
INTRODUCTION

Self-setting reaction and resulting apatite formation
of α-tricalcium phosphate（α-TCP: α-Ca3（PO4）2）was
reported by Monma and Kanazawa in 19761）. They
reported that α-TCP set to form calcium-deficient
hydroxyapatite with Ca/P molar ratio of 1.5 when
α-TCP was hydrated in water at 60-100℃ and pH
between 8.1 and 11.4. Although this was the initial
finding of apatite cement, its long setting time pre-
vented its clinical use for a long period.

In 1986, Brown and Chow reported that a mix-
ture of tetracalcium phosphate（TTCP: Ca4（PO4）2O）
and dicalcium phosphate anhydrous（DCPA: CaHPO4）

set within approximately 30-60 minutes at physiologi-
cal temperature and formed apatitic product when
mixed with an aqueous solution2,3）. Based on their
initial findings, many types of apatite cement have
since been studied and developed including Biopex®4－33）.

Apatite cements show excellent tissue response
and good osteoconductivity since its composition is
apatitic after setting6,7,12－14,21,23,25）. In contrast to the
sintered apatite which is not replaced by bone but in-
stead keeps its shape in the bone defect, apatite ce-
ments are reported to be replaced by bone although
the process takes time6,12,23）. The mechanism of
apatite cements’ replacement by bone is not fully
clarified yet. Nonetheless, it is believed that low
crystallinity may be one of the factors that facili-
tates bone replacement since low-crystalline apatite
shows more solubility than high-crystalline apatite.

Set apatite cement is a porous material with ap-
proximately 30％ porosity10,32）, and this porosity con-
tributes favorably to the replacement of apatite ce-
ment by bone. However, apatite cement produced at
the usual mixing condition gives rise to
microporosity, and thus no cell penetration can be
expected. It has been demonstrated that macropores
（＞100 mm） allowed ingrowth of bone tissue with
haversian systems and facilitated osteoconduction in
the case of sintered calcium phosphates34－39）. In the
present study, therefore, the feasibility of biporous
（macro- and microporous）, low-crystalline apatite
was evaluated based on dissolution of mannitol from
self-setting apatite cement（Biopex®）.

MATERIALS AND METHODS

Biopex® was kindly donated by Mitsubishi Materials
（Tokyo, Japan）. Powder form of mannitol（CH2OH
（CH（OH））4CH2OH））obtained commercially（Nacalai,
Tesque, Kyoto, Japan）was recrystallized for both
purification and size regulation. It was saturated in
a mixed solution of methanol-water（1:1 vol）at 70
℃, and then filtered and cooled to room temperature.
Obtained crystals were crushed with mortar and pes-
tle and passed through an electromotion sieve. Crys-
tals that passed through 500-μm mesh, but which re-
mained against 300-μm mesh, were used as porogen
（Fig. 1）.

Mannitol crystals thus prepared were added to
the powder phase of Biopex® , so that mannitol
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content in the powder phase became 20, 40, or 60 wt
％. Then, the powder phase was mixed with the liq-
uid phase of Biopex®. Although the manufacturer
recommended mixing the liquid phase with powder
phase at 0.36 mL/g, this mixing ratio resulted in a
cement paste that was too wet. This was because the
surface area of mannitol crystals was too small com-
pared with the powder phase of Biopex®. Thus, mix-
ing was done such that the weight of liquid phase
and weight of powder phase excluding mannitol crys-
tals became 0.36 mL/g. The liquid and powder
phases were mixed using a glass slab and spatula,
and then the cement paste was placed in a split mold
（6 mm in diameter ×3 mm in height）. Both ends of
the mold were then covered by glass plates and
clamped. The paste was pre-hardened by storing in
an incubator kept at 37℃ and 100％ relative humid-
ity for 24 hours, and after which taken out of the
mold and immersed in 0.9％ saline at 37℃ for an ad-
ditional seven days.

After keeping in the 0.9％ saline for seven days,
the specimens were washed with distilled water,
dried, and supplied for scanning electron microscopic
observation （JSM 5400LV, JEOL, Tokyo, Japan）.
The cement was mounted on metal holders prior to
gold coating, and after which SEM observations were
carried out.

Biopex® composition was identified by means of
X-ray diffraction（XRD） analysis. The specimens
were ground into fine powders and characterized by
XRD. XRD patterns of the specimens were recorded
with a vertically mounted diffractometer system
（RINT 2500V, Rigaku, Tokyo, Japan）using counter-
monochromatized CuKα radiation generated at 40 kV
and 100 mA. The samples were scanned from 3° to
60° in a continuous mode（2.0° 2θ/min）, and the
intensity was recorded at 0.02° intervals. Note that
only XRD patterns of 20-45°were presented since no
important peaks were found outside this scan range.

Porosity of the apatite cement was calculated by
measuring the weight and volume of the cement32）.
Porosity was calculated based on the assumption that
cement composition was apatitic and that the density
of apatite was 3.16 g/cm3. The density was the aver-
age value for at least four specimens.

