Detectable correlations in Edon-R

Peter Novotney Niels Ferguson
peternov@microsoft.com niels@microsoft.com

July 31, 2009

Abstract

The Edon-R compression function has a large set of useful differ-
entials that produce easily detectable output bit biases. We show how
to construct such differentials, and use them to create a distinguisher
for Edon-R-512 that requires around 25* compression function evalu-
ations (or 228 evaluations after a pre-computation of 2°¢ evaluations).
The differentials can also be used to attack a variety of MAC and KDF
constructions when they use Edon-R-512.

1 Introduction

Edon-R [1] is one of the candidate hash functions in the NIST SHA-3 com-
petition.! It performs fewer operations per input bit than any of the other
candidate functions. This makes it the fastest candidate by a significant
margin [2], but also a tempting target for cryptanalysis.

One surprising property of Edon-R is that out of the 14 nonlinear bijective
mappings used in the compression function, 7 have inputs that depend only
on the message block and not on the previous chaining state. This allows the
attacker to fully predict the propagation of values and differences in these
functions. Due to the internal structure a differential from the message block
can bypass another 4 nonlinear functions leaving only 3 ‘active’ nonlinear
functions that a differential has to pass through.

Our basic attack is a distinguishing attack. We show that an attacker can
find two strings L and L’ such that the function f : X — H(X|L)®H (X |L)

1As we were finalizing this paper, NIST announced the round 2 candidates for the
SHA-3 competition. Edon-R was not selected for round 2.

has easily detectable biases when H is the Edon-R hash function. For an
ideal hash function, f behaves like a random mapping and does not have
biases.

The attack can be extended to recover the intermediate hash state just
before the last block, which breaks a number of common usage patterns for
hash functions such as some KDF and MAC constructions.

2 An overview of Edon-R

We give a short overview of those parts of Edon-R that are used in our
attack. More details can be found in the Edon-R specifications [1].

Let n € {256,512} be the output size of the hash function. (The other
output sizes are simple variations of these two sizes, which we will ignore.)

Given a message M the first step is to pad it. We append a single ’1’ bit,
and as many ’0’ bits as needed to make the length 2n — 64 mod 2n. We then
append the length of M as a 64-bit integer to get a padded message whose
length is a multiple of 2n bits.

The padded message is split into 2n-bit blocks My, ..., M;_1 where k =
[(length(M) +65)/2n]. The blocks are processed by iterating the compres-
sion function:

Hy := some constant
Hiyy = C(H;, M;)

The chaining values H; are each 2n bits long; the result of Edon-R consists
of one half of the final chaining value Hy.

Our attack involves the last compression function, shown in figure 1. The
lines are n-bit values; each n-bit value is internally represented as a vector
of 8 words each of 32 bits (for the n = 256 case) or 64 bits (for the n = 512
case). At the top we have the two halves of the message block M, and M,,.
The functions f and g are nonlinear bijections on n bits, and R is a function
that reversed the order of the 8 words in the vector. The addition boxes
represent word-by-word addition. The two halves of the chaining state come
in as H, and Hp and the final result of the hash function is H at the bottom.
The colors relate to some details of our attack and can be ignored for the
moment.

Figure 1: Edon-R compression function

The f and g functions are the nonlinear elements used in Edon-R. They
have limited diffusion; each input bit will affect at least 15 of the output
bits, but that is nowhere near full diffusion for a 256-bit or 512-bit function.

Our presentation is a little bit different from the one used in the Edon-R
specifications. The Quasigroup operation A x B from [1] can be written as
f(A) + g(B) where f and g can be expressed in terms of the 7 functions
from [1] section 2.1.2 as

These are the f and g boxes in our figure. In the canonical description there
are 16 of these functions. In two cases, the same function is applied twice
to the same data; we have optimized that in our figure and have only 14 f
and ¢ functions.

3 Our attack

Our attack is a differential attack. We treat the chaining value (H,, Hyp) as
unknown and try to find a differential from (M,, M) to H. If we can find
an input difference that leads to a detectable bias in the output, then we
have a distinguishing attack on Edon-R.

