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STATISTICAL ANALYSIS FOR LONGITUDINAL COUNTING DATA IN THE
PRESENCE OF A COVARIATE CONSIDERING DIFFERENT ”FRAILTY”
MODELS

JORGE A. ACHCAR, EMILIO A. COELHO-BARROS, AND EDSON Z. MARTINEZ

AssTrACT. In this paper, we present different “frailty” models to analyze longitudinal
Poisson data in the presence of a covariate. These models incorporate the extra-Poisson
variability and the possible correlation among the repeated counting data for each indi-
vidual. A hierarchical Bayesian analysis is introduced for each different model consider-
ing usual MCMC (Markov Chain Monte Carlo) methods. Considering a real biological
data set, we also discuss some Bayesian discrimination aspects for the choice of the best
model.

1. INTRODUCTION

Longitudinal Poisson data is very common in many applications, especially with med-
ical data, where the counting are measured for each unit or individual in different times.
Usually, we have the presence of one or more covariates associated to each individual.

As an illustrative example and motivation for this paper, let us consider the data set
of Table 1, where we have the grooming counting of 8 males rats of the Wistar species
in different times and receiving saline and oxytocin (data set obtained from CEMEQ,
Medical School of Ribeirdo Preto, University of Sdo Paulo, Brazil). In this experiment,
realized in the Neurophysiology and Neuroethology Experimental Laboratory (Medical
School of Ribeirdo Preto, University of Sdo Paulo, Brazil), the responses of interest were
measured 24 times every 5 minutes after application of the two treatments in the following
order: first the animal received saline (treatment 1) where it was measured 12 grooming
counting (every 5 minutes); then, the experiment was repeated with the animals receiving
oxytocin (Treatment 2), also measuring the grooming counting every 5 minutes, which
totalizes 24 counting for each rat. In the same way, the experiment was repeated with 6
rats of the War species (data set in Table 2). The main interest of this research was to
verify if the species have different effects in the grooming counting of the rats.

In Tables 1 and 2, we also have the sample means and the sample variances for each
combination time X treatment. From the results of Tables 1 and 2, we observe that the
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TaBLe 1. Grooming counting in male rats with treatment order
(saline/oxytocin)-Wistar.

Rats
1 2 3 4 5 6 7 8 Standard
t(min) Saline Mean Deviation Variance
5 o 3 2 2 4 0 5 8 3.000 2.673 7.143
10 9 3 9 6 6 0 9 0 5.250 3.845 14.786
15 6 10 8 8 &8 7 8 0 6.875 2.997 8.982
20 o o0 0 5 5 1 7 6 3.000 3.024 9.143
25 9 0 6 2 14 4 0 1 4.500 4.957 24.571
30 m o0 0 0 4 0 0 0 1.875 3.944 15.554
35 6 10 4 0 2 0 0 O 4.000 5.952 35.429
40 o o 100 2 5 0 0 0 2.125 3.643 13.268
45 o o o o 1 0 0 0 0.125 0.354 0.125
50 o o0 4 0 0 O 0 O 0.500 1.414 2.000
55 o o0 12 0 4 0 0 0 2.000 4.276 18.286
60 o o 2 0 0 0 0 o0 0.250 0.707 0.500
Oxytocin

5 9 0 15 0 2 2 1 5 4.250 5.285 27.929
10 6 13 19 0 7 0 8 6 8.625 6.968 48.554
15 16 9 18 2 17 3 11 O 9.500 7.191 51.714
20 13 0 14 11 18 10 14 1 10.125 6.402 40.982
25 17 1 9 14 19 11 19 9 12.375 6.163 37.982
30 18 5 13 16 6 14 15 11 12.250 4.652 21.643
35 88 6 1 7 16 9 14 10 10.125 5.643 31.839
40 5 2 16 11 13 0 9 8 9.250 5.800 33.643
45 13 3 15 0 7 1 19 1 7.375 7.367 54.268
50 1 0 4 0 8 8 8 10 6.125 4.291 18.411
55 8 O 13 7 9 3 7 0 5.875 4.549 20.696
60 50 0 0 0 7 1 7 2.500 3.251 10.571

sample means are different of the sample variances for almost all combinations time X
treatment, which is an indication of extra-Poisson variability.

To analyze the data of Tables 1 and 2, we assume a Poisson distribution for the
counting data in the presence of a covariate. To incorporate the dependence among the
counting data and the extra-Poisson variability, we introduce a random effect or "frailty”
in different regression models for the parameter of the Poisson distribution. The use
of a random effect or a “frailty” to analyze longitudinal discrete data is considered by
many authors Albert & Chib (1993); Crouchley & Davies (1999); Dunson (2000, 2003);
Jorgensen et al. (1999); Henderson & Shimakura (2003); Dunson & Herring (2005). Gen-
eralized linear mixed models with normally distributed random effects are considered by
many authors Moustaki (1996); Sammel et al. (1997); Moustaki & Knott (2000); Dunson
(2000, 2003).

