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Abstract: We consider a multivariate density model where we estimate
the excess mass of the unknown probability density f at a given level v > 0
from n i.i.d. observed random variables. This problem has several appli-
cations such as multimodality testing, density contour clustering, anomaly
detection, classification and so on. For the first time in the literature we
estimate the excess mass as an integrated functional of the unknown den-
sity f. We suggest an estimator and evaluate its rate of convergence, when
f belongs to general Besov smoothness classes, for several risk measures.
A particular care is devoted to implementation and numerical study of
the studied procedure. It appears that our procedure improves the plug-in
estimator of the excess mass.
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1. Introduction

Let X1,..., X, ben i.i.d. observations in R?, d > 1 having unknown underlying
distribution function F' with probability density f. We want to estimate the
excess mass of this distribution, at level v > 0 which was defined by (L) as

E(v)=F(CW))—v-[CW),

where |-| denotes the Lebesgue measure of a set and C(v) = {x € R%: f(x) > v}
is the density level set (at level v) or density contour cluster (see Figure [ll).
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F1G 1. Ezcess mass for a bivariate probability density with two local modes

Estimating the excess mass has multiple practical applications that we men-
tion without actually dealing with them. Most applications use differences of
excess-masses at different levels v in order to test the multimodality of a proba-
bility distribution. Hartigan and Hartigan (E) introduced the dip-excess mass
and defined an estimator which allowed to test multimodality. This estimator
was extensively used in the literature since, see e.g. (14), (), (¥). They insist
on the fact that such a procedure separates mode estimation from its location.

Another important application of the excess mass functional is to the esti-
mation density level sets (or density contour clustering), that is the support
(the set of points) C'(v) on which the excess mass at level v is calculated. This
requires a good estimator of the excess mass as well as an optimization pro-
cedure. Polonik (ﬂ) proved consistency of such estimators of the density level
set and found some rates of convergence. Tsybakov (ﬂ) gave minimax rates for
estimating smooth star-shaped level sets of a density. These methods are either
very difficult to implement or use assumptions which are difficult to check. They
use a margin assumption quantifying the smoothness of the density f around
the level v as introduced by (IL1). Later, (!) used a Bayesian approach and
(ﬂ) revisited the plug-in estimator for this problem. They may claim for com-
putational feasibility as well as for strong theoretical properties. On the other
hand, (n) studied and implemented an estimator of the support of a density
via complexity penalized excess-mass criterion.

Other applications of excess mass estimation include estimation of regression
contour clusters (24), discrimination of locally stationary time series i) and,
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via level set estimation, anomaly detection and classification as described by
(1).

These methods generally avoid using a nonparametric estimator of f. In-
deed, such an estimator may not be very attractive in higher dimensions d.
We overpass this difficulty by estimating the excess mass £(v) as an integrated
functional of f at fixed level v > 0, that is

Ev) = /fl)l,(f(t))dt for O, (x) = (2] = v) Ljz|>0- (1.1)

Indeed, excess mass estimation is a particular case of estimating integrated func-
tionals of f of general type: 8 = [ ®(f), where ® is known. The study of such
functionals with ® 4-times continuously differentiable is now completed. It was
noticed since (), (ILZ) and many others that 6 can be estimated at a parametric
rate as soon as the Holder smoothness of f is larger or equal to 1/4, but at
a slower nonparametric rate otherwise. The lower bounds for the nonparamet-
ric rates case were established in (#). These rates were achieved in a minimax
setup by wavelet estimation procedure in the paper by (Lf) and in an adaptive
to the smoothness setup in the paper by (24) (with a loss with respect to the
minimax rate of the usual logarithmic order). Nemirovski (Rf) gave asymptot-
ically efficient estimators for 1 and 2-times continuously differentiable function
®. In our problem & is continuous but not differentiable (when periodized). Our
approach works for any other integrated functionals with continuous but not
differentiable ®.

In the particular case of a large enough level v, the excess mass problem
is reduced to the estimation of the LL; norm. Obviously, this problem has no
interest in the density model. In the regression model (L) studied the problem
of estimating the IL; norm and in the gaussian white noise model (L) estimated
the L, norm for r > 1.

The excess mass estimator we construct in this paper generalizes the esti-
mator of the Ly norm in ({Lf]). Their procedure actually uses a Fourier series
approximation for the function ®, whose coefficients are known and depend on
the level v. As ® is applied to f, so are the functions of the Fourier basis. A
kernel estimator of f is then plugged-into the functions of the Fourier basis and
they are multiplied by a factor which actually reduces the bias. This multiplica-
tive factor is depending on the variance of the kernel estimator in the considered
model. The integral of this expansion gives the final estimator of the functional.

In this paper, we consider a density (thus heteroscedastic) model. Neverthe-
less, the excess mass functional can be defined for the regression and gaussian
white noise models as well. As we consider the density model, the multiplicative
factor depends upon a variance which is proportional to the unknown density f
and another estimator is plugged-into this factor. Moreover, we have a multidi-
mensional setup fitting better to most applications. For the study of rates, we
replace the preliminary kernel estimator by a wavelet estimator which allows us
to compute rates over more general Besov smoothness classes for the unknown
probability density f. The whole procedure is detailed and fully explained in
Section B
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In (L£), lower bounds for estimating the Li-norm were given, but upper and
lower bounds were separated by a logarithmic factor. We show that our estimator
attains the same rate as the estimator of the Li-norm in (iLf). In the gaussian
white noise model, () improved on the lower bounds for the particular problem
of excess mass estimation. Nevertheless, a gap still remains between the upper
bounds we present here and their lower bounds.