In more detail, our attack finds a length m and two strings L and L’ such
that H(X|L)®H(X|L') has biased bits when X varies over all m-bit strings.
We always choose m to be a multiple of 2n; we can then treat the hashing
of X as choosing a random chaining value (H,, Hyp) as chaining input to the
last compression function, and the strings L consist of the message in the
last message block.

We use the names of intermediate values as shown in figure 1. For the
differential, (H,, Hp) is fixed; C, D, E, and H are values in the compression
function that processes L, and C’, D', E’, and H’ values in the compression
function that processes L'.

To reduce the mixing of the message and the chaining value we always choose
L and L' such that C = C’. This means that the white functions in the
figure have inputs that do not change in our differential. The red Functions
have inputs that depend only on the message, which is known. The green
functions have inputs that depend only on the chaining value. The three
yellow functions are the only ones whose inputs depend on both the message
and the chaining value.

3.1 Biases when ignoring the padding

We first show how we can construct a differential from (M, M;) to H if we
ignore the padding that is always part of M. We choose a random fixed
value for C' and choose low Hamming-weight values for D and D’. (Thus,
D and D’ have most bits set to 0.) As both f and g are invertible, these
values determine Mg, My, E, M), M}, and E'.

w median bias largest bias
1 ~ 2729 ~ 217
2 ~ 2—3.6 ~ 2—2,7
4 ~ 2758 ~ 246
6 ~ 2784 ~ 2761
8 ~ 2—11.6 ~ 2—10.3
10 ~ 2713.6 ~ 2710.9

Table 1: Biases of the most biased output bit for D value of weight w

The values H, and Hj represent the intermediate result of hashing the string
X. To measure biases in H(X | L) ® H(X | L") we choose random values
for (H,, Hp) and compute the compression function with this chaining value
and both (Mg, M) and (M, M}) to get H and H'. We then look at the bits
of H ® H' for biases taken over the random choice of the chaining values.

Our differential consists of two paths; a low Hamming-weight difference
from D going down through two functions, and a heavy differential from E
going through one function. These two differences are combined to give the
difference in H.

We experimentally measured the biases this produces in Edon-R-512. For
each maximum weight w we ran 10 experiments. In each experiment we
chose C' random, and chose D and D’ randomly in the set of all values
with Hamming weight w. We then computed the corresponding M,, M,
My, M}, E, and E’, and finally computed H & H’ for 2°° random values
of (Hg, Hy). We then measured the bias of the most biased bit. Table 1
reports the median and largest bias of our 10 experiments for each of the
maximum weights w. For a truly random function, we’d expect one of the
512 output bits to have a bias of around 3.1 standard deviations, which is
a bias of 27144 for our 2%° samples. As can be seen, the biases in Edon-R-
512 are easily detectable. Even the median bias for w = 10 is 5.2 standard
deviations away from the mean.

3.2 Dealing with the padding

The procedure above does not produce an M, and M; with suitable padding.
We can construct a differential that respects the padding rules using some
more computing power.

L. | BOESC2EB4052E4A897599BAE4E429C7015C5D754EAO6AE2C1B7BD38706DA9EF4
3329A53CDD47883F63E72A67917E4BBF64983BB7E50BOCOCCBE9A04C23158B5F
28687DBESD5063EAS5AFBDDD839DB59A1AFC715B4469EB056320447244C3B302
76A1020D19507242CD5E081FBCF17C793366B7D2BE63A285BF333E2F3E119427

I’ | 5D57AESFCASE979AD6A78D0C4213D42A32DDFEQ7C394C2F4CD0140A1B44ECEE2
EFEC661C5DB2DASFA4EF9A40672C7CC679E93CA5207F1C6DCDAGF81COE7574CF
045CA1D71E9B634EOEAOGAA3A4FOO0F3F73FB75DD3C11194DE92AF59AE360FFOC
CBB512243ABAEOA25FBFC6D8412E935B79B15F1188CC225FBF333E2F3E119427

Table 2: Trailing strings for m = 2851923422810615808 with bias 2766

To get the most freedom, we restrict ourselves to Edon-R-512 and always
choose our last message block to contain 2n—65 bits of message, one padding
bit, and 64 bits of length encoding.

