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PROBABILITY DENSITY FUNCTIONS OF THE EMPIRICAL WAVELET
COEFFICIENTS OF A WAVELET ESTIMATOR OF MULTIDIMENSIONAL
POISSON INTENSITIES

JOSE CARLOS SIMON DE MIRANDA

ABsTRACT. We determine the probability density functions of the empirical wavelet co-
efficient estimator 3, = f UydN in the wavelet series expansion p = 3 By, of non
homogeneous multidimensional Poisson processes intensity functions.

1. INTRODUCTION

Estimation of non homogeneous Poisson intensities is a research subject of both theo-
retical and practical interest given the importance of Poisson processes in point processes
theory as well as its use in a large number of practical applications. Parametric, semi
parametric, non parametric and bayesian methods have been used to estimate Poisson
intensities. We cite the first fourteen references. In our works (de Miranda, 2003 and de
Miranda and Morettin, 2005, 2006) we have studied the wavelet estimator p = ), B,]t//,,
of p, the intensity of a general point process. For the class of non internally correlated
(NIC) point processes, a broader then Poisson class first defined in de Miranda & Morettin
(2005, 2006), we have obtained inferential sequences, first defined in de Miranda (2003,
2005), for both the coefficients [5’,, and the intensity p, therefore, as a particular case, their
variance and variance function were determined. The probability density functions of
these coefficients are not accessible under NIC conditions since they depend on the point
process probability structure. In this way we used Tchebichev’s inequality to draw con-
fidence intervals for ,3,, and pointwise confidence bands for p since the conclusions that
steam from this inequality are valid whatever the probability involved is. In this short ar-
ticle we specialize to non homogeneous Poisson processes. This restriction on the set of
probability structures is strong enough to let us obtain the probability density function of
the wavelet coeflicients B,, and yet not too strong as to forbid its practical and theoretical
use as seen above. The key feature here is the independence in Poisson process internal
probability structure.
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This article is organized as follows. In Section 2 we present some basics and nota-
tions, in Section 3 we state and prove the main results and in Section 4 we make some
comments.

2. SoMmE Basics AND NOTATIONS

Let N be a point process on RY, with unknown intensity p. Let {Wjili,j € Z} be
an orthonormal wavelet basis of L>(R) of the form (1) = 2//2y(2/t — i) or y;(1) =
272y (29(t — 1) + 11 — iT) for some mother wavelet  obtained, if necessary by the compo-
sition of a standard wavelet with an affine transformation, such that its support is [71, 2]
with T = 1, — t;. Here i corresponds to translations and j to dilations. Let ¢ be the father
wavelet corresponding to . Similarly, let {¢sx, ;i : i,k € ZZ, j > {i, j, {i € ZL} be an
orthonormal wavelet basis that contains all the scales beyond some fixed extended integer
Ci. Itis pleasant to adopt the following notation. Let yZ = {z € Z : 7 > d},d € ZZ U {—o0}

. A\ (G XH)if ti € Z.,
and define Ze(€i) = T2 if b = —oo.

Let us use Greek letters for indexes in Ze(£i) and we shall write ,, = ¢y, if and
only if n € Z and y,, = ;; if and only if n = (j,i) € Z?. Thus, the wavelet expan-
sions f(f) = Yiez X jez 0t ji(1) and f() = Yiem Videin(l) + Diem 2 jesz O it (1) will
be simply written f = ¥, @yy, for a; given by f_ o:o fydt = fR(Z‘f ag\fe Yydt =
S Jg @bendt = Year < Yty >= ay. Letforalln, 1 < n < d, {Ynili,j € Z),
l//n,j,i(t) = 2.1'/2(’0”(2” - l) or l//n,j,i(t) = 2',./2(,0/1(2',.([ - Cl”) +a, — iTﬂ) and {¢n,£i,,,kv l//n,j,i .
i,k € Z, j > tiy,, j, ti, € Z} be orthonormal wavelet bases of L?(R) as above where
supp ¥, = [an, b,] and T), = b, —a,. These bases are simply written as {{/,,,, 17, € Ze({i,)}
and they are, under restriction, also orthonormal bases of L*[a,, b,], 1 < n < d. Taking
tensor products we form the orthonormal basis (Y510 = &_ Yy, 7 = (1,...,14) €

