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Abstract. Generating a distributed key, where a constant fraction of
the players can reconstruct the key, is an essential component of thresh-
old cryptography. Previous solutions are based on univariate polynomi-
als. In some applications, these solutions don’t provide good service. We
present a new distributed key generation protocol. The key idea of our
scheme is to use bivariate symmetric polynomial. Compared with other
solutions, our construction is efficient in computation and simple and
flexible in applications. In addition, our construction admits a rigorous
proof of security.
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1 Introduction

1.1 Background and Related Work

In order to provide security to applications that are inherently distributed,
namely, several parties are trying to accomplish some common task (e.g., secure
elections, auctions, games) in the presence of an attacker, avoid single-point fail-
ure in a security system, and so on, threshold cryptosystems have received a lot
of attention in modern cryptographic research, e.g., [1, 2, 3, 4]. In many con-
texts, it is impractical or impossible to assume that a trusted third party, a.k.a
a trusted dealer, is present to generate and distribute key shares to users in such
systems. Consequently, distributed key generation (DKG) is desirable in princi-
ple. In essence, a distributed key generation scheme allows a set of n players to
jointly generate a pair of public and private keys according to the distribution
defined by the underlying cryptosysytem without assuming the existence of any
trusted party. While public key is output in the clear, the private key is shared
by the n players, each of which has its own unique secret share, so that any
sufficiently large subset of the n players can reveal or use the key. Commonly
the security parameter of such a system is called the threshold, t, which is the
number of players that can be corrupted without the key being compromised.

Distributed key generation protocols usually fall into two areas : the distribu-
tion of a secret for discrete-log based cryptosystems and the distribution of RSA
keys. The latter case is partially solved by the nice paper of Boneh and Franklin
[20]. However, the protocol does not allow to efficiently share RSA modulus with



strong primes and is not robust against cheaters. Following this paper, two arti-
cles [21, 22]provide robustness using different techniques. In this work, We shall
limit our scope to distributed key generation for discrete-log cryptosystems.

Methods for distributed key generation for discrete-log cryptosystems have
been known for a long time, starting a simple polynomial-based scheme pre-
sented by Pedersen [5]. Pedersen’s scheme was then used in many discrete-log
based threshold cryptosystems, e.g., [6, 7, 8]. It seems necessary that the out-
put distribution of distributed key generation schemes must be the same in the
threshold and the centralized case if one attempts to argue the security of the
threshold cryptosystem by reducing it to the security of the underlying central-
ized cryptosystem. But later in [9] ( extended version in [10] ) a flaw of Pedersen’s
scheme was found by Gennaro et al. that the key is not uniformly generated in
the key space with a malicious adversary and also a solution is given to deal
with such type of adversary. In [11], Canetti et al. improve their results to resist
a malicious, adaptive adversary. In [12], John Canny et al. also proposed a new
distributed key generation scheme based on Gennaro et al.’s scheme. Besides the
above schemes, there are lots of other distributed key generation schemes, for
example,[13, 14, 15]. However, these distributed key generation schemes have a
common property, i.e, they all are based on univariate polynomials. But, this
property has side effect to these distributed key generation schemes. In some
practical applications, e.g, [16, 17, 18, 24, 25] , assuming that players P1, . . .,
Pn ( their identities will be assigned with their own indices) have jointly gen-
erated a pair of private and public keys < x, y >∈ Zq × Zp by one of these
schemes, where p is a large prime and q a large prime dividing p−1, each player
Pi (i ∈ {1, 2, . . . , n}) holds a share Si of the secret key x, and any t + 1 players
among P1, . . ., Pn can jointly recover x. When a new good player Pn+1 hopes
to hold a share of x, we will show that these schemes can not provide a good
service. In fact, making Pn+1 share x with players P1, . . ., Pn needs a coalition
of at least t + 1 players among P1, . . ., Pn by Lagrange interpolation. Without
loss of generality, we assume players to be P1, . . ., Pt+1. Then, each player Pi,
i ∈ {1, 2, . . . , t + 1}, computes a partial secret share Si,n+1 from its secret share
Si and returns Si,n+1 to Pn+1. Thus, Pn+1 can get a share Sn+1 of x as follows
by the sum of these t + 1 partial secret shares Si,n+1, i ∈ {1, 2, . . . , t + 1}.