The paper is organized as follows. In Section B we present the estimation
procedure. In Section Bl we state an expansion for the upper bound of the
expected errors (pointwise, Ly and L) of our procedure. Next, we determine
the optimal parameters of the method and give in Theorem EJl the rate our
procedure achieves. Section [l is devoted to the empirical study. The proofs are
postponed to Section H

2. Excess mass estimation procedure

Let us describe the densities f considered in the sequel. We suppose that f is
compactly supported with known support K = [A;, By]x...x [Aqg, Bg) € R%. We
denote, for some m* > 0, F(K, m*) the class of compactly supported probability
densities f : K — R such that

i >m* < .
it f() = m* and |fle < p (2.1)

is satisfied for some p €]0, 1].

The estimation procedure consists of four steps. At the first step we approx-
imate the functional ®, defined in (&) by its truncated Fourier series with
known coefficients. Then, at the second step, we estimate the unknown function
f- In particular, we consider here wavelet estimator but it is possible to consider
kernel estimators. The third step consists in plugging-into the Fourier series the
wavelet estimator of f in an unbiased way. Finally, we integrate on K to get the
estimator & (1) of £(v). Let us describe in more details this procedure.

2.1. Approximation of the functional ®,

We assumed in (B2H) that the density of interest f is bounded by some p < 1
uniformly over the class F(K,m*). It allows us to define @, as a function on
[—1,1] to [0,1] and then, its approximation by Fourier series is given by

N
An®, () o) + 3 (er(v) cos(rhku) + bi(v) sin(rku)),
k=1

where the Fourier coeflicients are easily computed
o) = (1,2,)/2=(1-v)?/2
er(v) = (cos(mk-), ®,) = == (cos(mk) — cos(mkv)) (2.2)

bp(v) = (sin(mk-),®,) =0.
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We insist here on the fact that the procedure applies for any other integrated
functional [ ®(f) with known continuous ® when periodized. The values of the
Fourier coeflicients ¢; will change, but they will still be bounded by a quantity
of order k=2 for large k and all the proofs work out the same way.

Let us discuss on the class constraints in (E2l). On the one hand, we assume
densities f to be uniformly bounded by some constant p < 1. More generally,
we could have considered a class F(K, R,m*) (for R > 0 fixed) of probability
density functions f : K — R such that f(t) > m* > 0 for all ¢ € K and
such that there exists some 0 < p < R and ||f|cc < p < R. Then, the excess
mass is defined via the functional ®, : [-R, R] — [0, R] for any 0 < v < R.
For this functional we consider the rescaled Fourier basis on [—R, R] and the
corresponding coefficients are

R—v)? 2R?
co(v) = %, cx(v) = — (cos(mk) — cos(wk%)).
Therefore, without loss of generality we consider R = 1. On the other hand, we
ask that the underlying density to be bounded from below away from 0. This
is a classical assumption in the density model. Indeed, the variance of density
estimators are proportional to f and it cannot be controlled without such an

assumption.

2.2. Estimation of the density f

We need now a nonparametric estimator of the density f. We can use any
method and tune the smoothing parameter similarly. We chose the wavelet
estimator of f in order to deal easier with higher dimensions and to general
functions in Besov classes. For this purpose, let us be given a pair of scaling
function ¢ and associated wavelet function . We assume that these functions
are compactly supported (of support [0, 2M]); they can be of class C" with r as
large as desired, see for example the Daubechies’s wavelets, (). With tensorial
product , one can construct a multivariate scaling function and 2¢ — 1 associated
wavelets always denoted by {¢, 9 }.cq1, . 24_1}, see (IL4]). In the sequel, for any
function g € L?(RY),1 € Z2?, j € N, we use the notation g;,(.) = 2/%/2¢(27. —1).
For a given j € N, the set {¢;1,,¢5,,,, 3/ > j,(l1,12) € 724 e {1,.27 —1}} is
an orthonormal basis of L?(R¢) and one can write, with the usual notations for
the projections

Vg e L*(RY), Vj>0, g=Ejg+Djg (2.3)

where

Ejg= Y ajdjuandDig=»_ > > B

lezd jr>jlezd 1<e<24—1

We omit the spaces where the indices are varying: j, j/ are always integers
and [ is always a d—dimensional index. Denote |.| the integer value and define
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Jo = |jo’] and joo = |joo!] where jj and j., are such that

, , n 1/d
270 =logn and 2~ = (1ogn> . (2.4)

Taking advantage of the decomposition (&), we propose to estimate f by its
wavelet estimate at the level j varying between jp and joo

£) €N a5005(1) (2.5)
!

where the empirical coefficients are defined for any integer j varying between jo
and joo and for any integer | € {274; —2M,2By} x ... x {27 Aq — 2M, 2’ By}
(we denoted K = [Ay, By] x ... X [Aq, Bd]),

ajl = _Z¢JZ
Put
Xt = V) :% (/mmf st [31) 630, 0030.0

and observe that

X)) < (@M)>*IglIZlol31 1) 2—.