d d d
[1 Ze(¢ti,)} of L2(R) and also, under restriction, of L2([] [@n, bx]). Denote [ Ze(ti,) by

n=1 n=1 n=1
Ze(liy, i = (Ciy, ..., €ig). From now on we will drop the tilde and use simple notation for
vectors in IR, tensor product wavelets and d-tuples in Ze(fi). In this way if f € L*(RY)

wehave f= Y oy withay, = [ fy,de.
neZe(ti) RY

d

Frequently we want to obtain the restriction of p to [][ay, b,] = [a, b] = O, an obser-
n=1

vation region, based on the points of a trajectory of the process that are contained in this

RY interval.
From now on we assume that p is locally square integrable. Therefore for the wavelet
expansion of p restricted to bounded IR? interval observation regions, we have

p= B @.1
n

with
By = f pUnde. 2.2)
]R(l
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The main estimation purpose is to obtain p through the expansion (2.1) and for this
we need to estimate the wavelet coefficients 5, given by (2.2). The unbiased estimator
we use is 3, = f YydN.

We use Op = (0,...,0) € Ze(ti), Oy = ((¢i1,0),...,(Cig,0)) € Ze(ti). We write
for n € Ze(ti), j(n) = €iifn € Z and j(n) = jif n = (j,i). Also, if n € Ze({i),
Jp = (i), . ..., jog)) and ()| = X7, j(1).

3. MAIN RESULTS

In this section we present the central results of this paper. Theorem 1 tells us how to
obtain the probability density function of the empirical wavelet coefficient ,3,,. Note that
this function depends on both the wavelet ¢, and the Poisson intensity p(x). Corollary
1 presents the series expansion of the characteristic function of B,, and Corollary 2 gives
formulas for the first four centered moments of ,3,, as well as its asymmetry and kurtosis
coefficients. Theorem 2 is the analog of Theorem 1 for the specific case of Haar wavelets.

Theorem 1. Let N be a Poisson process on R? with intensity function p : R — IR,.
Suppose the wavelet \, is compactly supported and continuous. Then f, : R — IR, the
probability density function of Bn = fRd YydN, is given by the principal value f,,(y) =

zl_ﬂ . exp (mewn p(x) (cos (ww,,(x)) - l)dx) cos (Iumdm p(x)sin (ww,,(x)) dx — wy] dw.

Proof. First observe that Bn = fs upp
n

by taking a product partition generated by partitions of each of its edges into n equal seg-
ments. Denote these pieces by R;, 1 <i < n?. Due to continuity of ¢, and compactness
of its support, ¥, is uniformly continuous on suppy, so that Ve > 0 dny € IN Yn >
noVj,1<j<n? Vx;€R;yy(R)) C yyx;) + (—€/2,€/2) and, for all w € Q, the point
process probability space, we have

Y, dN and divide suppy, into n? congruent pieces

Y )~ L2N@R) < [N < Y 0 + el IN@R)
= 7=
from which Yw € Q
f UdN@) = Tim > 4y (N@)R)):
=

ie. fw,,dN = lim, e Z";d:] Yy(xj))N(Rj). Now, since N is Poisson we have N(R;) ~
Poisson(fR pdt) .= X;; EX; = fR pdt.

d

Let B, = X' ¢y(x)X;. Thus,

d
‘ o n
B = B(e" 2 0% = B([ | expliwiy(x))X))).