Sn+1 =

t+1∑
i=1

Sili(n + 1) =

t+1∑
i=1

Si,n+1

li(n + 1) =
(n + 1− 1) . . . (n + 1− (i− 1))(n + 1− (i + 1)) . . . (n + 1− (t + 1))

(i− 1) . . . (i− (i− 1))((i)− (i + 1)) . . . (i− (t + 1))
,

Since Lagrange coefficients li(n + 1), i ∈ {1, 2, . . . , t + 1}, are publicly known,
Pn+1 can derive Si by Si,n+1, and then easily computes x.

The main reason for producing the above problem is because the existing
distributed key generation schemes are based on univariate polynomials. In order
to solve the above problem, J. Kong et al.[19] presented a shuffling scheme. In
the shuffling scheme, a random number is exchanged between any two players
Pi and Pj (where i, j ∈ {1, 2, . . . , t + 1} and i 6= j). One of these two players
treats this random number as a positive number while the other side treats it as a
negative number. Such each Pi (where i ∈ {1, 2, . . . , t+1}) has t random numbers



Ni, where i ∈ {1, 2, . . . , t}. Each Pi sums Si,n+1 and these t random numbers
N1, . . ., Nt, respectively, and then sends such a S

′
i,n+1 = Si,n+1 +

∑t
i=1 Ni to

Pn+1 instead of Si,n+1 . It is easy to verify that Pn+1 obtains the same value
Sn+1=

∑t+1
i=1 S

′
i,n+1. Apparently, J. Kong et al.’s method makes distributed key

generation schemes become more complicated. In this paper, we try to solve this
problem by proposing a new distributed key generation protocol.

1.2 Our Contribution

In this paper, we present a distributed key generation scheme based on bivariate
symmetric polynomial( or BDKG, for short). Similar to Gennaro et al.’scheme
[9], BDKG also consists of two phases: in the first phase, the group of non-
disqualified players, Q, is selected, and players in Q jointly generate a random
secret key such that all players in Q have a share of the secret key, and in the
second phase, the public value associated to the shared secret is made. The
second phase of BDKG is similar to that of Gennaro et al.’scheme. However, in
the first phase, BDKG is fully different from Gennaro et al.’scheme. The security
of Gennaro et al.’scheme in the first phase is based on the hardness of solving
discrete logarithm. BDKG is based on the results of [23] and is unconditionally
secure and does not require expensive computations in the first phase. Thus,
BDKG is very efficient computationally.

The public key is fixed once it is generated with BDKG . When a good player
Px wants to hold a share of secret value corresponding to the above public key
and become a member of Q , players in Q can independently provide Px with
information on the above secret value and need not exchange information (e.g,
random numbers,etc.), which is used to protect the privacy of the above secret
value, with other players in Q. Thus, BDKG solves the problem in Section 1.1.

In BDKG, our adversary is static, and BDKG is proven secure only against
a static adversary.

The paper will proceed as follows. In Section 2 we present the basic commu-
nication and adversarial models for our protocol. In Section 3 we present our
solution and its full analysis. In Section 4, we simply discuss the applications of
BDKG. Section 5 concludes this paper.

2 Preliminaries

2.1 Communication Model

The systems we describe involve a group of n players. The players are modeled
by probabilistic polynomial-time Turing machines. They are connected by a
complete network of private point-to-point channels. In addition, the players
have access to a dedicated broadcast channel. For a broadcast message, it either
reaches all recipients or none. Furthermore, if it reaches all recipients, the order
for the recipients is random, i.e., the arrival ordering of a message to the players
from a given sender is arbitrary. The messages sent on either a point-to-point



or the broadcast channel are received by their recipients within some fixed time
bound. In addition, we assume that the honest players start a given round of a
protocol at the same time.

2.2 The Adversary

We assume that an adversary, A, can corrupt up to t of the n players in the
network, for any value of t < (n− 2)/3. We consider a malicious adversary that
may cause corrupted players to divert from the specified protocol in any way.We
assume that the computational power of the adversary is adequately modeled
by a probabilistic polynomial time Turing machine. Our adversaries are static.
Before the protocol executes, this type of adversaries has already decided which
player to corrupt during the execution of the protocol. In other words, he can not
change to attack another player by exploiting the runtime information obtained
during protocol execution.

