第29卷第3期

文章编号:0253-9837(2008)03-0206-03

2008年3月 March 2008

Chinese Journal of Catalysis

研究快讯:206~208

负载型 Pd/SBA-15 催化剂的双烯选择性加氢催化性能

刘静瑜¹, 陆海孟¹, 凌正国², 史立华¹, 许波连¹, 范以宁¹

(1 南京大学化学化工学院介观化学教育部重点实验室,江苏省纳米技术重点实验室,江苏南京 210093;

2 中国石化金陵石化公司烷基苯厂研发部,江苏南京 210046)

摘要:用微型反应器评价体系结合程序升温还原 CO、化学吸附、BET 比表面积测试和高分辨率透射电子显微镜等多种表征方 法研究了负载型 Pd/SBA-15 催化剂的长链正构双烯选择性加氢的催化性能.结果表明,与 Pd/γ-Al₂O₃ 工业催化剂相比, Pd/ SBA-15 催化剂双烯选择性加氢的催化性能更优良,且 Pd/SBA-15 催化剂双烯选择性加氢催化性能与 Pd 负载量密切相关.随 Pd 负载量增加, Pd/SBA-15 催化剂的金属分散度和长链正构双烯加氢选择性急剧下降.

关键词:钯;SBA-15;负载型催化剂;双烯烃;选择性加氢

中图分类号:O643 文献标识码:A

与单烯烃共存的双烯烃和炔烃的选择性加氢是 一个重要的石油化工和精细化工过程.已有的研究 结果表明,影响负载型金属催化剂选择性加氢催化 性能的因素较多,如金属的分散度^[1~4]、助剂的种 类和含量^[5~7]以及载体的比表面积和孔结构^[8,9] 等.在长链正构(C₁₀~C₁₃)单烯与苯进行烷基化反 应生产单烷基苯的过程中,长链正构双烯的存在会 对反应产生不利的影响.例如,双烯与苯反应可以 生成重烷基苯(含两个苯环的烷基苯),使苯耗量增 加,单烷基苯产品纯度下降;双烯分子发生聚合、环 化反应可使催化烷基化反应的固体酸催化剂更易结 焦失活.因此,需采用选择性加氢工艺去除长链单 烯中的双烯.

本文用微反应器评价体系结合程序升温还原 (TPR)CO化学吸附、BET 表面积测试和高分辨率 透射电子显微镜(HRTEM)等多种物理化学手段研 究了负载型 Pd/SBA-15 催化剂的长链双烯选择性 加氢催化性能,为开发新型选择性加氢催化剂提供 参考信息.

实验所用选择性加氢 Pd/γ-Al₂O₃ 工业催化剂 为金陵石化公司烷基苯厂提供,Pd 的负载量为 0.30%.所用中孔 SBA-15 载体由吉林大学化学系 提供.用浸渍法制备 Pd 负载量为 0.30%的 Pd/ SBA-15 催化剂.将 SBA-15 浸入一定浓度的 PdCl₂ 溶液(pH=2)中,80℃蒸干,120℃干燥过夜后,于 500 ℃空气中焙烧1h, 再经 500 ℃空气-水蒸气脱 氯4h, 制得负载型 Pd/SBA-15 催化剂.

用固定床微型反应器(20 mm i.d. × 400 mm) 对上述催化剂的长链双烯选择性加氢催化性能进行 评价.所用反应原料为南京烷基苯厂长链(C₁₀~ C13) 正构烷烃脱氢产物(内含长链正构烷烃约 85.0% (摩尔百分数)、长链正构单烯烃约 10.0% 和 长链正构双烯烃约 1.0%, 其余为芳烃). 用液相溶 氢的加氢工艺将反应原料置于 2 L 高压釜中,在 100 ℃, H₂ 压力 1.3 MPa 下预先溶氢 3 h 至饱和, 催化剂于 200 ℃用 H2 还原 2 h. 反应条件为: $n(H_2)/n(双烯)=1$, WHSV = 40 h⁻¹, 100 °C. 用 Agilent HP-1050 型高效液相色谱离线测定原料和 产物组成.按下式计算双烯转化率和双烯加氢生成 单烯的选择性:双烯转化率=([双烯]_-[双烯] out) [双烯] _ × 100%; 生成单烯选择性 = ([单 烯],,,, -[单烯],,)/([双烯],, -[双烯],,,)×100%. 当产物中的单烯浓度小于原料中的单烯浓度时,生 成单烯的选择性为负值.