J=1

The independence feature of Poisson processes implies then



160 J.C.S. DE MIRANDA

E(e™Br) = ]_[ E(exp(iwgy(x)X ) = ]_[ exp((f p(x)dx) (") — 1)) =
j=1 =1 o

J

exp(Z(fl; p(x)dx)(eiW‘/’fr<X/> -1)
J=1

J

Again, due to uniform continuity, Yw e RVe; >03dn; e NVn>n; Vj,1 < j< né,

I( f p(xX)dx)(e™VnD — 1) - f p(xX)(e™""Y — 1)dx| < € f p(x)dx.
R; ‘

R/ R!
Noting that

nd
Zf p(x)(eiwlﬁn(x) _ 1)d_x = f p(x)(eiwwn(x) _ l)dx
j=1 VR, suppiry

we write for sufficiently large n

Supan

DI f )™ = 1)] - f P = 1dx < & f p(x)dx and
j=1 R; suppyr,

E(e™?) = exp( p(x)(™™ — 1)dx)e’ , where |6] < € f p(x)dx.
suppyry, suppyry,
Taking the limits ¢, — 0 and n — oo we obtain by the dominated convergence theorem

E(e"Pr) = E(e™ ™= By = lim E(e™?) = exp( P — 1)dx)
n—oo suppin,

that is,
f ™ f(ndy = exp( p(x)(E™"™ — 1)dx).
R suppiry
Now, applying Fourier’s inversion formula we have

1 j —iw
)= 5 f exp( p(x) (™1 — Dydx)e ™ dw.
R suppyry,

Since f,(y) is a real valued function, the result follows from

Re(exp( px)(e™" — Ddx — iwy)) =
suppyry,

exp( p(x)(cos(wyry(x)) — Ddx)cos( ) sin(wiry(x))dx — wy).
suppyr, suppyr,
O

From the proof of Theorem 1, the characteristic function of B,, is given by the follow-
ing:
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Corollary 1. Under Theorem’s 1 hypothesis we have

Zm_l miy, )

n=1 (¥, ’m_") m=1 ¥ suppyy
Proof.
IE(eiW,B;,) — exp( p(x)(eiww,,(x) _ l)dx) —
suppiny
Sl (zww,,(x» S 1S ()"
Y= )Z = Y = PO (X)dx)" =
n=0 1 Jsuppuy n=0 n: m=1 m: suppyy
> 1 n w et Mim )
EN DY ( : ) o e ]_[( f PO (X)),
n=1 " (Z;;:I im=n) 1512, e m 1 m m=1 \llPPl/l;]
by the multinomial formula, where (’”’:) = _ﬂ,f o and Xy« ; —p means that the sum-
mation is made over all sequences of non negative integers i,, such that their sum is equal
to n. ]

Observe that, for a real random va_riable Y, the central moment of order r, u,(Y) =
E(Y — [E(Y))" and the moments IE(Y/), r, j € IN, obey the following relation y,(Y) =

=0 (;)(—1)f]E(Y"-f)(]E(Y))f. Since we have the series expansion of the characteristic
function of §, its moments are easily obtained. The variance, asymmetry and kurtosis of
the wavelet coeflicient distributions is the subject of the following:

Corollary 2. Under Theorem’s 1 hypothesis, we have

By = ]E(Bn) = f'v["?pdg’ var(ﬁ’l) = flﬁ,zlpdf,

1 (By) = f Yppdl and ps(By) = f Yy pdl +3( f Y, pd0)?
so that the coefficients of asymmetry as and kurtosis ay are given by:

7f l/’%P an + 71‘ l/’:tp .
(f w2pdey®/» ([ y2pdey

Proof. The ¥ moment of ,8,, is the coefficient of ~—~ (’W) in the series expansion of ]E(e’wﬁ")
By exhaustion, one verifies that the only posmblhtles for the indexes that appear in Corol-
lary 1 for the first four positive powers of (iw) are:

for iw)!, i = land Yk > 1 i, = 0;

for (iw)?, iy =landVk £ 24, =0ori; =2 and Yk # 1 i, = 0;

for (iw)?, i3 = landVk # 3§, =0ori; =i = land ¥k > 2 i = Oori; = 3 and
Vk#1i =0

for (iw)*, iy = landVk # 4 i, =0ori; =iz =landVk 1 £k #3 i, =0ori, =2 and
VYk#2i,=0o0ri;=2,ip=1andVk>2i,=0ori; =4and Yk > 1 i = 0.