Using (), we bound the constant in the right term by v = (2M)2%?||¢]|2..
Moreover, we need to bound from below the variance A;(t). Therefore, we choose
a wavelet such that there exists m > 0 satisfying the assumption

Vi =Jo..;je, Yt EK, 3, |4(27t —1)] >m (2.6)
where jo, joo are defined in ().
2.3. Plug-in

A candidate to estimate Ay ®,(f(t)) could be co(v) + Zivzl e (v) cos(mk f (t)).
Following (ILfl), this estimator has too large a bias and we decrease this bias by
considering the following modification. We estimate Ax®,(f(t)) by

Ay s(t) = colv +z% ) exp(r2k2; (1)%/2) cos(wh f; (1)).

Since the variance of the estimate of the density A;(¢) is unknown, we replace
it with an estimate based on the empirical moments

A2 (t) = (2.7)

%Z %Z%‘,zl( 1)®5.05 ( "‘Z¢Jll Z¢Jl2 )| @i (D302 (2)

R
o
<
Il
oL
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Notice that there exists some constant ¢ > 0 such that A?(¢) < ¢227%~! which

could be much larger than A3(t). We decide then to truncate A3(t) at y27%n~"
(for v = (2M)24||¢||%,) which is the upper bound for A% ()l oo-

2.4. Estimator of the excess mass

Finally, we propose to estimate £(v) by

Ew) = /Kfzv,\j(t)dt (2.8)
_ kZN:_OCk(u) /K exp (ﬂ22’f2 min {Xf(tm%d}) cos (wkfj(t)) dt

for 2(t) defined in (E=8) and

cov) = (1 —v)?/2, cp(v) = 2(mk) " 2(cos(r k) — cos(m kv)), v = (2M)2d|\¢||§o

3. Upper bounds and convergence properties

In Proposition B2l we give bounds from above for the expected errors of the
estimation procedure of the functional £(v). This bound is depending on the
parameters of estimation j and N and on the wavelet approximation error of f.
Next, we determine the optimal parameters j and N to balance the terms ap-
pearing in the upper bound of Proposition B2l under the additional smoothness
assumption on the unknown function f. In Theorem BEZll an upper bound of or-
der (nlogn)~s/(25+d) for our estimation problem is found. In the gaussian white
model nearly minimax lower bounds of order (nlogn)=%/(s+® (logn)=1/(2s+1)
(d =1, at a log factor) were established by (). They improved the techniques
used by (ILfl) who found lower bounds of order (nlogn)=*/(s+® (logn)~* (d = 1)
for estimating the LL; norm in the Gaussian white noise model, but there is still
a gap between upper and lower bounds.

3.1. Expansion of the estimation error
The following bound for the mean absolute error of estimation of the excess
mass holds.

Proposition 3.1. Let j be an integer between jo and joo and N a positive
integer. Assume that f € F(K,m*). Choosing ¢ such that (B holds for some
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m > 0, we get

4 1
E;(a€.€)) < Cig+IDifIhn

jd\ 3/2 , 1
1/2

1 [20d\ /2 n2y 20
oy (i T N2E
sy () | e (55)

for d denoting either i) the point wise difference, i.e. d(g,h) = |g(v) — h(v)| for
a given v > 0, i) the sup-norm, or iii) the normalized Lo—norm, i.e. d(g,h) =
llg — hll2/|K| with |K| denoting the Lebesque measure of the set K and

C1=2|K|, Co=AM)?47722M)%|}|c0, C3=C4 =47 2[K|.

_|_

3.2. Upper bound for the estimation error

Let us now tune the parameters N and j in an optimal way. We denote, for
fixed m* > 0,

F(m*) = J{F K, m*) : |K| < D},
K

for some fixed constant D > 0. We assume a Besov type smoothness condition
for f related to the wavelet expansion of the density f. More precisely, let
p,q > 1, s > 0 and L > 0. The Besov bodies are characterized in term of
wavelet coefficients as follows

1/q
d

sqd_d q
FebyoL) & llaody + | X [ZCH D8] ) <L @Y
j=0

Note that, for a given r—smooth wavelet with » > s, the Besov norm of a
function f is equivalent to the sequence norm of the wavelet coefficients of the
function and then the concepts of Besov body and of Besov spaces are equivalent.
For further details on the Besov spaces and their links with the wavelet analysis,
see for instance (ILfl). We derive from the smoothness assumption (BZ) on the
unknown function f the following bound for the bias term

IHebjen €lg, |Djfllr < 5277°

We choose the integer j depending on N such that [27%] = N in order to
balance the bias and the approximation error. We replace j and minimize next
the variance terms

C Nd/s\ 3/ log(N
ﬁ—!—(ClN( - ) v1ogn + Co %/(ﬁ)

B Nd/s 1/2 2 N(2s+d)/s
+C‘3,N 1 ( " ) exp (TFYT> .
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We take N = | (Conlogn)®/(?+9) | with a constant Cy > 0 such that Com? v/2 <
min{s, d/2}/(2s+d). In this way, the exponential term in the variance term be-
comes a polynomial term smaller than the bias and the approximation term.
The latter terms are of the same order: (nlogn)~/(25+4)_ Note that the variance
term does not drive the rate. The following theorem is then proved.