2.3 Requirements of Secure DKG Protocol

The following definitions apply to discrete-log based cryptosystems. The globally
known constants are q, G, P , where q is a large prime; G, over which discrete
logarithm problem3 is hard, is a cycle a cyclic additive group of order q and P is
its generator. The first three criteria of the following definition have been used
widely to define DKG protocols. The fourth was added by Gennaro, et al. in
order to quantify the secrecy of an algorithms key against malicious players in
the generation phase.

Definition 1. A t-secure distributed key generation algorithm satisfies the fol-
lowing requirements, assuming the set of players controlled by the adversary is
less than t:

Correctness:
(C1) A ll subsets of t + 1 shares provided by honest players define the same

unique secret key x.
(C2) A ll honest parties have the same value of the public key y = xP , where

x is the unique secret guaranteed by (C1).
(C3) x is uniformly distributed in Zq (and hence y is uniformly distributed in

the subgroup generated by P ).
Secrecy:
(S1) The adversary can learn no information about x except for what is im-

plied by the value y = xP .

3 Discrete logarithm problem over G which is a cyclic additive group of order q: Given
a generator P of G, and y = xP, x ∈ Zq, compute x.



3 New Distributed Key Generation Scheme

Our construction, BDKG, can work with less than n−2
3 corrupted players, be-

cause it is based on so-called bivariate symmetrical polynomials which have been
employed for related purposes in the literature [27, 28, 29] and the results of [23].
The description of BDKG is based on some group G4 which is a cyclic additive
group of prime order q. In fact, we can also describe BDKG over multiplicative
cycle group with a element of prime order q, e.g, Z∗p where p is a large prime
and q divides (p− 1).

3.1 Description of BDKG

In BDKG, we assume that the identity of each player is assigned with his own
index. EBDKG works as follows.

1. Start with a dealing phase so that all players know q, G, P, where q is a
large prime, G is a addition cycle group of prime order q, P is the generator
of G.

2. Generating secret value x (this process called as Joint-VSS (t)):
(a) Each player Pi randomly chooses a bivariate symmetrical polynomial

fi(x, z) over Zq of degree t :

fi(x, z) =
t∑

k=0

t∑

j=0

a
(i)
kj xkzj

where a
(i)
00 = zi, a

(i)
kj ∈ Zq, the degree of both x and z equals to t, and

a
(i)
kj =a

(i)
jk . And then, Pi computes hi

m(x) = fi(x,m) as follows:

hi
m(x) = fi(x,m) =

t∑

k=0

t∑

j=0

a
(i)
kj xkmj ,

and securely send hi
m(x) to Pm, here m = 1, 2, . . . , n.

(b) After receiving hi
m(x), Pm computes hi

mk = hi
m(k) and securely sends it

to Pk, here k = 1, 2, . . . , n.
(c) For each m = 1, 2, . . . , n, player Pk checks if

hi
mk = hi

k(m) (1)

If there are at least t+1 formulas that are not via checking, Pk broadcasts
a complaint against Pi.

(d) Each player Pi who receives at most t complaints broadcasts hi
k(x) that

satisfies Eq.1. Each of other n − 2 players, Pj , checks if hi
k(j) = hi

j(k).
If hi

k(j) = hi
j(k), Pj broadcasts “YES”, otherwise “NO ”.

4 we can take G as a subgroup of E/F which is an additive abelian group derived by
an elliptic curve E defined in finite field F .



(e) Any player Pi marks as disqualified if
– Pi received at least t + 1 complaints in Step (c), or
– there are at least t + 1 players that broadcast “NO ”in Step (d).

(f) Each player then builds the set of non-disqualified players Q.
(g) The distributed secret value s is not explicitly computed by any player,

but it equals s =
∑

i∈Qzi mod q. Each player Pi computes hi(x) =∑
j∈Qhj

i (x) =
∑

j∈Qfj(x, i), and sets his share of the secret as si =∑
j∈Qhj

i (0) mod q
3. Revealing y = sP

(a) Each player Pi, i ∈ Q, broadcasts A
(i)
0k = a

(i)
0kP for k = 0, 1, 2, . . . , t.

