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Abstract   Computation of decay time for entangled quantum systems is an im-
portant aspect of decoherence theories. Here we explore this topic from the stand-
point of computing the decay time to the existence of a joint probability distribu-
tion of the entangled particles – atoms, in our case. We also analyze the problem 
from the viewpoint of the decay of an improper upper probability distribution, for 
the entangled particles and its continuous decay into a proper probability distribu-
tion. A standard quantum decoherence model and the upper-probability model 
have, it turns out, the same expected decay time for a familiar example of a system 
with a Bell state. 

Quantum mechanical entangled configurations of particles that do not satisfy 
Bell’s inequalities, or equivalently, do not have a joint probability distribution, are 
familiar in the foundational literature of quantum mechanics. Nonexistence of a 
joint probability measure for the correlations predicted by quantum mechanics is 
itself equivalent to the nonexistence of local hidden variables that account for the 
correlations (for a proof of this equivalence, see Suppes and Zanotti, 1981).  

From a philosophical standpoint it is natural to ask what sort of concept can be 
used to provide a “joint” analysis of such quantum correlations. In other areas of 
application of probability, similar but different problems arise. A typical example 
is the introduction of upper and lower probabilities in the theory of belief. A per-
son may feel uncomfortable assigning a precise probability to the occurrence of 
rain tomorrow, but feel comfortable saying the probability should be greater than 
½ and less than ⅞. Rather extensive statistical developments have occurred for 
this framework. A thorough treatment can be found in Walley (1991) and an ear-
lier measurement-oriented development in Suppes (1974). It is important to note 
that this focus on beliefs, or related Bayesian ideas, is not concerned, as we are 
here, with the nonexistence of joint probability distributions. Yet earlier work with 
no relation to quantum mechanics, but focused on conditions for existence has 
been published by many people. For some of our own work on this topic, see Sup-
pes and Zanotti (1989). 

Still, this earlier work naturally suggested the question of whether or not upper 
and lower measures could be used in quantum mechanics, as a generalization of 
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probability. To show that an affirmative answer is possible, and, we hope of some 
philosophical interest, is the general purpose of this paper. 

Following Suppes and Zanotti (1991) the initial focus is to construct an upper-
probability measure for Bell-type correlations. Such a construction was sketched 
in the paper just mentioned, but full details are needed here to study the decoher-
ence decay of such systems, our second topic. 

Computation of decoherence times is an important feature of decoherence theo-
ries. The literature in fact includes specific results on of whether or not most en-
tangled systems of quantum particles have an expected decoherence time that is 
much too fast for humans or other animals to make any brain computations that 
are quantum mechanical. (For a skeptical view of this possibility, see Suppes and 
de Barros, 2007.) 

The question of special interest here is whether a computation of decoherence 
decay of the upper probability measure we construct gives a good approximation 
of the decay time obtained from direct quantum mechanical calculations of the de-
coherence decay of the “too active” quantum correlations. 

For later use, we give here the definition of upper probability. 
Definition 1. Let Ω be a nonempty set, F a Boolean algebra on Ω , 
and P* a real-valued f unction on F. Then  = ( ,F ,P* ) is an upper Ω Ω
probability space if and only if for every A and B in F 

1. 0 P* (A) ≤ 1; 

2. P* (∅) = 0 and P* ( Ω )= 1; 

3. If A ∩ B =∅, then P* (A ∪ B)  P* (A) + P* (B). 

Axiom 3 on finite subadditivity could be strengthened to σ-subadditivity but we 
are not concerned with that issue here. 

1. Upper probabilities in quantum mechanics 

We use the standard notation familiar in the Bell inequalities which we review 
very briefly. For definiteness, but not required, we can think of a Bell-type ex-
periment in which we are measuring spin for particle A and for particle B. More 
generally, we may think of A and B as being the location of measuring equipment 
and we observe individual particles or a flux of particles at each of the sites. Here 
we will think of individual particles because the analysis is simpler. The measur-
ing apparatus is such that along the axis connecting A and B we have axial sym-
metry and consequently we can describe the position of the measuring apparatus 
just by the angle of the apparatus A or B in the plane perpendicular to the axis. We 
use the notation wA and wB for these angles. The basic form of the locality assump-
tion is shown in terms of the following expectation: 
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  (1) A A B A AE( ) E(MM | w , w , | )w ,λ = λ