Theorem 3.1. Let s > 0,1 < p<o0,1 < qg< o0, L, Dbm* > 0 and
0 < p < 1. Let us suppose that f belongs to F(m*)Nb; (L) and assume there

exists m positive such that the technical assumption (E) holds. Let £*(-) be
the estimate of £(-) defined by (B=)-BZ) for the following choice of estimation

parameters
7t =17"), 27 = (nlogn) T | N* = (Conlogn)*/2++7 |

where Cy > 0 is a constant smaller than min{2s, d}- (72 (2M)?? ||$||2, (2s + d))il.
Then

lim sup (nlogn)=¥ Ef (d(c‘f*,f)) < C,
O feF (mr)nby (L)

for d denoting either i) the point wise difference, i.e. d(g,h) = |g(v) — h(v)]|
for a given v > 0, ii) the sup-norm, or iii) the normalized Lo—norm, i.e.
d(g,h) = |lg — h|l2/IK| with |K| denoting the Lebesque measure of the set K
and the constant C > 0 depends on s, L, D, d and ¢.

As we already mentioned, the theorem is still valid if we estimate any other
integrated functional of the type [ ®(f) with ® continuous not differentiable.

4. Numerical results

First, we describe the implementation of our estimation procedure &* (v) at
level v > 0. In order to compare, we also implement a plug-in procedure £77(v)
defined as follows

EPT () = n(x) —v)de.
v) /j () - »)

fn(z)—v>0
where fn is a density estimator. Let us recall that the best rate achievable by
this procedure on the Besov balls (for the same loss functions as in Theorem
Bl is the usual nonparametric rate n~ %+ obtained for the tuning parameter
of order n¥¥a.

We compare several error measurements: in the sequel, E3 and EZ (respec-
tively EX! and ELT) denote the integrated squared error and the sup-norm due
to our estimator £ (respectively due to the plug-in estimator EFT ). Moreover,
the probability p, = P;(E; < EIT) that the error of our procedure E* be
smaller than the corresponding error of EFPL s a good indicator of the perfor-
mances of our procedure with respect to the plug-in procedure. Similarly, we
consider po = Pf(E% < EET)
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In the first part, we explain the automatic algorithm: observe that it is slightly
different than the procedure described in the theoretical section (with respect
to adaptation for instance). Next, we give a short summary of our simulation
results: we try a lot of densities and we present here the most representative
and relevant examples.

4.1. Algorithm

The simulations are performed with the free software R V2.4. For the plug-in
procedure, the estimator fn is computed with the data driven procedure called
density() provided by R. This kernel procedure of density estimation determines
automatically the smoothing parameter h** that we use for the plug-in proce-
dure. Since the theoretical optimal index for the plug-in procedure is n 1/ (d+2s)
we deduce § from A**. Then we modify the smoothing index introducing the
logarithmic term as indicated in Theorem B2l The parameters used when our
procedure is computed are given by

N = |(Conlogn) T |, h = (nlogn)” 7%, Cy = d.

We emphasize that the procedure density() is again used for our ouwn proce-
dure but with the smoothing index modified as prescribed in Theorem Bl A
bootstrap procedure of 100 replications is introduced to estimate the expected
value Ej(fn(x)) and the variance A2 = Vj(fn(x)) of fu(x). As the bootstrap
procedure gives a very accurate estimator of the variance, the truncation in the
exponential term is actually useless for practical purposes and stands in formula
(E3) only for technical reasons in the proof. It is then sufficient to describe the
estimator in (B3 as

S o) /

k=0 K

exp (”22'“2 32 (@) cos (wk I (3:)) dz.

As explained in the introduction, the exponential factor is a correction of the bias
introduced when f is plugged-into the cosine function. Therefore, we suggest to
compute the estimator as

N
Ew) =Y av) /Kcos (wkEf(fn(x))) da,

k=0

where E( fn(z)) is very well recovered by a bootstrap estimation procedure.
In practice, both methods give the same results, but the second formula is
computed significantly faster than the first.

A sequence 0 = vy, ...,v100 = 1 is considered. The empirical errors denoted
E3, EFT and E%, EX! are computed via K = 20 Monte Carlo simulations. We
denote ps and po, the frequencies of success of our procedure.
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F1G 2. Set of studied densities. (a): standard gaussian; (b): mizture of gaussian and uniform;
(¢): mizture of 2 gaussian and laplace; (d):mizture of gaussian with isolated spoke.