az(n) = d as(m) =3
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In this way,

E@3,) = f POy (x)dx = f Yypdt = B, s B(B)) = f Yapde + ( f Yy pd)’;
suppiry

E@) = f W, pdt +3 f W, pdt f wppdl + ( f Wy, pdt)?

f yypdl +4 f Yy pdl f W, pd( + 3( f v, pdl)*
6(fl,[/quf)2f!,//%pdf+(fl//,]pdf)4.

E@B, - E@))” = BB, — (BB, = f W, pdl

and

E(3))

+

Now we have

E@B, - EB,)’ = B, - 3BBES, + 2(EB,)’ = f v, pdt

E@B, - E@))* = Ef; — 4B ER, + 6ES(BB,)* — 3(EB,)* = f Yppdl +3( f Wy pdl).
The asymmetry and kurtosis coefficients are thus

[ipde
([ w3pa)®

Jyupde

and a4(n) =3 + .
02T T apdey

az(m) =

[m|

One of the most important and used wavelet families is the Haar family. This is a
consequence of the extremely simple forms of its scale function and mother wavelet that
makes it computationally easier to use Haar wavelets instead of other more elaborated
ones. However, Haar wavelets are not continuous and Theorem 1 does not apply to them.
In this way, we present the following:

Theorem 2. Let N be a Poisson process on R? with intensity function p : R — IR,.
Denote w;; = (Il + ) /2 and v, = (gl = ¥))/2. Suppose the wavelet family used is
Haar, that is, the wavelets in this family are tensor products of one dimensional Haar
wavelets only. Then ﬁ,, ~ Wyllo(X* — X7),where X* and X~ are independent Poisson
; . . - e
random variables with means 4, = f — pdt and A, = f‘ uppiy pdt. The probability

AY
function of[S’,,, o Wl ZZ — R, is given by:
Ak

JoUlnlleo2) = exp(— pdt) Z kKlk—2)! °

suppim k=max{0,7}

Proof.

Bl] = f%dN =f lﬁf;dN—f lﬁ,_,dN = ”wq“m( dN—f dN)
suppyr; suppyy suppiry suppyry,

Thus, due to the internal independence of Poisson processes, B,, ~ lplleo(X* = X7).
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PX* - X =7)= Z]P(X* kX =k-7)= Z]P(X* =HPX =k—-2) =
k k

e—/l,*]' (/1;;—)1( e—/l,; (/ll_])k_z
K (k=2

Z PX* =kP(X =k-27) =

k>max{0,z} k>max{0,7}

4. COMMENTS

We remark that if the intensity may be regarded as constant on suppy, then we can
write the following approximations:

Y pdt 2litni/2
asz(n) = J v, & — fﬁl’go)d‘)
([y2pd0)®» — ps 7
and
Wipdt 2l
as(m) =3+ Jvop =3+ f il
(Jy3paty P '

where ;) is any re-scaled wavelet that corresponds to ¥, such that j(z()) = 0 € z-.
Since, for all n € Ze(£i), f lﬁg(n)df and f wj(mdf are limited by constants, we observe
that for continuous intensities the kurtosis coefficient will increase without bound as | j(17)|
goes to infinity; and the same will happen to the absolute value of the asymmetry coeffi-
cient in case the wavelet has non vanishing integral of its third power. Note that one can
have all a3(n)’s, but a(Or), equal to zero if the multidimensional wavelet basis is formed
by tensor products of one dimensional wavelets such that the integral of the third power
of each of these wavelets is zero.