负载型 Pd 催化剂的双烯选择性加氢性能如表 1 所示.可以看出,Pd 负载量为 0.30%的 Pd/γ-Al₂O₃ 催化剂的双烯转化率为 47.6%(摩尔百分数, 下同),生成单烯的选择性为-3.6%,即反应后原 料中的单烯有净损耗.而相同 Pd 负载量的 Pd/ SBA-15催化剂其双烯转化率为79.7%,生成单烯

收稿日期:2007-10-14. 第一作者:刘静瑜,女,1982年生,硕士研究生. 联系人:范以宁,Tal:(025)83595987:Fay:(025)83317761:F.mail:ynfan@niv

联系人:范以宁. Tel: (025)83595987; Fax: (025)83317761; E-mail: ynfan@nju.edu.cn.

Table 1 Textural and catalytic properties of the supported Pd catalysts for selective hydrogenation of long-chain alkadienes								
Catalyst	Pd loading (%)	$\frac{A_{\text{BET}}}{\text{m}^2/\text{g}}$	$\frac{V_{\rm pore}}{{\rm ml}{\rm /g}}$	$\frac{d_{\text{pore}}}{\text{nm}}$	CO uptake (ml/g-Pd)	Pd dispersion ^a (%)	Alkadiene conversion (%)	Alkene selectivity (%)
Pd/y-Al ₂ O ₃	0.30	580	0.95	5.84	27.7	19.7	79.6	35.9
Pd/SBA-15	0.075	584	0.97	5.92	8.3	5.9	81.3	24.6
	0.15	594	0.99	5.90	5.6	4.0	79.7	12.3
	0.30	579	0.96	5.94	1.6	1.1	73.4	5.4
	1.00	205	0.84	12.8	67.8	48 3	47.6	-36

表 1 负载型 Pd催化剂的结构性质和双烯选择性加氢的催化性能

Reaction conditions : n(alkadienes) n(alkenes) = 1/10, n(H₂) n(alkadienes) = 1, WHSV = 40 h⁻¹, $\theta = 100$ °C.

 $^{\rm a}$ Calculated by assuming that the ratio of adsorbed CO molecules to surface palladium atoms is $1/1.5^{[10]}$.

选择性为 12.3%, 明显高于 Pd/γ-Al₂O₃ 工业催化 剂,具有优良的长链正构双烯选择性加氢催化性能. 随 Pd 负载量增加, Pd/SBA-15 催化剂的双烯加氢 活性变化不明显,但生成单烯的选择性急剧下降,表 明 Pd/SBA-15 催化剂的双烯加氢选择性与 Pd 负载 量密切相关.

为探讨负载型 Pd/SBA-15 催化剂双烯选择性 加氢催化性能与催化剂组成和结构之间的关系,测 定了催化剂样品的程序升温还原谱、比表面积和孔 结构以及 CO 化学吸附量.如图 1 所示, Pd/γ-Al₂O₃ 催化剂有三个耗氢峰,分别位于 145, 245 和 500 °C.而 Pd/SBA-15 催化剂仅有一个耗氢峰,与 Pd/γ-Al₂O₃ 催化剂 145 °C 的耗氢峰相近,并且 Pd/ SBA-15 催化剂耗氢峰总面积大于 Pd/γ-Al₂O₃ 催化 剂.这说明 Pd²⁺与 SBA-15 的相互作用较弱而易被 还原为金属态 Pd⁰, Pd²⁺与 γ-Al₂O₃ 的相互作用较 强而难被还原,氢还原处理后 Pd/γ-Al₂O₃ 催化剂表 面可能仍存在氧化态的钯.

图 1 Pd/γ-Al₂O₃和 Pd/SBA-15 催化剂的程序升温还原谱 Fig 1 H₂-TPR profiles of the Pd/γ-Al₂O₃(1) and Pd/ SBA-15(2) catalysts with 0.30% Pd loading

由表 1 可知, Pd/γ - Al_2O_3 催化剂的 Pd 金属分 散度较高.虽然 γ - Al_2O_3 载体的比表面积远小于 SBA-15,但 Pd^{2+} 与 γ - Al_2O_3 载体之间较强的相互 作用使还原后生成的金属 Pd 不易聚集生长.但是, Pd/ γ - Al_2O_3 催化剂的双烯转化率和生成单烯的选 择性却明显低于 Pd/SBA-15 催化剂.因此, Pd/ γ - Al_2O_3 和 Pd/SBA-15 催化剂的双烯选择性加氢催化 性能既与 Pd 金属分散度的大小相关,又与载体组 成和表面性质相关.通常, γ - Al_2O_3 表面酸性强于 SiO₂. γ - Al_2O_3 载体表面较强的酸性可能使双烯和 单烯分子(L碱)均易在其酸性表面吸附,且被 Pd 金 属表面催化加氢,故双烯加氢选择性较低.而对于 Pd/SBA-15 催化剂,由于载体表面酸性较弱,双烯分 子比单烯分子较易吸附,故催化剂具有较高的双烯 选择性加氢催化性能.