4.2. Univariate densities

We consider some example of probability densities which are mixtures of gaus-
sian, uniform and Laplace laws, see Figure l The density (a)

flx) = fN(O,l)(‘T)

is the gaussian density: this is the most standard example and it is very popular
in practical studies. The density (b)

f(@) =08 fx—10m(@) + 0.2 fy,z(z)

is a mixture of a gaussian density and a uniform density. Remark that the
uniform density is not continuous and this allows us to study the robustness of
our procedure. Moreover, the gaussian part is very smooth: the mixture density
is then difficult to estimate because there is a conflict about a global choice of
the bandwidth. The density (c)

f(2) =03 fa-1,05(@) +0.3- fxas,1) (@) +0.4- fre(w)

is a mixture of a gaussian density and Laplace density. Since the Laplace density
is not differentiable at its mode, we study again the same phenomenon: the
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TABLE 1
Univariate densities. Comparison of E* and EPT in mean integrated squared error and in
mean error of the sup-norm, over K = 20 Monte-Carlo simulations, for various sizes of
samples n = 100, 1000, 10000.

f n| EPT By EYT/Ey  p2 EXI EX,  EDI/EX  peo

100 | 0.00504 0.00542 0.93 0.45 0.04450 0.04855 0.92 0.45
1000 | 0.00079 0.00066 1.19 0.70  0.01937 0.01765 1.10 0.75
a 10000 | 0.00008 0.00006 1.32 0.55 0.00602 0.00590 1.02 0.60

S

100 | 0.00354 0.00533 0.66 0.20 0.03742 0.04989 0.75 0.30
1000 | 0.00147 0.00086 1.71 0.90 0.03217 0.02133 1.51 0.95
10000 | 0.00170 0.00083 2.06 1.00 0.03645 0.02445 1.49 1.00

o T o

c 100 | 0.00520 0.01027 0.51 0.15 0.04132 0.04924 0.84 0.30
c 1000 | 0.00077 0.00036 2.17 0.80 0.01745 0.01274 1.37 0.80
c 10000 | 0.00075 0.00021 3.64 1.00 0.01714 0.00938 1.83 1.00

100 | 0.03271 0.01857 1.76 1.00 0.11473 0.08293 1.38 1.00
1000 | 0.00975 0.00346 2.82 1.00 0.05985 0.03606 1.66 1.00
10000 | 0.00248 0.00063 3.91 1.00 0.02975 0.01525 1.95 1.00

[oMeTeN

smoothing indices can not be at the same time globally designed and everywhere
optimal. The last density (d)

f(2) = 0.5 fa—1.5,04)(®) +0.05 far—0.8,0.1) (%) + 0.45 - far1,0.8)(z)

is a mixture of three gaussian densities with isolated peaks and different vari-
ances. Density (d) is a case where the smoothing indices of the estimation pro-
cedures have to be space-dependant in view to capture the small sharp peak.

One challenge is to check whether our procedure overcomes all the enumer-
ated difficulties for the estimation of the density f. The results are presented in
Table [l

First, we note that our procedure is becoming more accurate when the size
of the sample increases. It seems that our method is relatively complicated and
need enough data to be powerful. In the opposite, the naive plug-in method
is a robust procedure which is not so bad when few data are available: when
n = 100, the frequencies of success of the plug-in method with respect to our
procedure is 1 — p = 0.55,0.80, 0.85 for the density (a), the density (b) and the
density (c). But when n is larger, our method is more successful: p = 0.90, 0.80
for the density (b), the density (c).

When the densities become more and more complex (by complex, we mean an
increase of the number of modes or irregularities in the density), our procedure
is much more relevant than the plug-in procedure. For large samples, n = 10000,
we observe a benefit of 106% for a mixture of gaussian and uniform densities, a
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benefit of 264% for a mixture of gaussian and Laplace and a benefit of 291% for
a mixture of densities with a small isolated peak. In parallel, we observe that,
for all the Monte Carlo simulations, our estimator £* is systematically better
than £F7, with a rate ps = poo = 1.

Observe that for the density (d), our method is better than the plug-in esti-
mator for any sample size. It seems that the change of the smoothing parameter
adding an extra logarithmic term is crucial to kill a great part of the bias term.

4.3. Bivariate densities

In this part, we focus on gaussian and uniform densities. Let us denote

N((EXa EY)a ( V V(X)a V V(Y)aPXY))

the bivariate gaussian density of (X,Y’). The studied densities are plotted in
Figure B The density (A) is the standard one

J = IN(0,0),(1,1,0))-

02

o
&
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Probability Density
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=
&

(A) (B)

Probability Density

Probability Density

©) (D)

Fic 3. Set of studied 2D densities. (A): 2D Gaussian. (B): mizture of 2D gaussian and
uniform. (C): mizture of two 2D gaussian. (D): Mizture of three 2D gaussian.
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TABLE 2
Bivariate densities. Comparison of E* and EPT in mean integrated squared error and in
mean error of the sup-norm, over K = 20 Monte-Carlo simulations, for various sizes of
samples n = 400, 1000, 10000.

f n| EPI E3 EPI/ES o EPI EY.  Eo/EY Do
A 400 | 0.01685 0.00870  1.94  0.95 0.07435 0.05675  1.31  0.95
A 1000 | 0.00948 0.00394  2.41  1.00 0.05445 0.03525  1.54 1.00
A 10000 | 0.00635 0.00263  2.41  1.00 0.04524 0.02867  1.58 1.00
B 400 | 0.10397 0.04628 225  1.00 0.17667 0.12818  1.38 1.00
B 1000 | 0.07460 0.02943  2.53  1.00 0.15398 0.10660  1.44 1.00
B 10000 | 0.04747 0.01985  2.39  1.00 0.12894 0.08901  1.45 1.00
C 400 | 0.01184 0.00555  2.13  1.00 0.06442 0.04609  1.40 1.00
C 1000 | 0.00906 0.00432  2.09  1.00 0.05462 0.03717 147  1.00
C 10000 | 0.00379 0.00134  2.83  1.00 0.03566 0.02081  1.71 1.00
D 400 | 0.26965 0.26187  1.03  0.55 0.34953 0.34350  1.02  0.55
D 1000 | 0.25655 0.24609  1.04  0.85 0.33525 0.32628  1.03  0.85
D 10000 | 0.23705 0.22277  1.06  1.00 0.31686 0.30497  1.04 1.00