In biostatistics applications, alternative Poisson latent variable models have been pro-
posed in the literature, motivated by applications to studies of malformation (Legler &



TaBLE 2. Grooming counting in male rats with treatment order
(saline/oxytocin)-War.
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Rats
1 2 3 4 5 6 Standard
t(min) Saline Mean Deviation Variance
5 2 2 6 2 6 4 3.667 1.966 3.867
10 33 0 2 1 2 1.833 1.169 1.367
15 30 6 10 7 0 4.333 4.033 16.267
20 m 7 8 7 0 9 7.000 3.742 14.000
25 1 0 13 0 8 1 3.833 5.419 29.367
30 3 0 1 30 0 1.167 1.472 2.167
35 2 1 0 3 0 O 1.000 1.265 1.600
40 o 0 o0 0 0 0 0.000 0.000 0.000
45 5 6 0 0 0 O 1.833 2.858 8.167
50 o 1 0 0 0 O 0.167 0.408 0.167
55 o 0 o0 0 3 0 0.500 1.225 1.500
60 0o 0 4 11 10 O 4.167 5.154 26.567
Oxytocin
5 4 6 1 9 0 7 4.500 3.507 12.300
10 1 13 0 13 5 8 6.667 5.680 32.267
15 9 19 6 1 10 10 9.167 5.913 34.967
20 11 12 6 14 3 5 8.500 4.416 19.500
25 4 15 8 16 13 14 11.667 4.676 21.867
30 17 15 2 12 0 12 9.667 7.005 49.067
35 20 8 12 16 0 5 10.167 7.333 53.767
40 1 10 7 6 16 8 8.000 4.940 24.400
45 o 6 0 0 5 9 3.333 3.882 15.067
50 1 17 2 12 0 8 6.667 6.861 47.067
55 0o 5 5 0 8 14 5.333 5.279 27.867
60 1 14 3 8 12 4 7.000 5.215 27.200
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Ryan, 1997) and tumorigenesis Yakovlev & Tsodikov (1996); Dunson & Baird (2002).
Poisson-Gamma models for longitudinal counts are proposed by Crouchley & Davies
(1999); Jorgensen et. al (1999); Henderson & Shimakura (2003) and gamma frailty mod-
els for survival data was introduced by Clayton (1991).
In this paper, we develop a comparative study for different “frailty” structures using
hierarchical Bayesian methods based on Gibbs Sampling algorithm method (Gelfand &
Smith, 1990; Chib & Greenberg, 1995). The paper is organized as follows: in Section 2,
we present the formulation of the model considering three different “frailty” models to
analyze longitudinal Poisson data; in Section 3, we introduce a Bayesian analysis for each
model considering the use of MCMC (Markov Chain Monte Carlo) methods; in Section
4, we analyze the real data set introduced in Tables 1 and 2; and finally, in Section 5, we
introduce a section of concluding remarks and some discussion of the obtained results.
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2. FormuLATION OF THE MODEL

Let Y;; be a random variable with a Poisson distribution,

—A:: Vi
e 'J/lij

P(Yy =yij) = —— @1
Yij'

wherey;; =0,1,2,..;i=1,...,n (sample size) and j = 1, ..., k (number of times). As-

sociated to each combination time X individual, let us assume the presence of a covariate

x,;,A,i: 1,...,n;j: ],...,k.

Since we have longitudinal data, we introduce a random effect or a frailty” which
captures the correlation among the repeated measures for each individual and the extra-
Poisson variability. Different models are considered to analyze longitudinal counting
data.

2.1. Model 1. Assuming that the counting data follows a Poisson distribution (2.1) with
parameter A;;, let us assume the regression model,

/l,'j = ajexp (,Bjx,‘j + W,‘) 2.2)
where x;; = 0 indicates that the rat is from the Wistar group and x;; = 1 indicates that
the rat is from the War group. In this way, a; measures the grooming mean in the ;"
time for the rats of Wistar group; a e’/ measures the grooming mean in the j" time for
the rats of War group; S; is a regression parameter indicating the effect of the group
species. In model (2.2), we also have the presence of a random effect or “frailty” w;
which captures the possible correlation among the repeated measures for each individual
and extra-Poisson variability, assuming a normal distribution, that is,

wi ™ N (0,72) (2.3)
fori=1,...,n.
Since Y;; has a Poisson distribution, we have E()/;_il/li_,) = A;; and Var(Yil,-I/lil,-) = A;j.
That is,
E (Y,'_,Ial,-,,Bj, Wi, xil,-) = ajexp (ﬁ_ixi_, + w;);
2.4)
Var(Y,'_,Ia_,,ﬁj, w,',xil,-) = ajexp (ﬁ_ixi_, + wi).
As,
E (Y;_ilaj,,B i xi.i) =E [E (Yi.imjaﬁ s Wi, Xij)] ,
we have from (2.4),
E (Y,‘.,-|a_,~,ﬁj, xil,-) = ;! E ().
Also observe that from the normality of the random effects w; (from (2.3)), e has a

log-normal distribution with mean E (e*?) = ¢”? and variance Var (e"i) = (eT2 - l)eTz.
That is,
22
E (Y,»_,~|al,-,,8j, x,»_i) = ozl,-eﬁfx‘fer /2. (2.5)
As,