If we are given a length m for the string X then we have a 65-bit restriction
on the value of M, and M. We thus expect to have to try 205 different
values for D before we find one with the right padding value. (There are
(51102) ~ 298 values of Hamming-weight 10, so we can use w = 10.) Another
205 tries will produce a suitable value for D’ so there is a one-off cost of 266
to find suitable L and L' for a given length m.

Thus, for any length of X that is a multiple of 2n we can, in about 266

operations, find values for L and L’ that produce easily detectable biases.

If the length m is only partially specified or can be freely chosen, we can do
better. We choose random D values in our low Hamming-weight set and we
keep those whose corresponding M, has an acceptable length value. (There
are 11 bits in M, that always have to have an exact value; the padding bit
must be 1’ and the 10 least significant bits of the length field must encode
the integer 1024 — 65 = 959.) Once we collect enough suitable values for D
we will find two that have the same length value.

We implemented this variant with no restriction on the length (other than
the 11 bits mentioned above) and for length m = 2851923422810615808
found the strings L and L’ which are shown, including the padding, in
table 2. To generate such pairs we have to try 2!! values for D to generate
one valid M, value, and then collect 227 valid M, values before we get a
collision on the 54 remaining length bits. Thus the total computational cost
of finding the L’s is around 23%. This took less than a day on one of our

home machines. This pair produces an output bias in one bit of 2766,

The bias produced by the L values is easily measured by computing just
the last block with random chaining inputs. But to measure the bias using
only the full hash function requires the hashing of very long X values. If we
want to minimize the overall cost of creating the L values and verifying the
bias using the full hash function we can restrict m to be at most 2* for some
k. We have to try 211+64=F yalues for D to get a valid M, value, and then
collect 2(F=10)/2 yalid M, values to create the collision on the length value.
Finally, detecting a bias of 2714 (for w = 10) requires around 2% evaluations
each of which uses 2-2¥~10 block computations for a cost of 25119, The total
cost is thus 211+64—k+k/2=5 4 ok+19 _ 970-k/2 4 9k+19 which is minimal when
we choose k ~ 34. We thus estimate that finding suitable L and L’ values
and then detecting the resulting bias on the full hash function can be done
in about 2°* compression function evaluations.

3.3 Further attacks

Suppose we have an oracle with an unknown string K that is a multiple of
2n bits long. On input of a non-empty string L the oracle returns H(K | L).
We can use our differentials to recover the intermediate state after hashing
K, and thus impersonate the oracle in future.

We use our differentials in the same way differentials are used in key-recovery
attacks on block ciphers. We think of (H,, Hp) as the 'key’, the green func-
tions in figure 1 as the key schedule, and the yellow functions as the block
cipher. We generate a large set of differential pairs (L, L’) for the length
of K. We then guess the value for one or more bits of the last ‘round key’
(e.g. the output of the lowest green g function) and experimentally compute
the expected bias for each of our differential pairs for this guess. We then
compare that to the actual results. With enough (L, L’) pairs it quickly
becomes obvious what the right value is for the key bit. Once we know a
few of the key bits, the biases will tend to increase and make our work even
simpler.

Our biases for w = 1 are in the order of 272 so we need around 2° differential
pairs for one bit. (We can choose a new random C' value for each pair so
we don’t have to use heavier values for D.) It costs 2% to produce each
differential pair so the total cost of the attack is around 272 per recovered
bit. Thus, we expect that the full (H,, Hy) state can be recovered in around

216 queries and 282 computational steps.

There are several common constructions that are susceptible to this type of
attack. For example, many key derivation functions, including NIST SP800-
56A, can be attacked in this way, giving the attacker the power to compute
all derived keys.

Also MAC(K, M) := H(K|M) is a strong MAC function if H is a good hash
function, but our attack allows existential forgeries in around 2! queries
after a pre-computation of 282 steps when Edon-R-512 is used as the hash
function.

3.4 Edon-R-256

We have not tried our methods on Edon-R-256. Because the block size is
smaller the diffusion is slightly better, so we expect the workload of the
attack to increase somewhat. We think it is likely that applying our tech-
niques to Edon-R-256 will result in an attack, but the computational cost
might be too large for us to generate an actual example.