The density (B) is a mixture of the Gaussian density and the uniform density

J =106 fa((=1,0),00.7,0.7,0)) T 0-4 - fr([0.5,1.5]x[~0.5,0.5))
and Density (C)

f=0.8" fa((=0.5,05),1,1,00) T 0.2+ far((0.4,—0.4),(1,1,0))

is a mixture of two gaussian densities. Last, the density (D)

f = 045 fx0,0),(1.5,1,0.95)) T 0.45 - far((0,0),(1.5,1,—0.95))
+0.10 - far((0,~1.2),(0.2,0.2,0))

is a mixture of three gaussian densities presenting an isolated spot.

Table B presents results for different sample sizes n = 400, 1000, 10000. As
in the one dimensional case, we observe that the improvement increases with
n and with the complexity of the underlying theoretical density increases. We
observe that our procedure is always better than the plug-in procedure. The
frequencies of success of our procedure are very high: po = po, = 0.55 for the
densities (A), (B), (C). Even in the case of the density (D) where the results
are mitigated, the worse result is po = Poo = 0.55 when n = 400 (which is very
small for 2—dimensional non parametric estimation problems).

The improvements are more remarkable in bivariate case (but for the den-
sity (D)). We may say that the gain of a logarithmic factor in the rate of our



C. Butucea, M. Mougeot and K. Tribouley/Excess mass estimation 463

estimator gives a significant compensation for the curse of dimensionality. For
the standard gaussian density, we observe a high improvement of our estima-
tion procedure compared to the plug-in estimator as the dimension increases:
for n = 10000, the empirical mean squared error has improved from 32% in the
case of the density (a) to 141% in the case of the density (A). When empirical
sup-norm is considered, the improvements are not so extraordinary but there
are significant: from 2% to 58%.

We think that the mediocrity of the results in the case of the density (D)
could be corrected by a more accurate determination of the smoothing indices.

5. Proofs
5.1. Proof of Proposition B2l

In order to study the quadratic error, it is useful to note that the hypothesis
&) for some p < 1 implies that £(v) is zero if v > 1. Let us summarize again
some notation

D, () = ([t} = v) Ljj>o,
AND,(t) = co(v) + Zivzl ck(v) cos(mkt), A
Anj(t,v) = co(v) + 31 ex(v) exp(n’k?A; (1) /2) cos(mh f (1)),

A (tv) = o)+ LAy enlv) exp (2 max {X3(6), 727 }) cos(rhf (1),
the unknown density f writes on the wavelet basis f = F;f 4+ D; f where

Eif =) ajudj and  Dif =) %% G5 W5
l €

J'zi !

Then &(v) = foT]-V)\j(t, v)dt. We have the following expansion
EW) — E0) = 51(0) + 5:() + Ba(v) + AW) + Ba(v)
(At = Aw st de+ [ Lxs () = By ()] ae
K

+

—

[E(An,;(t,v)) — An @, (E; f(1))] dt

+ [ [An®,(E;f(1) — @ (E; f(1))] di

+ [ (@ (E;f(1) — @ (f(1))] di

where S1(v), S2(v) are stochastic terms, Bs (1) is a bias term due to the plug in,
A(v) is an approximation term and Bj(v) is a bias term due to the estimation
of the function of interest f. Proposition B2l is proved combining (B=), (&),

), @) and (B33
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5.1.1. Bias term (due to the estimation).
The bias term Bj (v) is bounded using the fact that |a(t)+ —b(t)+| < |a(t) —b(¢)|
Bi0)| < [ 1) - S0 dt < Dy 1. (5.1)

Note that the same bound holds for || By ||« and for || By]l2/|K].

5.1.2. Approximation term.

Using the values of the Fourier coefficients given in (B&), we have the following
approximation for any N,

Vu € [-1,1], |®,(u) — AN®, (u)| < 2Zk2—
k>N

7T2N

implying that

A < [ AveEI0) - e EIOd < . 62)

Note that the same bound holds for ||Al|« and for ||All2/|K].

5.1.3. Bias term (due to the plug-in).

First, we state the following lemma proved in the next section.

Lemma 5.1. Let N be a positive integer, f belongs to F(K, m*) and fj be the
wavelet estimator constructed in [B). For k=1,..., N and j varying between
Jo and joo, we have

vt € K, ]E [e”Q’“zA?W? cos(m k f; (t) )] — cos(r k E; f(t))’ <, TR0/

where

for an universal positive constant A.