What this means is the expectation of the measurement MA, of spin of a particle in 
the apparatus in position A, given the two angles of measurement for apparatus A 
and B as well as the hidden variable , is equal to the expectation without knowl-
edge of the apparatus angle wB, of B. This is a reasonable causal assumption and is 
a way of saying that what happens at B should have no direct causal influence on 
what happens at A. On the other hand, we have the following theoretical result for 
spin, well confirmed in principle for the case where the measuring apparatuses are 
both set at the same angle: 

λ

  (2) A A B BM | w wP( 1 x & M 1) 1= − = = = =

If the angles of the apparatus are set the same, we have a deterministic result in the 
sense that the observation of an EPR state at B will be the opposite at A, and con-
versely. Here we are letting 1 correspond to spin ½ and -1 correspond to spin - ½. 
What Bell showed is that on the assumption there exists a hidden variable, four re-
lated inequalities can be derived for settings A and A' and B and B' for the measur-
ing apparatus. We have reduced the notation here in the following way in writing 
the inequalities. First, instead of writing MA, we write simply A, and second, in-
stead of writing Cov(A, B) for the covariance, which in this case will be the same 
as the correlation, of the measurement at A and the measurement at B, we write 
simply AB. With this understanding about the conventions of the notation, we 
then have as a consequence of the assumption of a hidden variable the following 
set of inequalities, which in the exact form given here are due to Clauser, Horne, 
Shimony, and Holt (1969): 

-2  AB + AB' +A'B – A'B'  2                (3a) 

-2  AB + AB' – A'B + A'B'  2                (3b) 

-2  AB – AB' + A'B + A'B'  2                (3c) 

-2  – AB + AB' + A'B + A'B'  2               (3d) 

Quantum mechanics does not satisfy these inequalities in general. To illustrate 
ideas, we take as a particular case the following: 

AB – AB' +A'B + A'B' < – 2 

We choose 

AB = A'B'= – cos 30° = –
3

2
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AB' = – cos 60° = - 
1
2

 

A'B = – cos 0°= –1 

So the inequality (3c) is violated by this example, since from quantum mechanics 
Cov(AB) = – cos (angle AB) and 

3 1 31 2
2 2 2

− + − − < − . 

First we must compute the probabilities for the pairs with given correlations, using 
dots for missing arguments. So 

P(A = 1) = p(1 ⋅  ⋅ ⋅)= p(–1 ⋅ ⋅ ⋅) = 
1
2

 

since E(A) = 0, and by similar arguments and notation 

P(B' = 1) = p(⋅ ⋅ ⋅ 1)= p(⋅ ⋅ ⋅ -1) = 
1
2

 

For ease of reading we replace “–1” by “0”. 
 

Now the correlation 

AB = –
3

2
 

so 

–
3

2
 = p(1 ⋅ 1 ⋅) + p(0 ⋅ 0 ⋅) - p(1 ⋅ 0 ⋅) – p(0 ⋅ 1 ⋅). 

But by symmetry 

p(1 ⋅ 1 ⋅) = p(0 ⋅ 0 ⋅) 

and  

p(1 ⋅ 0 ⋅) = p(0 ⋅ 1 ⋅). 

So solving, we obtain 

4p(1 ⋅ 1 ⋅) –1 = 
3

2
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and  

p(1 ⋅ 1 ⋅) = -
3 1

8 4
+  

p(1 ⋅ 0 ⋅) = 
3 1

8 4
+ . 

 

Similarly for A'B' = – 
3

2
 

P(A = 1, B' = 1) = p(⋅ 1 ⋅1) = –
3 1

8 4
+  

p(⋅ 1 ⋅ 0) = 
3 1

8 4
+ . 

 
Next AB' = 1/2, so 

4p(1 ⋅ ⋅ 1) –1 = -
1
2

 

p(1 ⋅ ⋅ 1) = 
1
8

 

p(1 ⋅ ⋅ 0) = 
3
8

. 

 

Since A'B = -1 

4p(⋅ 1 1 ⋅) –1 = -1 

p(⋅ 1 1 ⋅) = 0 

p(⋅ 1 0 ⋅) = 
1
2

. 

