
On the Design of Trivium

Yun Tian, Gongliang Chen, Jianhua Li

School of Information Security Engineering,

Shanghai Jiaotong University, China

ruth tian@sjtu.edu.cn, chengl@sjtu.edu.cn, lijh888@sjtu.edu.cn

Abstract. eSTREAM called for new stream ciphers designed for niche areas such as

exceptional performance in software and hardware where resources are restricted. This

project provides an open platform to discuss these ciphers. Trivium is one of the promis-

ing new ciphers submitted to it. Until now, no attack has been successfully applied to

it. This paper illustrates new design principles of stream ciphers based on the structure

of Trivium and introduces the definition of k-order primitive polynomials. New designs

of Trivium are also given according to the principles in this paper.

Key words: eSTREAM, Trivium, design principles of stream ciphers

§1 Introduction

The ECRYPT Stream Cipher Project[1], abbreviated eSTREAM, is a multi-year effort to identify new

stream ciphers potentially suitable for widespread adoption. In late 2004 eSTREAM announced a call for

new stream cipher proposals and no less than 34 different stream cipher proposals were submitted in two

performance profiles, software oriented and hardware oriented. Now the project has selected a portfolio of 7

promising new stream ciphers.

A stream cipher is a symmetric encryption algorithm which takes a stream of plaintext, a secret key

and an IV as input and then operates the plaintext with key stream generated by the key and IV, typically

bit by bit. The general framework of a stream cipher is shown in Figure 1.

The secret key and IV are of fixed length and used to initialize the state of key stream generator, the

key part of a stream cipher. Now there are many strategies and ways to design a secure and efficient key

stream generator, including LFSRs, FCSRs, NLFSRs, T-functions and so on. For many years, the stream

ciphers used are kept secret and lack open discussion of security and attacks, which may lead to fatal failure

when the algorithm is leaked. For example, misuse of RC4 in Wired Equivalent Privacy (WEP) protocol

decreased the security of the protocol.

1



Figure 1 A Stream Cipher

Although block ciphers seem to be perfectly adequate for use in nearly all areas, stream ciphers are

still desirable in a few niche areas, which is pointed out by Adi Shamir at the first ECRYPT State of the

Art of Stream Ciphers workshop in October 2004[5]. These niche areas were identified as: 1) Exceptional

encryption performance in software, where the luxury of additional hardware is not available to speed up

encryption; 2) Any reasonable kind of encryption performance in hardware environments where the available

resources such as gate count or power might be heavily restricted. The extreme example of this is provided

by simple RFID tags. eSTREAM provides such a platform that scientists and researchers can exchange the

design strategies of stream ciphers and find possible attacks on stream ciphers submitted to the project.

Trivium[2] is one of the promising new stream ciphers in the hardware oriented profile. It has got high scores

in evaluation due to its good performance and high security. Its simplicity and clarity perfectly demonstrate

a new way to design secure stream ciphers. The idea of design of Trivium can be found in [3].

This paper focuses on the new design principles of stream ciphers and tries to find out better con-

structions and more application of Trivium. These principles are given based on the structure of Trivium.

Section 2 describes the stream cipher Trivium and Section 3 discusses its security and efficiency. Section 4

introduces Trivium-model stream ciphers and k-order primitive polynomials in order to illustrate the new

design principles. Section 5 shows new constructions of Trivium based on the principles in Section 4 and

Section 6 draws the conclusion.

§1.1 Notation

(sm, . . . , sn) the internal state of (m− n+ 1) bits

si the itℎ state or bit in the shift registers

zt the bit of keystream generated at time t

+ addition over GF (2), i.e. XOR

⋅ multiplication over GF (2), i.e. AND

{a, b, c} notation of one round in Trivium by its active bits: atℎ bit, btℎ bit and ctℎ bit

§2 Trivium

Trivium is designed to generate up to 264 bits of key stream from an 80-bit secret key and an 80-bit

initial value (IV). The process consists of two phases: first the internal state of the cipher is initialized using

2



the key and the IV, then the state is repeatedly updated and used to generate key stream bits. There are

288 bits in the internal state.

A complete description of the generation keystream phase is given by the following simple pseudo-code:

for i = 1 to N do

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 ⋅ s92 + s171

t2 ← t2 + s175 ⋅ s176 + s264

t3 ← t3 + s286 ⋅ s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

Figure 2 shows the structure of the algorithm.