(b) Each player Pj , j ∈ Q verifies the values broadcast by the other players
in Q, namely, for each i ∈ Q, Pj checks if

hi
j(0)P =

t∑

k=0

jkA
(i)
0k (2)

If the check fails for an index i, Pj complains against Pi by broadcasting
the value hi

j(0) that satisfies Eq.1 but do not satisfies Eq.2.
(c) For players Pi who receive at least one valid complaint, i.e. value which

satisfies Eq.1 not Eq.2., the other players can jointly compute zi =
fi(0, 0), fi(0, z), and A

(i)
0k for k = 0, 1, . . . , t, with Lagrange interpola-

tion. For all players in Q, set yi = A
(i)
00 = ziP . Compute y =

∑
i∈Qyi.

3.2 Security Results of BDKG

The security properties of BDKG are stated in the following theorem.

Theorem2. In discrete-log based cryptosystems, protocol BDGK is a secure
protocol for the distributed generation of keys , namely, it satisfies the correctness
and secrecy requirements of definition 1 with threshold t, for any t < n−2

3 .

Proof of Correctness. We first note that all honest players in the protocol
compute the same set Q since the determination of which players are to be dis-
qualified depends on public broadcast information which is known to all (honest)
players.

(C1) To each i ∈ Q, then player Pi has successfully performed the sharing of
zi among all honest players, and each honest player Pj(j ∈ Q) receives its share
sij = hi

j(0) = fi(0, j) on zi. With these shares, we can get a unique polynomial
fi(0, x) which satisfies fi(0, 0) = zi. Thus, for any set R of t + 1 correct shares,

zi =
∑

j∈R

γjsij

where γj are appropriate Lagrange interpolation coefficients for the set R. Since
each honest party Pj computes its share sj of s as sj =

∑
i∈Qsij , then we have

that for the set R:

s =
∑

j∈Q
zj =

∑

j∈Q

∑

k∈R

γksjk =
∑

k∈R

γk(
∑

j∈Q
sjk) =

∑

k∈R

γksk



Since this holds for any set of t + 1 correct shares then s is uniquely defined.
(C2) The value y is computed (by the honest players) as y =

∑
i∈Qyi,

where the values of yi(= ziP ) are derived from information broadcast in the
protocol and thus known to all honest players. We need to show that indeed
y = sP where s =

∑
i∈Qzi. We will show that for i ∈ Q, yi = ziP , and

then y =
∑

i∈Qyi =
∑

i∈QziP = (
∑

i∈Qzi)P = sP . For players Pi( i ∈ Q)
against whom a valid complaint has been issued in Step 3b, value zi is publicly
reconstructed and yi set to ziP . Now we need to show that for Pi (i ∈ Q),
against whom a valid complaint has not been issued, the value yi is set to A

(i)
00 .

Values A
(i)
0k , k = 0, ..., t broadcast by player Pi define a t-degree polynomial

ĥi(x). Since we assume that no valid complaint was issued against Pi then the
under equation is satisfied for all honest players:

hi
j(0)P =

t∑

k=0

jkA
(i)
0k

and thus ĥi(x) and fi(0, x) have at least t+1 points in common, so ĥi(x)=fi(0, x),
and in particular yi=A

(i)
00 =fi(0, 0)P=ziP .

(C3)The secret s is defined as s =
∑

i∈Qzi. Note that as long as there is
one value zi in this sum that is chosen at random and independently from other
values in the sum, we are guaranteed to have uniform distribution of s. Also
note that the secret s and the components zi in the sum are already determined
at the end of Step 2 of BDKG (since neither the values zi nor the set Q change
later). Let Pi be a honest player, i ∈ Q, and suppose the adversary controls t
shares of fi(x, z). Without loss of generality, we assume he knows hi

1(x), hi
2(x),

. . ., hi
t(x),i.e, his view ViewA={hi

1(x), hi
2(x), . . ., hi

t(x)}. It is easy to show that,
for any value s′, we can find bij ∈ Zq, where b00 = s′, bij = bji, 0 ≤ i, j ≤ t such
that if

f
′
i (x, z) =

t∑

i,j=0

bijx
izj

then, f
′
i (x, 1) = hi

1(x), f
′
i (x, 2) = hi

2(x), . . ., f
′
i (x, t) = hi

t(x). That is to say,
ViewA does not contain any information of zi, i.e,

Prob[Pi has secret zi|ViewA)]=Prob[Pi has secret zi]= 1
q for all zi ∈ Zq.

