amount of pheromone is poured on all paths 
hence the equal probability of all paths to be chosen.　

Table 3　The Optimal Parameters for ACO 

No. of τ0 ρ0 Iteration 
ants (initial phermone) (evaporation rate) 

30 0.4 0.2 100 

0 
0 10 20 30 40 50 

Generation 

Fig. 3　The Best Offspr ing and the Average in Successive 
Generations 

Fig. 4　The Number of Offspring vs. Objective Function Value 

Table 4　The Comparison of Results with Nishikiori’s1) 5-Well Problem 

Gas availability＝3 MMSCF/D 

GRG25),26) SQP1) GA ACO 

Well Qg Qo Qg Qo Qg Qo Qg Qo 

[MMSCF/D] [STB/D] [MMSCF/D] [STB/D] [MMSCF/D] [STB/D] [MMSCF/D] [STB/D] 

1 0.2630 440.560 0.2327 439.350 0.1952 425.22 0.1950 425.2 
2 0.5574 977.418 0.5901 805.213 0.6140 813.41 0.6140 813.4 
3 0.8840 1466.55 0.7288 925.676 0.6605 897.31 0.6600 897.3 
4 0.5855 787.390 0.5452 977.986 0.6268 1007.29 0.6260 1007.2 
5 0.7100 917.770 0.9032 1500.212 0.9034 1500.30 0.9030 1500.0 

Total 3.0000 4589.688 3.0000 4648.400 3.0000 4643.60 3.0000 4643.0 

MMSCF/D＝0.0283169×106 Sm3/D. 
STB/D＝0.158987 Sm3/D. 

J. Jpn. Petrol. Inst., Vol.  52, No. 3, 2009 
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Fig. 5　Ant Colony Schematic of Gas-lift Problem 

and highest oil production is determined.　The optimal 
parameters used in ACO are given in Table 3. 

A comparison between the number of iterations taken 
to produce the final results, says that GA has a better ef­
fcincy to solve the optimization problem.　It is worth 
mentioning that the modified types of ACO may result 
in better calculations compared with GA. 

6.　Conclusions 

(1) The small-scale network optimization problem was 
able to be solved by GA and ACO by shorter calcula­
tion time or less number of iterations than by SQP and 
GRG. 
(2) Possibility of GA and ACO applications to a large-
scale network optimization problem was revealed. 
(3) It would be preferable for large networks to be opti­
mized by stochastic methods rather than gradient tech­
niques. 

<SI unit conversion factor>
inch×2.54 E-02＝m
ft×3.048 E-01＝m
MMSCF×1.0 E＋06＝ft3

ft3×2.831685 E-02＝m3

Bbl×1.589874 E-01＝m3

psi×6.894757 E＋03＝Pa
141.5/(131.5＋API)＝g/cm3

(°F－32)/1.8＝℃
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要　　　旨

ガスリフト配置の最適化に用いる遺伝子アルゴリズムとアントコロニー手法

Mohammad M. Zerafat, Shahab Ayatollahi, Ali A. Roosta

EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, IRAN

連続ガスリフトは最も普通に使われている人工採油法の一つ
である。高圧ガスを連続注入することによって，チュービング
内の油カラムを軽くし，油増産に寄与する。ガス量の制限ある
いはコンプレッサー能力の制限によって，ネットワーク内にあ
る全坑井からすべて最適レートで油を生産することはできな
い。そこで，最適なガス量配分が必要になる。ガス量配分最適
化は，機械的な制限を受ける変数であるガス注入レートを調整
することによって，最大化を図る非線形問題である。さまざま
な最適化手法が今まで適用されてきた。そのうち，大きなネッ
トワークに対しては，遺伝子アルゴリズムが最も効率がよいと
されている。本論文では，遺伝子アルゴリズムと比較するため

に，いろいろな手法を試した。その中でも，石油開発業界では
新しい手法である ACO（Ant Colony Optimization）手法を，水
攻水・産出水配分ネットワークの最適化手法として既に能力が
認められている遺伝子アルゴリズムに替わるものとして，適用
してみた。文献によると，遺伝子アルゴリズムも ACO手法も
ガスリフトの配分最適化問題では，小さなネットワークで有効
とされている。本論文では，ガスリフトへの遺伝子アルゴリズ
ムと ACO手法による最適化は，大規模ネットワークでも適用
性があることが示された。結果は，文献にある類似の最適化計
算結果と比較して，よい一致をみた。
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