Applying Lemma B2l we get

Bov)| < /K [EAx (£, 1) — AnDo(E; £(1))] dt
N 27,212 A
< Y law)l / RN W/2 B(cos(nk f; (1)) — cos(nkE; (1)) dt
k=1 K
<

N
K] D fer(v)] sup | sup RN O/,
= k=1,.,N
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Taking
22(t) < 22 <! =mA
() <7 [er0)| € g tn =7

n

2jd/2>1/2
we obtain
120\ "/? 2y 24
Bo(v)| < 4n K| = [ Z—) exp (I N2Z).
N\ n 2 n

Note that the same bound holds for || Bz||ec and for || Bz||2/|K].

5.1.4. Stochastic term.

465

(5.3)

The wavelet estimator fj (t) at point ¢ = (t1,...,tq) is depending on the ob-
servations X; = (X14,...,Xg) such |X,; — ;] <2M 277 for any p = 1,...,d.
Therefore, fj (t) and fj (t') are independent as soon as there exists a direction
p such that [|t, — || > 2M 277 and the same holds for any statistics Z(t) and
Z(t') based on the observations. As in ([Lf]), adapted for d-dimensional setup:

E

/K (Z(t) —EZ(t))dt’ <vi/2 ( /K Z(t)dt)

) </K /K Cov(Z(t), Z(t) dtdt/> "

1/2 d .
< ( [ [wizw-vizwy T 1< 2 J)dtdt>

1/2

1/2
1 / d / —J /
< (5 | [y +veen TLiy, -4 < 20 >dtdt>

e
< (4M)P29=id/2 (/V(Z(t))dt :
K

Denoting Z; () = exp(n2k2\,;(£)2/2) cos(wk f;(t)), it follows

N
E(S:(v)]) < ZCk(V)E(I/(Zj,k(t)—E(Zj,k(t)))dtl)
k=1
N

< (AM)P2TIRIKR] Y T en(v) [ sup VI (Zix()  (5.4)
1 teK
N
E([S2flc) < (4M)d/22’jd/2|K|ZSHPI%(V)ISHHI()V”Q(Zj,k(t)) (5:5)
=1 Y te
N
E(|S2ll2) < (4M)*P2702 K] Y lew(:)l2 igﬂng/Q(Zj,k(t)) (5.6)

k=1
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We state now the following lemma which is proved in the next section.
Lemma 5.2. Let N be a positive integer, f belongs to F(K, m*) and fj be the
wavelet estimator constructed in (B). For k = 1,..., N and for the integer j
varying between jo and joo

VteK, V (6”2’“”? (/2 cos(nk f; (t))) < (tn +72R2N2(E)) €7 A0
where uy, is given in Lemma E=B.

Direct application of Lemma B2 with the bound \;(¢)? < v (QZl—d) combined
with (B2) leads to

E(|S2(v)])

N 1/2 N
(40429412 |K|i Zun/ RN (/2 Z 7T>‘j(t)e7'r2k2)\?(t)/2
2 k2 k
k=1 k=k

IN

: 4
< (AT K] — [%/QN*le”zNzA?(”/Q + (1) 1ogNeﬂ2N2A?<t>/2]

) 4 2jd 1/2 2 2jd
< (am)irzg-ia2 YT g (—> log N exp (%N2—> .
™

n n

By (B2 and (B), we obtain the same bound for F(]|Sz2||) and E(||S2]|2)/|K].

5.1.5. Stochastic term due to the estimation of the variance

Let A2() = min{A2(t), 27 /n}. We get

S0 < [ [Ansr) - At

N

< k; (ICk(y)| /IK ’exp(WQkQS\?(t)ﬁ)—exp(7r2k2 Ag(t)/z)’dt>

< é(lcuv)li’# /K |X§-<t>—A§<t>|exp(w%?Aj,n(t)/z)dt)

< szi ( /K 2(t) = X2(1)] exp(n?k? Ay (1) /zw)

< 2N exp (7_7:1\]2&:> /K|X§.(t)—A§(t)|dt (5.7)

where A;,(t) is an intermediate point between A3(t) and X?(t) and therefore

[Ajn(t)] < ~27%/n. We note that a rough bound like [A3(t) — A3 ()| < ~27¢/n is
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too large; thus, we take 7 > 0 and we split the expected value and for ¢ = 1, 2,
we have
(R0 =X0D < 7+ B0 = 201150 o)
20t
< 7T —|—/ x dP(x)

T

where P is the probability associated with the variable |S\?(t) — )\? (t)|. It follows
that

— ) 2Jd ’Y# -
E(IN3 () = A1) < T~ dP(x)
< EP 22(1) — A2()| > 5.8
= T [AZ(t) = A5 @) =7 (5.8)

since [A3(t) — A3 (£)] < [A3(t) — A3(t)|. We need an evaluation of the accuracy of
the estimation of the variance of the estimate of f. The following lemma gives
deviations for the error of estimation. For the proof, we refer to (R1).

Lemma 5.3. Let f belong to F(m*) and t be in K. Assume that there exists
a positive constant m such that (B is satisfied. Then, for T > 299n=2 the

estimator N3 (t) in (23 is such that

P(IN@-X0I=7) < ¢ [(2—)1

n T2

ronf=o((Z) = (2) )}

for some constants c,c’ > 0.