如图 2 所示, Pd/SBA-15 催化剂中 Pd 金属晶 粒既有部分分散在载体 SBA-15 的介孔内部,也有 部分分散在介孔外部.由于孔道的限阈效应,孔道 内 Pd 晶粒的短轴尺寸与载体孔径(约 6 nm)相近,

图 2 Pd/SBA-15 催化剂的高分辨率透射电子显微镜照片

Fig 2 HRTEM image of the Pd/SBA-15 catalyst with 0.30% Pd loading 而孔道外的 Pd 金属易聚集成较大的 Pd 晶粒(约 20 nm). 关联表 1 结果可知,随 Pd 负载量增加, Pd/ SBA-15 催化剂 CO 吸附量及 Pd 金属分散度急剧下降,而催化剂的比表面积、孔体积和平均孔径基本不变. 这说明所增加的 Pd 金属组分主要分散在介孔 外部且聚集成较大的 Pd 晶粒. 这可能是 Pd/SBA-15 催化剂的双烯加氢选择性随 Pd 负载量的增加而 下降的原因之一,而高度分散在 SBA-15 载体介孔 内的 Pd 金属晶粒具有优良的双烯选择性加氢催化 性能. 负载型 Pd/SBA-15 催化剂的结构、表面性质 与长链正构双烯选择性加氢催化性能之间的关系还 有待进一步的研究.

参考文献

- 1 Silvestre-Albero J , Rupprechter G , Freund H J. Chem Commun , 2006 , (1):80
- 2 Ryndin Y A, Nosova L V, Boronin A I, Chuvilin A L.

Appl Catal , 1988 , 42(1):131

- 3 Gigola C E , Aduriz H R , Bodnariuk P. Appl Catal , 1986 , 27(1):133
- 4 Tardy B , Noupa C , Leclercq C , Bertolini J C , Hoareau A , Treilleux M , Faure J P , Nihoul G. J Catal , 1991 , 129 (1):1
- 5 Sales E A, Mendes M D, Bozon-Verduraz F. J Catal, 2000, **195**(1):96
- 6 Aduriz H R , Bodnariuk P , Coq B , Figueras F. J Catal , 1989 , 119(1):97
- 7 Furlong B K, Hightower J W, Chan T Y L, Sarkany A, Guczi L. Appl Catal A, 1994, 117(1):41
- 8 Marin-Astorga N , Pecchi G , Pinnavaia T J , Alvez-Manoli G , Reyes P. J Mol Catal A , 2006 , 247(1-2):145
- 9 Panpranot J , Pattamakomsan K , Goodwin J G , Praserthdam P. Catal Commun , 2004 , 5(10): 583
- 10 Yuranov I , Moeckli P , Suvorova E , Buffat P , Kiwi-Minsker L , Renken A. J Mol Catal A , 2003 , 192(1-2): 239

Catalytic Properties of Supported Pd/SBA-15 Catalyst for Selective Hydrogenation of Alkadienes

LIU Jingyu¹, LU Haimeng¹, LING Zhengguo², SHI Lihua¹, XU Bolian¹, FAN Yining^{1*}

 (1 Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China;
2 R&D Department, LAB Plant, Jinling Petrochemical Company, SINOPEC, Nanjing 210046, Jiangsu, China)

Abstract : The structure and catalytic properties of the supported Pd/SBA-15 catalyst for selective hydrogenation of $C_{10} - C_{13}$ alkadienes have been studied using microreactor tests combined with temperature-programmed reduction , CO chemisorption , BET surface area measurements , and high-resolution transmission electron microscopy. The Pd/SBA-15 catalyst exhibits higher catalytic activity and selectivity than the commercial Pd/ γ -Al₂O₃ catalyst for the reaction. The catalytic properties of the Pd/SBA-15 catalyst are closely related to Pd loading. With increasing Pd loading , Pd dispersion and the selectivity for alkenes decrease remarkably.

Key words : palladium ; SBA-15 ; supported catalyst ; alkadiene ; selective hydrogenation

(Ed LN)