Since each of the four measurements A, A′, B, and B′ has value ± 1, there are 
16 atoms, i.e., atomic events, in our upper probability space Ω. There are not sim-
ple elementary probability arguments of the kind we have just been following, to 
compute the upper probability of these atoms. The reason is simple; the main 
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probabilistic law that must be preserved is the subadditivity of upper probabilities, 
expressed as Axiom 3 of Definition 1. This axiom is, of course, weaker than the 
standard additivity axiom.  If we held onto the standard additivity and use the 
methods just used for computing probabilities of correlations, we would have at-
oms with negative probabilities, the sort of thing that happens in quantum me-
chanics when using the Wigner distribution for position and momentum of a sin-
gle particle (for details on this, see Suppes, 1961). 

So, to make what could easily be a longer story short, here are the upper prob-
abilities for the axioms. Since E(A) = E(A′) = E(B) = E(B′) = 0, by symmetry we 
need find only 8. Here is the list. 

 
p* (1 1 1 1) = p* (0 0 0 0) = 0 
 

p* (1 1 1 0) = p* (0 0 0 1) = 
16
1

 

 

p* (1 1 0 1) = p* (0 0 1 0) = 
8
1

 

 

p* (1 1 0 0) = p* (0 0 1 1) = 
1 3
8 8

+  

 

p* (1 0 1 0) = p* (0 1 0 1) = 
1 3
8 8

−  

 

p* (1 0 1 1) = p* (0 1 0 0) = 
8
1

 

 

p* (1 0 0 0) = p* (0 1 1 1) = 
16
1

 

 
p* (1 0 0 1) = p* (0 1 1 0) = 0 
 

Note that the upper probabilities are non-negative and not greater than 1.  What 
makes them as a whole upper probabilities, not standard probabilities, is that the 
sum of the 16 is greater than 1: 

1

, , , 0
*( , , 3, ) 1

8i j k l
p i j k l

=
= +∑  
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We now verify that each of the correlation probabilities computed earlier sat-
isfy the subadditivity for the four of the 16 atoms that define it as an event.  To 
simplify notation further, in showing these computations, we replace p* (1 1 0 0), 
e.g., by 1 1 0 0.  So all the following inequalities are really about upper probabili-
ties, but “p*” has been deleted. 

 

            AB:  p (1 · 0 ·) = 
1 3
4 8

+  ≤ 1 1 0 1 + 1 1 0 0  + 1 0 0 1 + 1 0 0 0 

 

                              
1 1 3 1              
8 8 8 16 1

⎛ ⎞
≤ + + + +⎜ ⎟⎜ ⎟

⎝ ⎠

1
6

 

 

                 
3 3          
8 8

≤ +  

p (1 · 1 ·) = -
1 3
4 8

−  ≤ 1 1 1 1 + 1 1 1 0 + 1 0 1 1 + 1 0 1 0 

           
1 1 1     0                  

16 8 8 8
⎛ ⎞

≤ + + + −⎜ ⎟⎜ ⎟
⎝ ⎠

3
 

          
5 3        

16 8
≤ − . 

 

AB′: p (1 · · 0) = 
8
3

 ≤ 1 1 1 0 + 1 1 0 0 + 1 0 1 0 + 1 0 0 0 

             
1 1 3 1 3 1        

16 8 8 8 8 16
⎛ ⎞ ⎛

≤ + + + − +⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟⎟
⎠

 

             
3  
8

≤  

 p (1 · · 1) = 
8
1

 ≤ 1 1 1 1 + 1 1 0 1  + 1 0 1 1 + 1 0 0 1 

            
1 1   0                         
8 8

≤ + + + 1
16

 

            
5  

16
≤ . 
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A′B: p (· 1 0 ·) = 
2
1

 ≤ 1 1 0 1 + 1 1 0 0  +  0 1 0 1 + 0 1 0 0 

             
1 1 3 1 3      
8 8 8 8 8

⎛ ⎞ ⎛ ⎞
≤ + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1
8

 

             
1   
2

≤  

 p (· 1 1 ·)  =  0 ≤ 1 1 1 1 + 1 1 1 0 + 0 1 1 1 + 0 1 1 0 

           
1 1    0                    

16 16 16
≤ + + + 1

 

           
3   

16
≤ . 