Thus, it is independent of the view of the adversary that each honest Pi of Q
chooses zi. Hence the secret x is uniformly distributed.

Proof of Secrecy. To show that the adversary is not able to learn any in-
formation about the private key s other than the fact that it is the discrete
log of the public key y, We provide a simulator SIM for the BDKG protocol.
Formally, a simulator is a probabilistic polynomial-time algorithm that given
y ∈ G, such that y = sP for some s, can produce a distribution of messages
that is indistinguishable from a normal run of the protocol where the players
controlled by the simulator are controlled instead by honest players. This is the



familiar technique used to show that zero-knowledge proofs do not reveal any
private information.

The input to the simulator is a y that could have been established at the end
of a normal run of the protocol. In the description and analysis of the simulator
we assume, without loss of generality, that the adversary compromises players
P1, . . . , Pt′ , where t′ ≤ t. We denote the indices of the players controlled by
the adversary by B= {1, ..., t′}, and the indices of the players controlled by the
simulator by G= {t′ + 1, ..., n}.

Consider the following algorithm for the simulator, SIM:

1. Perform Steps 1-2 on behalf of the uncorrupted players Pt′+1, ..., Pn exactly
as in protocol BDKG. This includes receiving and processing the information
sent privately and publicly from corrupted players to honest ones. At the end
of Step 2 the following holds:
– The set Q is well-defined. Note that G⊆ Q and that polynomials fi(x, y)

for i ∈ G are chosen at random.
– The adversary’s view consists of polynomials fi(x, y) for i ∈ B, unique

polynomials hi
j(x)(=fi(x, j)) for i ∈ Q and j ∈ B.

– SIM knows all polynomials fi(x, z) for i ∈ Q (note that for i ∈ Q∩B the
honest parties, and hence SIM, receive enough consistent shares from
the adversary that allow SIM to compute all these parties’ polynomials
fi(x, y) ). SIM also knows all hi

j(x)(=fi(x, j)).
2. Perform the following calculations:

– Compute A
(i)
0k = a

(i)
0kP for i ∈ Q\{n}, k = 0, ..., t

– SetA(n)∗
00 = y − (

∑
i∈Q\{n}A

(i)
00 ).

– Assign hn∗
j (x) = hn

j (x) = fn(x, j) for j = 1, ..., t

– Compute A
(n)∗
0k = γk0A

(n)∗
00 +

∑t
i=1 γkih

n∗
i (0)P for k = 1, ..., t, where γki

are the Lagrange interpolation coefficients.
3. Broadcast A

(i)
0k for i ∈ G\{n}, and A

(n)∗
0k for k = 0, ..., t.

4. Perform the checks of step 3 of the algorithm for each player Pj ,j ∈ G, on the
A

(i)
0k , i ∈ B, broadcast by the players controlled by adversary and broadcast

any necessary complaints.
5. Perform Step 3c of the protocol on behalf of the uncorrupted parties, i.e.

compute fi(0, x) and zi in the clear with Lagrange interpolation for every
Pi against whom a valid accusation was broadcast in the previous step.

We will show that the view of the adversary A that interacts with SIM on
input y is the same as the view of A that interacts with the honest players in a
regular run of the protocol that outputs the given y as the public key.

In a regular run of protocol BDKG, A sees the following probability distri-
bution of data produced by the uncorrupted parties:

– Polynomials hi
j(x)(=fi(x, j)) for i ∈ G and j ∈ B, randomly chosen in Zq[x],

(since fi(x, y), which is a bivariate symmetrical polynomial over Zq of degree
t, is randomly chosen).