It is also worth noting that in case we have n independent replications of the Poisson
process, i.e. we have n independent trajectories of the process, we can form the estima-
tors B, = L3 B,(), p = L 37, p(i), where f,(i) and p(i) are the estimated wavelet
coefficient and intensity obtained from the i observation. These estimators inherit the
unbiasedness characteristics of [S'A,,(i) and p(i). Moreover, [5’,, also presents the desired
feature of asymptotical normality as a consequence of the finiteness of the first and sec-
ond moments of the wavelet coefficient estimators ,@,(i) that guarantees the central limit
theorem can be applied to the independent sum B,,. As a matter of fact the asymptotic
normality of B,, is not restricted to Poisson process setting; in de Miranda (2003) and de
Miranda & Morettin (2005, 2006) we have also shown that the finiteness requirements
mentioned above are also valid for NIC point processes so that they will also exhibit this
feature in case of independent replications.

ACKNOWLEDGEMENTS

The author thanks our Lord and Saviour Jesus Christ. This work was partially sup-
ported by FAPESP grant 03/10105-2.



164 J.C.S. DE MIRANDA

REFERENCES

Timmermann, K. E. & Novak, R. D. (1998), ‘Multiscale Bayesian estimation of Poisson intensi-
ties’, IEEE, 85-90.

Novak, R. D. & Kolaczyk, E. D. (1998), ‘A multiscale MAP estimation method for Poisson inverse
problems’, IEEE, 1682-1686.

Heikkinen, J. & Arjas, E. (1998), ‘Non-parametric Bayesian estimation of a spatial Poisson inten-
sity’, Scand J Statist 25, 435-450.

Novak, R. D. & Kolaczyk, E. D. (2002), ‘Multiscale maximum penalized likelihood estimators’,
IEEE, 156.

Miiller, P. & Vidakovic, B. (1998), ‘Bayesian inference with wavelets: density estimation’, Journal
of Computational and Graphical Statistics 7(4), 456-468.

Barber, S., Nason, G. P. & Silverman, B. W. (2002), ‘Posterior probability intervals for wavelet
thresholding’, J. R. Statist. Soc. B 64 part2, 189-205.

Kolaczyk, E. D. & Novak, R. D. (2004), ‘Multiscale likelihood analysis and complexity penalized
estimation’, The Annals of Statistics 32(2), 500-527.

Lam, W. M. & Wornell, G. W. (1995), ‘Multiscale representation and estimation of fractal point
processes’, IEEE Transactions on Signal Processing 43(11), 2606-2617.

Winter, A., Maitre, H., Cambou, N. & Legrand, E. (1996), ‘Object detection using a multiscale
probability model’, IEEE, 269-272.

Figueiredo, M. A. T. & Novak, R. O. (2001), ‘Wavelet-based image estimation: an empirical Bayes
approach using Jeftrey’s noninformative prior’, IEEE Transaction on Image Processing 10(9),
1322-1331.

de Miranda, J. C. S. & Morettin, P. A. (2005), ‘Estimation of the density of point processes on IR"™
via wavelets’, Technical Report - Department of Mathematics -IME-USP No. 9.

de Miranda, J. C. S. (2003), Sobre a estimagdo da intensidade dos processos pontuais via ondaletas,
Sao Paulo, 92 p., Tese de Doutorado, Instituto de Matemdtica e Estatistica da Universidade de
Séo Paulo.

de Miranda, J. C. S. & Morettin, P. A. (2006), ‘On the estimation of the intensity of point processes
on via wavelets’, Technical Report - Department of Statistics - IME-USP No.6.

de Miranda, J. C. S. (2006), ‘Adaptive maximum probability estimation of multidimensional Pois-
son processes intensity function’, Technical Report - Department of Mathematics -IME-USP
No. 1.

de Miranda, J. C. S. (2005), ‘Sure inference analysis’, Technical Report - Department of Mathe-
matics -IME-USP No. 16.

DEPARTAMENTO DE ESTATiSTICA, INSTITUTO DE MATEMATICA E ESTATiSTICA, UNIVERSIDADE DE SAO PAULO, RUA DO
Mario, 1010, SAo PauLo/SP, 05508-090, BrAZIL
E-mail address, ). C. S. de Miranda: simon@ime.usp.br