A′B′: p (· 1 · 0) = 
1
4 8

+ 3
 ≤ 1 1 1 0 + 1 1 0 0 + 0 1 1 0 + 0 1 0 0 

          
1 1 3 1           

16 8 8 16 8
⎛ ⎞

≤ + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

1
 

          
3 3                
8 8

≤ +  

 p (· 1 · 1) 
1 3
4 8

= − −   ≤  1 1 1 1 + 1 1 0 1 + 0 1 1 1 + 0 1 0 1 

                           
1 1 1     0                  
8 16 8 8

⎛ ⎞
≤ + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

3
 

             
5 3         

16 8
≤ − . 

2. The decay of the EPR state and the existence of a joint 
distribution 

 
We calculate the time evolution of the EPR state 
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1| EPR   (| 01 |10 )
2

> = > − >  (4) 

under the influence of decoherence. The decaying state will not stay pure, but be-
come mixed in the course of time. We therefore calculate the corresponding initial 
density operator and P(  obtain  0) :  | EPR EPR |= ><

 |)0110||1001(|
2
1|)1010||0101(|

2
1)0( ><+><−><+><=P  (5) 

There are many different ways to model the influence of decoherence on a quan-
tum system described by a quantum state (Schlosshauer 2007). Here we focus on 
the master equation approach that is popular in quantum optics. According to this 
approach, a quantum state couples to an environment (“heat bath”), which is mod-
eled as an infinite collection of harmonic oscillators. This way of modeling deco-
herence takes into account that a quantum system can never be shielded from its 
environment (Zeh 1973). Note that due to the coupling of the quantum system to 
the environment, the entanglement of the quantum system in question diffuses into 
the environment and the reduced state of the system becomes less and less entan-
gled. This reduced state of the quantum system can be obtained by a procedure 
called “tracing out” the environment variables. This procedure can be justified by 
noting that nothing is known about the environment and so it is appropriate to take 
a statistical average. Finally, one obtains a master equation for the reduced state P 
of our 2-atom system, 

( ) ( ) ( ) ( ) ( ) )2 (

1
( ) ( ) ( ) 2 ( ) : ( ),

2
i i i i i i

i=

kP t P tσ σ σ σP t σ σP t L P t
t + − + − − +

∂ ⎡ ⎤= − + =∑ ⎣ ⎦−
∂

(6) 

with the damping constant k.  are the raising and lowering operator acting on 

atom i. These operators can be expressed in terms of the Pauli matrices  and 

: 

)(i
±σ

1σ

2σ
 

 ( )1 2
1
2

i  σ σ± = ± σ  

with 
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  1 2

0 1 0 i
,

1 0 i 0
σ σ

−⎛ ⎞ ⎛
= =⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

0

Eq.(6) can be formally solved: 

  (7) ( ) e (0)LtP t P=

Using eqs. (5) and (6) and after some algebra (see Hartmann, 2009), we obtain the 
time evolution of the EPR state, 

    (8) ( ) (0) (1 )| 00 00 |τ τP τ e P e− −= + − ><

with the normalized time parameter  = k t.  τ
We see that the quantum system under consideration asymptotically reaches the 
ground state . | 00 00 |><
Let us now study the correlation that the decaying quantum state exhibits. In order 
to connect to the discussion in Section 1, we focus on the following four observ-
ables: 

 
  A =                   (9a) (1)

1σ
 
  A′ =  cos(α) + sin (α)                (9b) (1)

1σ (1)
2σ

 
  B =  cos(α) +  sin(α)                (9c) (2)

1σ (2)
2σ

 
  B′ =  cos(β) +  sin(β)                (9d) (2)

1σ (2)
2σ

 
Note that A and A' act only on particle 1 and B and B' act only on particle 2. 
Clearly, the expectation values of A, A', B and B' in P(t) all vanish for all times 

: τ
 

              '   '< > =< > = < > = < > =A  A   B   B    

 
However, the two-particle correlations <A B>, <A B'>, <A' B> and <A' B'> do 
not vanish. We calculate the expectation values of these operators for the state 

. P( )τ
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  < AB > = -e-τ cos(α)               (10a) 
 
  < AB′ > = -e-τ cos(β)               (10b) 
 
  < A′B > = -e-τ                 (10c) 
 
  < A′B′ > = -e-τ cos(α – β)               (10d) 
 