Figure 2 Structure of Trivium

The initialization phase operates exactly the same as the keystream generation phase except that it

doesn’t generate keystream. The state is rotated over 4 full cycles after the loading of key and IV. 4 full

cycles means 4 ∗ 288 = 1152 clock cycles.

Key and IV are loaded as following:

(s1, s2, . . . , s93)← (K3, . . . ,K80, 0, . . . , 0)

(s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)

(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)

3



§3 Security and Efficiency of Trivium

Trivium is designed to be both secure and efficient. The following sections discuss the two properties

of Trivium.

§3.1 Security

[3] classifies attacks against stream ciphers into two categories as follows:

- Key recovery attacks, the goal of which is to recovery part or the whole key by observing the key

stream.

- Distinguishing attacks, the goal of which is to detect that the key stream bits are not completely

unpredictable.

It is obvious that the objective of distinguishing attacks is weaker than that of key recovery attacks.

So it is easier to apply and harder to protect against. Design of Trivium focuses particularly on linear

correlations and the main design objective is to keep the largest correlations below safe bounds. Other

important properties, such as a sufficiently long period, are considered afterwards.

Until now, no attack has been successfully applied to Trivium. One attempt is to find out attacks on

reduced version of Trivium and try to extend them to the original cipher. In [12], two attacks on Trivium are

studied. These attacks are state recovering and statistical tests. Although the analysis applied to Bivium

(a reduced version of Trivium from 3 rounds to 2 rounds) is quite successful, the results on Trivium are not

good since the attacks are no faster than exhaustive search. [6] applies the SAT solver attack and the BDD

attack on Bivium and optimizes them. The attacks are of good speed, but the extension of the attacks to

Trivium was left as an open question. Another reduced version of Trivium, 2-round Trivium, is proposed in

[15]. Matsui’s linear cryptanalysis is applied to this 2-round Trivium and a linear approximation with bias

2−31 is given.

Another attempt is to exploit the initialization part of Trivium. Results of statistical analysis of Trivium

can be found in [14], which include key/key stream correlation test and IV/key stream correlation test. [8]

demonstrates a key recovery attack on reduced initialization version of Trivium by chosen IV statistical

analysis. But evidence is given that the analysis is not applicable on Trivium with full IV initialization. [4]

develops a new technique, called cube attack, which is a major improvement over several previously published

attacks of the same type and applies it to Trivium with a reduced number of initialization round. The speed

of this attack is faster than that in [8]. Evaluation on implementation of Trivium for low-power application

in RFID system is given in [7] with comparison to AES-128. Synthesis result of Trivium is better than that

of AES-128 except for the large amount of clock cycles needed in the initialization phase. [12] analyzes the

completeness property of the initialization function and proposes a new input to the initialization of Trivium

that has better diffusion properties.

§3.2 Efficiency

[3] gives a good measure, number of key stream bits generated per cycle per gate, for the efficiency

of a stream cipher in hardware applications. In the later test and evaluation, hardware implementation of

Trivium in FPGAs and ASICs shows that it is faster and more efficient than other candidates in eSTREAM

and AES-CTR (see [9-11], [13]). For example, [9] points out that Trivium outperforms other eSTREAM

candidates considered in the paper in terms of the two most important optimization criteria, minimum area

4



and maximum throughput to area ratio, by a factor of at least two.

§4 Design Principles of Trivium-model Stream Ciphers

Trivium is successfully designed to meet the need in the niche area where resources of hardware envi-

ronment such as gate count or power might be heavily restricted. Besides efficiency, Trivium also resist all

the known attacks. Based on the low linear correlations and high efficiency of Trivium, this paper tries to

find out design principles of secure stream ciphers.

Let’s focus on the operation of state and the pseudo-code is given bellow:

t1 ← s66 + s93 + s91 ⋅ s92 + s171

t2 ← s162 + s177 + s175 ⋅ s176 + s264

t3 ← s243 + s288 + s286 ⋅ s287 + s69

Index numbers of active bits in this part are rewritten in Table 1.