3.5 Possible improvements

Our attack is the result of a very preliminary analysis of Edon-R. Rather
than study the propagation of differentials through the Edon-R function we
used brute computational force to show that correlations exist. This takes
less time, but it ignores a lot of the structure of the function, and thus misses
out on many opportunities to improve the attack. Below are just some of
the areas that we believe improvements can be made in:

better differentials Our choices for D and D’ have been purely random
in the set of values with weight w, and we have computed the resulting
output biases experimentally. Even within the small set of experiments
that we ran we found that some differences lead to much higher biases
than other differences. A more detailed analysis of the differential
propagation will no doubt result in ways of finding better differentials.

subtraction vs. xor We looked at H(X | L) ® H(X | L'), but given that
the last operation in the compression function is an addition, it might
be interesting to look at H(X | L)H H(X | L’) where B is the word-

wise subtraction. This preserves the group structure of the last mixing
operations and might lead to better biases.

Multi-bit correlations For simplicity we have limited ourselves to single
bit biases. We expect that analyzing multiple output bits together (e.g.
using a x? test) will produce biases that are more easily detectable.

More attention to detail In several places we ignore details that can help
the attacker, or use a simple but pessimistic estimate of the effec-
tiveness of the attack. A more detailed analysis should improve our
attacks.

4 Comments on Edon-R

Looking at figure 1 it is surprising to see how much processing is done on the
message block without involving the chaining value. Half of the 14 nonlinear
bijections have inputs that do not depend on the chaining value.

If we rewrite Edon-R a bit, we can think of the pair (¢(C), D) as the mes-
sage block. The 7 red and white functions become an expensive message
expansion function that computes a third block value E. The remaining 7
nonlinear functions perform the actual compression. In this representation
the padding rule becomes complicated, but that affects only the last block.

Intuitively this feels like an inefficient use of computational resources. Half
the time is spent in the message expansion to compute a single extra block
that then affects the output of the compression function almost directly.

Another question is whether it is useful to apply the f and g functions to
H, and Hy, respectively. These would be useful if an attacker could get non-
random patterns in the chaining value, but an attacker that can do that can
create non-random patterns in the hash function output too.

An alternate design for a compression function based on 14 nonlinear per-
mutations would be to build a block cipher using a 14-round Feistel network
with a very simple key schedule, and run this in one of the standard hashing
modes. This would achieve a similar speed as Edon-R in software, but it
would seem to be much harder to attack.

4.1 Edon-R’s proof of security against differential cryptanal-
ysis

In [1] section 3.5 the Edon-R submitters provide a proof that Edon-R is
secure against differential cryptanalysis. They show that a single bit differ-
ence in M, or M, will not lead to a detectable difference patterns in the
output.

We believe this analysis is incomplete. It shows that a single-bit input
difference does not lead to a detectable output difference, but it does not take
differentials into account that start out with many bits, then narrow down
to one or just a few bits halfway through the computation, and then fan out
again. From experience we know that the highest probability differentials
are often of this form, and the proof provides no upper bound on their
probability.

Our attack is exactly of that form. We have a big difference in the mes-
sage block which narrows down to a low Hamming-weight difference halfway
through the computation.

5 Acknowledgements

We would like to thank Danilo Gligoroski and the other members of the
Edon-R team for their encouragement and support. They were also kind
enough to provide us with the description of the inverse f and g functions.

6 Conclusion

Edon-R has insufficient mixing between the message block and the chain-
ing state. This leads to message differentials with detectable biases in the
output, which can be used to recover the chaining state input to the last
compression function if the attacker controls only the last message block.
This breaks a variety of protocols and algorithms in which hash functions
are used.

10

References

[1] Danilo Gligoroski, Rune Steinsmo (ddesgard, Marija Mihova, Svein
Johan Knapskog, Ljupco Kocarev, Ales Drapal, “Cryptographic Hash
Function EDON-R” http://people.item.ntnu.no/~danilog/Hash/
Edon-R/Supporting_Documentation/EdonRDocumentation.pdf,
Submission to NIST, 2008

[2] Skein team. “Engineering comparison of SHA-3 candidates”, http://
www.skein-hash.info/sha3-engineering, retrieved April 19, 2009.

11