We expect that these correlations can be derived from a joint probability distribu-
tion for sufficiently large , i.e. when the state is sufficiently decayed. But when 
precisely is a description of the correlations in terms of a joint probability distribu-
tion possible? This question is addressed by the Clauser-Horne-Shimony-Holt 
inequalities (see eqs. (3)). To be more specific, let  and , the 
example introduced in Section 1. It turns out that inequalities (3a), (3b) and (3d) 
are always satisfied. However, inequality (3c) leads to  

τ

o30α = o60β =

 
4e

2 3 1
τ− ≤

+
,  (11) 

or . .1τ >
We see that a “classical” description of the correlations is possible already after a 
very short period of time (in units of ). 1k −

Instead of the calculation of (9) for the decay of the quantum mechanical theo-
retical correlations, we now compute the upper-probability correlations from the 
upper-probability values of the 16 atoms.  We will label these correlations  
<A B>* (superscript for upper). 

So, here are the calculations of the four upper correlations. 

      <A B>*: p* (1 · 1 ·) = p* (1 1 1 1) + p* (1 1 1 0) + p* (1 0 1 1) + p* (1 0 1 0) 

                       
1 1 1  0                                 

16 8 8 8
= + + + − 3

 

           
5 3                      

16 8
= −  

 p* (1 · 0 ·) = p* (1 1 0 1) + p* (1 1 0 0) + p* (1 0 0 1) + p* (1 0 0 0) 

          
1 1 3                                 0              
8 8 8

= + + + + 1
16
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5 3                    

16 8
= +  

so  <A B>* = 
5 3 5 32

16 8 16 8
⎡ ⎤⎛ ⎞

− − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

           =
3

2
− . 

<A B′>*: p* (1 · · 1) = p* (1 1 1 1) + p* (1 1 0 1) + p* (1 0 1 1) + p* (1 0 0 1) 

                        
1 1    0                                              0
8 8

= + + +  

          
1    
4

= . 

 

p* (1 · · 0) = p* (1 1 1 0) + p* (1 1 0 0) + p* (1 0 1 0) + p* (1 0 0 0) 

        
1 1 3 1 3                              

16 8 8 8 8 16
= + + + − + 1

 

        
3    
8

=  

so   <A B′>* = 
1 32
4 8
⎡ ⎤−⎢ ⎥⎣ ⎦

 

             =
1
4

− . 

<A′ B>*: p* (· 1 1 ·) = p* (1 1 1 1) + p* (1 1 1 0) + p* (0 1 1 1) + p* (0 1 1 0) 

                         
1 1     0                                        0

16 16
= + + +  



13 

            
1   
8

= . 

p* (· 1 0 ·) = p* (1 1 0 1) + p* (1 1 0 0) + p* (0 1 0 1) + p* (0 1 0 0) 

         
1 1 3 1 3                                      
8 8 8 8 8

= + + + − + 1
8

 

         
1          
2

=  

so   <A′ B>* = 
1 12
8 2
⎡ ⎤−⎢ ⎥⎣ ⎦

 

             =
3
4

− . 

<A′ B′>*: p* (· 1 · 1)  = p* (1 1 1 1) + p* (1 1 0 1) + p* (0 1 1 1) + p* (0 1 0 1) 

                           
1 1 1    0                               
8 16 8

= + + + − 3
8

 

              
5 3                     

16 8
= −  

p* (· 1 · 0) = p* (1 1 1 0) + p* (1 1 0 0) + p* (0 1 1 0) + p* (0 1 0 0) 

          
1 1 3                               0               

16 8 8 8
= + + + + 1

 

         
5 3                     

16 8
= +  

so   <A′ B′>* = 
5 3 5 32

16 8 16 8
⎡ ⎤⎛ ⎞

− − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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              =
3

2
− . 

Putting these upper correlations into inequality (3c), we get 

 
3 1 3 3 1 3 2

2 4 4 2 2
− + − − = − − < − . 

Applying then the same decay rate e , we have τ−

1( 3)
2

e τ−− − ≤ −2 , 

so 
4

2 3 1
e τ− ≤

+
. 

exactly the same inequality for the decay time as was obtained earlier for the 
quantum mechanical computation.  Yet the two methods are not identical.  It is 
clear that the two proper joint probability distributions at the time 

4
31 2

e τ− =
+

 are close but not exactly the same. 
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