3u1 3u2 3n1 3u3 3u4 3n2 3u5 3u6 3n3

66 = 3 ⋅ 22 69 = 3 ⋅ 23 93 = 3 ⋅ 31 162 = 3 ⋅ 54 171 = 3 ⋅ 57 177 = 3 ⋅ 59 243 = 3 ⋅ 81 264 = 3 ⋅ 88 288 = 3 ⋅ 96

Table 1 Numbers of original Trvium

There are 93 bits in the first round of Trivium, (177−93) = 84 bits in the second round and (288−177) =

111 bits in the third round. Here, the first round is noted by its active bits as {66, 69, 93}. Thus , the second

round can be written as {162, 171, 177}, and {243, 264, 288} for the third round. It is not difficult to find

that each number in Table 1 has a factor of 3.

§4.1 Description of Trivium-model Stream Ciphers

In order to discuss the design of Trivium, the algorithm can be generalized into a model. By changing

the exact index numbers of active bits into variables, we can get a generalized algorithm of Trivium. These

variables can be seen as the parameter of this Trivium-model stream cipher. Trivium-model stream cipher

can be noted as

{3u1, 3u2, 3n1}, {3u3, 3u4, 3n2}, {3u5, 3u6, 3n3},

where ui (i = 1, ⋅ ⋅ ⋅ , 6), ni (i = 1, 2, 3) are parameters and u1 < u2 < n1 < u3 < u4 < n2 < u5 < u6 < n3.

n1, n2, n3 also represent the degree of the corresponding characteristic polynomials. We will discuss more

details about this in the following sections.

Pseudo-code of the original cipher is changed to a generalized form as following.

5



for i = 1 to N do

t1 ← s3u1
+ s3n1

t2 ← s3u3
+ s3n2

t3 ← s3u5
+ s3n3

zi ← t1 + t2 + t3

t1 ← t1 + s3n1−2 ⋅ s3n1−1 + s3u4

t2 ← t2 + s3n2−2 ⋅ s3n2−1 + s3u6

t3 ← t3 + s3n3−2 ⋅ s3n3−1 + s3u2

(s1, s2, . . . , s3n1
)← (t3, s1, . . . , s3n1−1)

(s3n1+1, s3n1+2, . . . , s3n2
)← (t1, s3n1+1, . . . , s3n2−1)

(s3n2+1, s3n2+2, . . . , s3n3
)← (t2, s3n2+1, . . . , s3n3−1)

This is the general model of Trivium. The structure of this model is given by Figure 3.

Figure 3 Structure of a Trivium-model stream cipher

A Trivium-model stream cipher consists of 3 rounds and each round operates nearly the same as the

other two. In order to get design strategies of Trivium-model stream ciphers, the following discussion breaks

the cipher into smaller parts, reconstructs these parts and gives an extension.

§4.1.1 Univium: A 1-round Trivium-model Stream Cipher

Univium is a 1-round Trivium-model stream cipher. It can be noted as

{3u1, 3u2, 3n1},

where u1, u2, n1 are parameters, and u1 < u2 < n1. n1 also denotes the degree of the characteristic polyno-

mial of Univium.

6



Pseudo-code of this cipher is given below:

for i = 1 to N do

t1 ← s3u1
+ s3n1

zi ← t1

t1 ← t1 + s3n1−2 ⋅ s3n1−1 + s3u2

(s1, s2, . . . , s3n1
)← (t3, s1, . . . , s3n1−1)

Figure 4(a) shows the internal states of Univium. If the sequences of internal state are of uniform

distribution, Prob[sm3−2 ⋅ sm3−1 = 0] = 0.75. This means that the non-linear part of the algorithm can be

neglected with a probability of 0.75. Figure 4(b) shows the internal states of Univium with non-linear part

omitted and all the parameters divided by 3. Design principles discussed below are based on this model.

Figure 4 Univium

§4.1.2 Bivium: A 2-round Trivium-model Stream Cipher

Bivium is a 2-round Trivium-model stream cipher. It can be noted as

{3u1, 3u2, 3n1}, {3u3, 3u4, 3n2},

where ui (i = 1, ⋅ ⋅ ⋅ , 4), n1, n2 are parameters and u1 < u2 < n1 < u3 < u4 < n2. n2 also denotes the degree

of the characteristic polynomial of Bivium.