We use Lemma Bl with
2jd 3/2
T—a(7> (10gn)1/2, a>0

(which is larger than i]—:) to give an upper bound for (BE=)

E(IN3(t) — A2(1)))
< l (27)/ (logn)'/2 + a2 (%H)Q<1ogn>l

/2jd 2 /2jd 274 e
+7¢ — exp (—ca’logn) + ¢ —exp | —ca
n n

nlogn
2jd 3/2
< a (—) (logn)'/2.
n
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since j < joo and as soon as a > max{+/1/(2¢),1/(2¢)}. From (B&=8), we deduce

2 jd jdN 3/2
B(Sip)) < 2|K|aNexp(%N22—) (2—) (logn)'?  (5.9)

n n

and the same bound is valid for E(||S1]ec). Observing that

N —_—

E(ISill) < kz_l(nck(-)an [ Jexoai2 35 0)/2) - exp(ek Aj<t>/z>]dt)
2 jd —

< 2N exp (%N?%) /KE(Mg(t)_A?(t)Ddt (5.10)

and we obtain the same bound for E(||S1]]2).

5.2. Proofs of the lemmas

5.2.1. Proof of Lemma Bl

Let t € K be fixed. Denote K (k, ) = e™ ¥**7/2_ Recall that MN5(t) =V (f;(t),
put

i) = Eif()
S VN

and write
cos(mk fj(t)) = cos (TkE; f(t) + 7kX; x;) -
Expand using the formula of cos(a + b)
Y Kk, j) E(cos(nkf(t))) — cos(nkE, £(t))
= [K(k,j) E(cos (mkA; x;)) — 1] cos(rkE; f(t))
— K(k, j) E(sin(wkA; x;)) sin(nkE; f(t)).

Observe that for x a standard gaussian variable
K(k,j) E(cos(mkAjx)) =1 and K(k,j) E (sin(wkX;x)) =0.

We use an approximation for the law of x; as n grows to co. Denote Fy (1)
and F), the distribution functions of x and x;. It follows

z = K(k,j)cos(rkE;f(t)) /cos(wk)\jx)(FXj—FN(Oyl))(x)d:c

— K(k, j)sin(wkE; f(t)) / sin (mkX; x) (Fy, — Far0,1))(z)dx
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Notice that

n

Xi =75 _1@ Z(@j,z —aj)piu(t) = Z Zin(t)
l

J i=1

for

Zin(t) = m (Z(¢j,l(Xi) - aj,l)¢j,l(t)> :

l

Straightforward computations lead to

E(Zin(t)?) =

1
n

and

E(Zin)f) < —2— 3

N3 (1)

(/ ¢j,ll¢j,lz¢j,laf> G, (1) D10 (1), (t)

ly,l2,l3
22jd
“WN)
for ¢ = (2M)34]|9|12. ||#]|2/|#]|3]| ]l - Using the technical assumption (EH) and

the fact that there exists m* > 0 such that inf,ex f(t) > m*, the variance \;(¢)
is bounded from below as follows

1, - . - .
N() > inf2 <m S 6t —1) 2 Jd<<2M>d|¢|io|f|oo>2>
l
m2m* 274
> —.
- 2 n
Finally, we get
gjd\ /2
E(\Zin()?) < ¢ (—) (5.11)
n

for ¢ is depending on m, m*, ¢. Let us recall Esseen’s inequality

Proposition 5.1 (Theorem 2.6, Hall (4)). Let {Z;,,1 < i < n} be a
triangular array of independent variables, centered such that Y E(Z?,) = 1.
If there exists some A, — 0 as n — oo such that

n

S E(1Zinl?) < A,

=1

then, there exists a positive universal constant a such that

Vr € R,

~ b
P Zin < —F < ——A,.
(; n> x) N(O,l)(x))| =112
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We apply this inequality for A,, = (279~1)1/2, see (B=Ll), and for each fixed
t € K. We get, for j,n large enough

b 2]d 1/2
Vt, Vo,  |Fy(x) = Fnon ()] < 1+ (7)
implying that

27d

1/2
A< wrtg) (2)
n

5.2.2. Proof of Lemma B

We proceed as in the proof of Lemma B2l Indeed, we have proved there, that
forallk=1,...,N andt € K

| K (h, ) Ecos(mh (1) = cos(mh By £(8))| < K (k, j)un,
where |u,,| < b27971/2 tends to 0 when n — oo. Moreover this entails
[k, )2 B (cos(nh f5 (1)) — cos® (w3 £(2)| < K (ks j)wn. (5.12)
For the first term of the needed variance, we have
(5 o (1) — K (h.0) = K () cos(2mh B 10)|
< % ’K(k, 7)2E(cos(2rk f; (1)) — K (k, §)? cos(2nk B, f(t))‘ < %K(k, )2t

The proof of this last inequality is similar to the proof of Lemma B2l Together

with (B=E), we get
V (K (k, ) cos(mh (1))

IN

(5 Elcos (1) K (5.0)? = 3Kk ) cosC2mks £ (1)
| Kk, )2 B2 (cos(mhe (1)) — cos? (mhE 1)

R0 4 G cos(2mhi (1) = (5 + g costznb, @)
gK(k,j)Q Un + % |(K (k, j)? — cos(2mkE; f(1))) (1 — K(k, §)7?)|

< (Bun/2+ wR2NZ)em PN

IN

Note that u, is the dominant term for k smaller than n'/42-794/4 and k27 is
dominant for k larger than the same value.
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