– Values A
(i)
0k , i ∈ G, k = 0, ..., t that correspond to exponents of coefficients

a
(i)
0k (i ∈ G, k = 0, ..., t) of randomly chosen bivariate symmetrical polynomials

fi(x, z).
Since here we are interested in runs of BDKG that end with the value y as the
public key output of the protocol, we note that the above distribution of values
is induced by the choice (of the good players) of polynomials fi(x, z) for i ∈ G,
uniformly distributed in the family of t-degree bivariate symmetrical polynomials
over Zq subject to the condition that

∑

i∈Q
A

(i)
00 = y.

In other words, t-degree bivariate symmetrical polynomials fi(x, z) (i ∈ G\{n})
and fn(x, z) over Zq which are randomly chosen satisfy

fn(0, 0) = logy
P −

∑
i∈Q\{n}fi(0, 0)mod q,

where logy
P denotes logarithm s if y = sP , P is a generator of group G.

We show that the simulator SIM outputs a probability distribution which
is identical to the above distribution. First note that the above distribution
depends on the set Q defined at the end of Step 2 of the protocol. Since all
the simulator’s actions in Step 1 of the simulator are identical to the actions
of honest players interacting with A in a real run of the protocol, thus we are
assured that the set Q is defined at the end of this simulation step identically
to its value in the real protocol. We now describe the output distribution of
SIM in terms of t-degree polynomials f∗i (x, z) corresponding to the choices of
the simulator when simulating the actions of the honest players and defined as
follows:
– f∗i (x, z)=fi(x, z) for i ∈ G\{n}
– f∗n(0, 0) = logA

(n)∗
00

P , f∗n(x, j)=hn∗
j (x) = hn

j (x)=fn(x, j) for j = 1, . . . , t.
It can be seen that by this definition that the values of these polynomials eval-
uated at the points j ∈ B coincide with the values fi(x, j) which are seen by
the corrupted players in Step 2a of the protocol. Also, the coefficients of these
polynomials agree with the exponentials A

(i)
0k , i ∈ G\{n} and A

(n)∗
0k published

by the simulator in Step 2 on behalf of the honest parties and corresponding
to the players’ values in Step 3a of the protocol. Thus, these values pass the
verifications of Eq.(1) and (2) as in the real protocol.

It remains to be shown that polynomials f∗i (x, z) belong to the right distri-
bution. Indeed, for i ∈ G\{n} this is immediate since they are defined identically
to fi(x, z) which are chosen according to the uniform distribution. For f∗n(x, z)
we see f∗n(x, j)=fn(x, j) for j = 1, ..., t, get random values f∗n(0, j)=f∗n(0, j) for

j = 1, ..., t, and then compute f∗n(0, x) by f∗n(0, 0) = logA
(n)∗
00

P and Lagrange in-
terpolation formula. We set f∗n(x, 0)=f∗n(0, x), and compute f∗n(x, z) by f∗n(x, j)
for j = 0, ..., t and Lagrange interpolation formula. Since fn(x, j)(=f∗n(x, j)) for
j = 1, ..., t are chosen in Step 1 random and independent polynomials, then so
is f∗n(x, j).



3.3 Efficiency

BDKG consists of two phases. In first phase, BDKG does not require expensive
computation. In second phase, each player Pj , j ∈ Q, participating in the dis-
tributed key generation in BDKG, computes t + 1 values A

(j)
0k = a

(j)
0k P for k =

0, 1, 2, . . . , t and performs (|Q|−1) verifications of form hi
j(0)P =

∑t
k=0 jkA

(i)
0k

where i ∈ Q\{j} and |Q| denotes the number of elements of Q. In other words,
each player Pj , j ∈ Q, computes |Q|(t + 1) exponentiations5 over the group G.
Similarly, if BDKG is performed in Zp, we also have the result that each player
Pj , j ∈ Q, computes |Q|(t + 1) modular exponentiations over Zp. While each
player Pj , j ∈ Q, participating in the distributed key generation in [5] and [9],
computes at least n(t+1) and (n+ |Q|)(t+1)) modular exponentiations over Zp

respectively. The computational cost of the schemes in [13, 14] is more than that
of schemes in [5] and [9], because the schemes in [13, 14] are based on homomor-
phic encryption with proof of fairness. Thus, compared with other schemes, our
scheme, BDKG, is very efficient computationally.