For statistical analysis, one-way factorial
ANOVA and Fisher’s PLSD method as a post-hoc test
were performed using the software, “Stat View 4.02”
（Abacus Concepts Inc., Berkeley, California）.

RESULTS AND DISCUSSION

Although the initial setting reaction would be com-
pleted after keeping in an incubator at 37℃ with
100％ relative humidity for 24 hours, Biopex® that
contained 60 wt％ of mannitol crystals was not able
to be taken out of the mold. This was caused by an
excess content of mannitol crystals in the Biopex®

composition, thus inhibiting the set Biopex® to keep
its shape. Therefore, the following studies focused
on Biopex® containing 40 wt％ or less mannitol crys-
tals. When Biopex® contained 40 wt％ or less
mannitol, the specimens could be easily taken out of
the mold and no significant differences in the han-
dling property were observed.

Fig. 2 shows the typical SEM pictures of the
fractured surface of Biopex® containing 0％（a, c）
and 40 wt％（b, d）mannitol after being kept in 0.9％
saline at 37℃ for seven days. Fig. 2（a）shows the
lower magnification of Biopex® containing no
mannitol. Only small pores that might be introduced
during the mixing procedure were seen on its sur-
face. In contrast, large pores were found in the case
of Biopex® containing 40 wt％ mannitol（Fig. 2（b））.
These pores were thought to be formed by the disso-
lution of mannitol. At this stage, no remaining
mannitol was observed indicating that mannitol dis-
solved completely within seven days. At the higher
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Fig. 1 Scanning electron microscopic images of mannitol:

（a） Commercially obtained mannitol; （b）

Recrystallized and sieved mannitol. Mannitol

crystals that passed through 500-μm but remained

against 300-μm mesh were used as porogen.



magnification（c, d）, it is seen that set Biopex® was
composed of clusters of needle-like crystals that are
typical of apatite, and that these needle-like crystals
formed micropores.

Fig. 3 summarizes the porosity of Biopex as a
function of added mannitol. Porosity of Biopex® con-
taining no mannitol was 33.0±2.5％. It can be seen
that the porosity of Biopex® increased linearly with
the amount of added mannitol to reach 59.8±3.4％
when 40 wt％ of mannitol was added. Although the
difference in porosity between Biopex® containing 40
wt％ and 0 wt％ mannitol was 26.8％, it was a rea-
sonable difference since Biopex® itself was a porous
material with 33.0％ porosity. It should be noted
that the microporosity of Biopex® is also important
for the formation of micropores since interconnected
micropores may be used when mannitol is dissolved
and released from Biopex®.

As can be seen from the XRD patterns, apatite
formed by the setting reaction of Biopex® was of a
lower crystallinity. For Biopex® to be replaced by
bone, Biopex® needs to be resorbed by osteoclasts.
Low-crystalline apatite is generally preferred for
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Fig. 2 Fractured surface of Biopex® containing 0％（a, c）or 40 wt％（b, d）mannitol after being kept in

an incubator at 37℃ and 100％ relative humidity for 24 hours, followed by being immersed in 0.9％

saline at 37℃ for 7 days. Lower magnification（a, b）reveals that macropores are also formed for

Biopex® containing 40 wt％ mannitol. Higher magnification（c, d）reveals that needle-like crystals

form clusters and micropores.

Fig. 3 Effect of added mannitol on the porosity of

Biopex® . Porosity of Biopex® increases linearly

with added mannitol.
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osteoclast resorption. Hence, low-crystalline apatite
formed by the setting reaction of Biopex® would
seem to expedite the replacement of Biopex® by bone.

Although the addition of mannitol was found to
be an effective means to yield macropores, it is well
known that organic materials inhibit apatite forma-
tion. Thus, mannitol added to Biopex® may inhibit
apatite formation in the set cement. To find out
whether added mannitol did indeed inhibit apatite
formation in Biopex®, XRD analysis of Biopex® com-
position was carried out. Fig. 4 summarizes the
XRD patterns of Biopex® containing 0, 20, and 40
wt％ mannitol after being kept in 0.9％ saline at 37
℃ for seven days. XRD patterns of the powder
phase of Biopex® and apatite are also shown for
comparison. Basically, no differences in apatite for-
mation were found regardless of the amount of
added mannitol. Unreacted α-TCP was also found
regardless of the amount of added mannitol.
Crystallinity of apatite－ which can be judged by the
width of the peak － was also the same regardless of
the amount of added mannitol.

Although the mechanism of apatite formation
has not been clarified in the present study, it could
be said that added mannitol dissolved quickly from
Biopex® and caused no inhibitory effects on the
transformation and resulting setting reaction of
Biopex® － if the amount was 40 wt％ or less. As a
result of mannitol dissolution, we could successfully
fabricate biporous, low-crystalline apatite. Moreover,

the porosity of Biopex® containing 40 wt％ mannitol
was approximately 60％.

In light of the favorable findings of this initial
study, further study will be conducted to obtain
more details on the fabrication of biporous, low-
crystalline apatite by adding 40 wt％ or less
mannitol to Biopex®.
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