Pseudo-code of this cipher is given below:

7



for i = 1 to N do

t1 ← s3u1
+ s3n1

t2 ← s3u3
+ s3n2

zi ← t1 + t2

t1 ← t1 + s3n1−2 ⋅ s3n1−1 + s3u4

t2 ← t2 + s3n2−2 ⋅ s3n2−1 + s3u2

(s1, s2, . . . , s3n1
)← (t2, s1, . . . , s3n1−1)

(s3n1+1, s3n1+2, . . . , s3n2
)← (t1, s3n1+1, . . . , s3n2−1)

Figure 5(a) shows the internal states of Bivium. If the sequences of internal state are of uniform

distribution, the non-linear part of the algorithm can be neglected with a probability of 0.752. Figure 5(b)

shows the internal states of Bivium with non-linear part omitted and all the parameters divided by 3. Design

principles discussed below are based on this model.

Figure 5 Bivium

§4.1.3 Trivium: A 3-round Trivium-model Stream Cipher

Here, we still use ’Trivium’ to denote a 3-round Trivium-model stream cipher. A 3-round Trivium-model

stream cipher can be noted as

{3u1, 3u2, 3n1}, {3u3, 3u4, 3n2}, {3u5, 3u6, 3n3},

where ui (i = 1, . . . , 6), ni (i = 1, 2, 3) are parameters and u1 < u2 < n1 < u3 < u4 < n2 < u5 < u6 < n3.

n3 also denotes the degree of the characteristic polynomial of Trivium.

Pseudo-code of this cipher is the same as that in Section 4.1.

Figure 6(a) shows the internal states of Trivium. If the sequences of internal state are of uniform

distribution, the non-linear part of the algorithm can be neglected with a probability of 0.753. Figure 6(b)

8



shows the internal states of Trivium with non-linear part omitted and all the parameters divided by 3. Design

principles discussed below are based on this model.

Figure 6 Trivium

§4.1.4 Extension: k-round Trivium-model Stream Ciphers

After the description of Univium, Bivium and Trivium, it is not difficult to extend the Trivium-model

stream cipher to arbitrary rounds. Each round still contains feedback part, feed forward part and non-linear

part.

§4.2 k-order Primitive Polynomial

In order to discuss criterion to determine the parameters of the stream ciphers described in the above

sections, a new definition, k-order primitive polynomial, is introduced here. First, we would like to review

the definition of primitive polynomial.

Definition 4.2.1 A polynomial f(x) with coefficients in GF (p) = Z/pZ is a primitive polynomial if

it has a root � in GF (pm) such tha t {0, 1, �, �2, �3, ⋅ ⋅ ⋅ , �pm

−2} is the entire field GF (pm), and moreover,

f(x) is the smallest degree polynomial having � as root.

Based on definition 4.2.1 and let p = 2, an extensive definition, k-order primitive polynomials, is given

below.

Definition 4.2.2 Given f(x) =
n∑

i=0

aix
i, n > k, ai ∈ GF (2), i = 0, 1, ⋅ ⋅ ⋅ , n, f(x) is called a k-order

primitive polynomial if f(x) = (x+ 1)k ⋅ g(x), where g(x) is a primitive polynomial.

Remark Definition 4.2.2 is an extension of definition 4.2.1 because 0-order primitive polynomial is

a primitive polynomial by definition 4.2.1.

9



Example 4.2.1 f1(x) = x28 + x5 + x2 + 1 = (x+ 1)(x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 +

x19 + x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x + 1) is a 1-order

primitive polynomial.

Example 4.2.2 f2(x) = x31 + x9 + x8 + 1 = (x + 1)2(x11 + x10 + x6 + x5 + x3 + x + 1)(x7 + x +

1)(x11 + x10 + x7 + x3 + 1) is not a 1-order primitive polynomial.

Example 4.2.3 f3(x) = x96+x73+x70+x67+x47+x44+x41+x29+x24+x20+x18+x15+x14+x9+

x5+1 = (x+1)3(x93+x92+x89+x88+x85+x84+x81+x80+x77+x76+x73+x72+x70+x68+x67+x44+x43+

x41+x39+x38+x35+x34+x31+x30+x27+x25+x23+x20+x19+x17+x14+x13+x12+x9+x8+x6+x4+x+1)

is a 3-order primitive polynomial.

§4.3 Design Principles of Trivium-model Stream Ciphers

Design principles introduced in this section mainly relates to the linear part of Trivium-model stream

ciphers. The objective of these principles is to determine parameters in the algorithms described above, i.e.

Univium, Bivium, Trivium and so on. k-order primitive polynomials are used to illustrate the principles.