4 Application of BDKG

We consider the following case: To perform some specific task, e.g, distributed
signature, the private key generator (PKG, for short) of ID-based cryptography,
etc, a group, G, is initially formed by n players P1, P2, . . ., Pn that jointly
generate a pair of public and private keys < s, y > of G and among whom t + 1
players can reconstruct the private key s, where s ∈ Z∗q , y = sP , P is a generator
of G which is a cycle additive group of prime order q. To be better competent
for its works in some environments, for example, mobile ad hoc networks, G is
often required to be highly dynamic and decentralized: new players may join the
group G at any time, and when they do, they must be provided with shares of
private key s, by the other players in G (since it may be unreasonable to assume
that a trusted entity is able to provide a new player with such share). The above
case that we describe often occurs in lots of application, e.g, [16, 17, 18, 24, 25].

When a good player wants to join G, if the private key s of G is based on
univariate polynomials, we meet the problem introduced in Section 1.1. If the
private key s is generated with our new scheme, BDKG, this problem can be
completely avoided. The detail is following.

We assume that n players P1, P2, . . ., Pn jointly a symmetrical bivariate
polynomial as follows,

f(x, z) =
t∑

i=0,j=0

xizj , and f(0, 0) = s,

and each player Pi, i ∈ {1, 2, 3, . . . , n}, gets a share hi(x)(= f(x, i)) of f(x, z)
and a share si(= hi(0) = f(0, i)) of s. We also assume that new players have
5 Exponentiation over the additive cycle group G: Given a generation P of G, x ∈ Zq

where q is a large prime, compute xP .



a secure channel with each player of G. When a new player Pnew joins G, he
requests and receives corresponding information from at least t + 1 players from
G. More specifically the protocol must be realized as follows:

1. Pnew chooses a set G0 of at least t + 1 players from G. Without loss of
generality, we assume this set of players is G0={ P1, P2, . . ., Pt+1}.

2. Pnew requests to be accepted as a member of G.
3. Each Pi of G0 sends to Pnew the piece of information hi(new).
4. Then, Pnew computes his share polynomial hnew of f(x, z) with hnew(i) =

hi(new) and Lagrange interpolation:

hnew(x) =
t+1∑

i=1

∏

i 6=j

x− j

i− j
hnew(i) =

t+1∑

i=1

∏

i 6=j

x− j

i− j
hi(new)

Apparently, the above protocol is based on the assumption that each player
of G is honest. However, this kind of assumption is impractical or impossible in
many contexts. We must consider the case that some players of G are corrupted.
We assume that there are at most t players corrupted in G and modify the above
protocol as follows.

1. Pnew chooses a set G0 of at least n players from G. Without loss of generality,
we assume this set of players is G0={ P1, P2, . . ., Pn}.

2. Pnew requests to be accepted as a member of G.
3. Each Pi of G0 sends to Pnew the piece of information hi(new).
4. Then, Pnew computes as follows:

(snew, hnew(x))=EC-Interpolate(h1(new), h2(new), . . . , hn(new))

In the above modified protocol, we use notation (v, f(x)) =EC-Interpolate(v1,
v2, . . ., vn) for public reconstruction of a value through polynomial interpolation
with the use of error-correcting codes. If {v1, v2, . . . , vn} is a set of values such
that at least n − t of them lie on some t−degree polynomial f(x), and n >
3t + 2, then v =EC-Interpolate(v1, v2, . . ., vn)=f(0), The polynomial can be
computed using any standard error-correction mechanism, e.g. the Berlekamp-
Welch decoder [26].

In the above modified protocol, Pnew is convinced that snew is a share of pri-
vate key s held by him. However, if the private key s of G is based on univariate
polynomials and we also assume that Pnew gets snew with Lagrange interpo-
lation, we can ensure that private key s is secure with the shuffling technique
presented by J. Kong et al.[19], but, we can not seem to convince Pnew that
snew is a share of private key s held by him.

5 Conclusion

In this paper, we present a distributed key generation based on bivariate sym-
metric polynomials, BDKG. Compared with others solutions, our construction
is efficient in computation and simple and flexible in applications. BDKG is
proven secure only against a static adversary. However, we don’t know if it is



secure or not against an adaptive adversary. In addition, we also simply discuss
its application.
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