If we want to construct a Trivium-model stream cipher, we can first determine the rounds of the cipher.

Here, we suppose that we still need a 3-round cipher, i.e. Trivium. It is noted as

{3u1, 3u2, 3n1}, {3u3, 3u4, 3n2}, {3u5, 3u6, 3n3},

where ui (i = 1, . . . , 6), ni (i = 1, 2, 3) are parameters and u1 < u2 < n1 < u3 < u4 < n2 < u5 < u6 < n3.

Next, we determine the unknown parameters under the following principles.

Principles Construct a 3-round Trivium, denoted by {3u1, 3u2, 3n1}, {3u3, 3u4, 3n2}, {3u5, 3u6, 3n3},

such that

1) The characteristic polynomial of {u1, u2, n1} is a 1-order primitive polynomial;

2) The characteristic polynomial of {u1, u2, n1}, {u3, u4, n2} is a 2-order primitive polynomial;

3) The characteristic polynomial of {u1, u2, n1}, {u3, u4, n2}, {u5, u6, n3} is a 3-order primitive poly-

nomial.

According to the principles, we can omit the non-linear parts (AND operations) and use Figure 4(b),

5(b), 6(b) to determine parameters ui (i = 1, . . . , 6) and ni (i = 1, 2, 3).

If we want to construct a k-round Trivium-model stream cipher, then the characteristic polynomial of

the itℎ-round (i = 1, 2, ⋅ ⋅ ⋅ , k) of the linear part should be an i-order primitive polynomial.

§5 Improvement on Trivium

Based on the design principles given above, we would like to give better parameters than those of the

original Trivium. In this paper, we only consider the condition under which the characteristic polynomials

are calculated from the state S1, i.e. the first internal bit. Setting different internal state bit as starting

point may lead to different polynomials and results.

10



We choose the parameters divided by 3 according to the description in Section 4. Trivium has 288-bit

internal state, so we set n3 = 288/3 = 96. It can be noted as

{3× 22, 3× 23, 3× 31}, {3× 54, 3× 57, 3× 59}, {3× 81, 3× 88, 3× 96}.

We found that the characteristic polynomial of the original Trivium is 3-order primitive, but the charac-

teristic polynomial of the corresponding Univium is not 1-order primitive. Neither is that of the corresponding

Bivium.

After lots of research, we found out some suitable parameters according to the discussion above. Sections

below describes new constructions of Trivium-model stream ciphers.

§5.1 Improvement On the Original Trivium

This algorithm is the improvement on original Trivium. n1, n2, n3 are the same as the original algorithm

and ui (i = 1, ⋅ ⋅ ⋅ , 6) are adjusted so as to satisfy the principles discussed in Section 4.3. Thus, not only

the characteristic polynomial of the whole algorithm is a 3-order primitive polynomial, but also those of the

Univium and Bivium are 1-order and 2-order primitive polynomials respectively. This improved construction

is noted as

{3× 10, 3× 22, 3× 31}, {3× 36, 3× 48, 3× 59}, {3× 65, 3× 85, 3× 96}.

The complete description of the generation keystream phase of this algorithm is given by the following

simple pseudo-code:

for i = 1 to N do

t1 ← s30 + s93

t2 ← s108 + s177

t3 ← s195 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 ⋅ s92 + s144

t2 ← t2 + s175 ⋅ s176 + s255

t3 ← t3 + s286 ⋅ s287 + s66

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

§5.2 A New Trivium of 384 Bits

Based on the principles in Section 4.3, we can also construct a new Trivium-model stream cipher with

internal states of 384 bits. This Trivium-model stream cipher can be noted as

{3× 10, 3× 22, 3× 31}, {3× 36, 3× 48, 3× 59}, {3× 65, 3× 72, 3× 128}.

The characteristic polynomial of {10, 22, 31} is a 1-order primitive polynomial. That of {10, 22, 31}, {36, 48, 59}

is a 2-order primitive polynomial. That of {10, 22, 31}, {36, 48, 59}, {65, 72, 128} is a 3-order primitive poly-

nomial.

The complete description of the generation keystream phase of this algorithm is given by the following

simple pseudo-code:

11



for i = 1 to N do

t1 ← s30 + s93

t2 ← s108 + s177

t3 ← s195 + s384

zi ← t1 + t2 + t3

t1 ← t1 + s91 ⋅ s92 + s144

t2 ← t2 + s175 ⋅ s176 + s216

t3 ← t3 + s382 ⋅ s383 + s66

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s384)← (t2, s178, . . . , s383)

§5.3 Another New Trivium Designed for 32-bit OS

Considering 32-bit OS, we also found another construction of Trivium listed below.

{3× 5, 3× 20, 3× 32}, {3× 33, 3× 42, 3× 64}, {3× 65, 3× 84, 3× 96}.

The complete description of the generation keystream phase of this algorithm is given by the following

simple pseudo-code:

for i = 1 to N do

t1 ← s15 + s96

t2 ← s99 + s192

t3 ← s195 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s94 ⋅ s95 + s126

t2 ← t2 + s190 ⋅ s191 + s252

t3 ← t3 + s286 ⋅ s287 + s60

(s1, s2, . . . , s96)← (t3, s1, . . . , s95)

(s97, s98, . . . , s192)← (t1, s97, . . . , s191)

(s193, s194, . . . , s288)← (t2, s193, . . . , s287)

§6 Conclusion

Trivium is one of the most promising stream ciphers selected by eSTREAM project. Simplicity, efficiency

and clarity make it a successful design. Based on the structure of Trivium, this paper introduced new

principles to design Trivium-model stream ciphers. An extended definition of primitive polynomial, k-order

primitive polynomial, is given in this paper. New versions of Trivium according to the principles are shown

as an improvement to the original algorithm.

12



References

[1] http://www.ecrytp.eu.org/stream.

[2] C. De Cannière & B. Preneel. TRIVIUM Specifications. eSTREAM, ECRYPT Stream Cipher Project, Report

2005/001, 2005. http://www.ecrypt.eu.org/stream.

[3] C. De Cannière & B. Preneel. TRIVIUM A Stream Cipher Construction Inspired by Block Cipher Design

Principles. In Workshop on Stream Ciphers Revisited (SASC2006), 2006.

[4] I. Dinur & A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. http://eprint.icar.org/2008/385.

[5] ECRYPT Network of Excellence in Cryptology. In Workshop on The State of the Art of Stream Ciphers

(SASC2004), 2004.

[6] T. Eibach, E. Pilz & S. Steck. Comparing and Optimising Two Generic Attacks on Bivium. In Workshop on

The State of the Art of Stream Ciphers (SASC2008) pages 57-68, 2008.

[7] M. Feldhofer. Comparison of Low-Power Implementations of Trivium and Grain. In Workshop on The State of

the Art of Stream Ciphers (SASC2007) pages 236-246, 2007.

[8] S. Fischer, S. Khazaei & W. Meier. Chosen IV Statistical Analysis for Key Recovery Attacks on Stream Ciphers.

In Workshop on The State of the Art of Stream Ciphers (SASC2008) pages 33-42, 2008.

[9] K. Gaj, G. Southern & R. Bachimanchi. Comparison of Hardware Performance of Selected Phase II eSTREAM

candidates. In Workshop on The State of the Art of Stream Ciphers (SASC2007) pages 225-235, 2007.

[10] T. Good, W. Chelton & M. Benaissa. Review of Stream Cipher Candidates from a Low Resource Hardware

Perspective. In Workshop on Stream Ciphers Revisited (SASC2006), 2006.

[11] F. K. Gürkaynak, P. luethi, N. Bernold, R. Blattmann, V. Goode, M. Marghitola, H. Kaeslin, N. Felber

& W. Fichtner. Hardware Evaluation of eSTREAM Candidates. In Workshop on Stream Ciphers Revisited

(SASC2006), 2006.

[12] A. Maximov & A. Biryukov. Two Trivial Attacks on TRIVIUM. In Workshop on The State of the Art of Stream

Ciphers (SASC2007) pages 1-16, 2007.

[13] M. Rogawski. Hardware Evaluation of eSTREAM Candidates. In Workshop on The State of the Art of Stream

Ciphers (SASC2007) pages 215-224, 2007.

[14] M. S. Turan, A. Doğanaksoy & Ç. Çalik. Statistical Analysis of Synchronous Stream Ciphers. In Workshop on

Stream Ciphers Revisited (SASC2006), 2006.

[15] M. S. Turan & O. Kara. Linear Approximations for 2-round Trivium. In Workshop on The State of the Art of

Stream Ciphers (SASC2007) pages 22-31, 2007.

13