Var()’,‘jlaj,ﬁj, X,‘j) = Var [E (Y,‘j|a’j,ﬁj, wi, X,‘j)] +FE [Var()’,‘jlaj,ﬁj, wi, X,‘j)] .
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we have from (2.4),
Var(Y,'_,Ial,-,,Bl,-, x,»_i) = a?ezﬁfx‘fVar(ew‘) + a_,eﬁfx‘/E ey,

that is
Var(Yi_ilaj,,Bj, xij) = (I%ezﬂjxij (eTz — ]) eT2 + a'jeﬁ./xue?‘zﬂ. (2.6)
From (2.5) and (2.6), we observe that the mean and the variance of Y;; given «;, B;
and x;; are different, that is, we have the presence of extra-Poisson variability given by
the term aiemﬂ‘” (e’2 - l)e’z, incorporated to the model (2.1) and (2.2).

2.2. Model 2. Let us assume that the counting data follows a Poisson distribution (2.1)
with 4;; given by,

/1,']' = Wi jeXp (ﬁjx,'j) . (27)
where x;; is defined in model 1, w; is a random effect or a frailty” with gamma distribu-
tion, that is,

wi " Gamma (d)‘l; ¢_1) 2.8)
fori=1,...,n.

The random effect or "frailty” w; is structured to accommodate the correlation among
the repeated counting data and the extra-Poisson variability. Observe that E (w;) = 1
and Var(w;) = ¢. This "frailty” structure is related to additive gamma “frailty” mod-
els introduced in the literature by Korsgaard & Andersen (1998); Petersen (1998) & Li
(2002).

As the result,

E (Yij|a’j,,3-, xij) =E [E (Yij|a’j,,3-, Wi, xij)] ,
we have,
E(Yij|aj»ﬁj» xij) = a;fE ("),
that is,
E (Y,’j|6lj,ﬁ~, x,'j) = aje’fo”, 2.9)
since E(w;) =1fori=1,...,n. As the result,
Var(yijkl'j»ﬁj»xij) = Var [E (Yij|aj»ﬁj» Wi»xij)] +E [Var(yijla'j»ﬁj» Wi»xij)]a
we have,
Var(Yijlaj,,B is xij) = a?ezﬂfx"f Var (w)) + a ;! E (w;),

that is,
Var (Yijlaj,ﬁ, x,~j) = ¢a§e2ﬁf"’f +a;elii. (2.10)
From (2.9) and (2.10), we observe that the extra-Poisson variability is given by
¢a§ezﬁ1x‘/,

where the parameter ¢ is related to the extra-Poisson variability.

Observe that model 2, a mixture of a Poisson with a gamma distribution, results in a
generalization of a negative binomial distribution (see for example, Bernardo & Smith,
1995, p. 119) for the unconditional distribution for ¥;;, i =1,...,n; j=1,... k.
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For model 1, the unconditional distribution for Y;; is obtained from a mixture of a
Poisson with a log-normal distribution which is different of the obtained unconditional
distribution for ¥;; assuming model 2.

2.3. Model 3. Another model which generalizes model (2.7) is given by
r
Aij = (Z aqu]exp (,31‘,- +,32‘,-xi‘,-), (2.11)
I=1

P
where i = 1,...,n; j = 1,..., k. In this case we have that ), a;exp (ﬁlj) measures the
=1

r
grooming mean in the j* time for the rats of Wistar group; Y. a; exp (ﬁl ith j) measures
i=1

the grooming mean in the j* time for the rats of War group; B, is aregression parameter
indicating the effect of the group species, this model is an additive gamma “frailty”” model.
A special case of model (2.11) is given considering r = 2, that is,

dij = (@1wy; + aawa;) €Xp (,31.; + ﬁz_;xi_,') , (2.12)

where wy; and w; are random effects or frailties” assumed to be independent with
gamma distributions,

jid 1. -
wii < Gamma(¢11;¢ll)

(2.13)
wai 4 Gamma (gbgl : ¢51)
fori=1,2,...,n.
As,
E(Yij|alj, @2j,B;, xij) =E [E (Yijla'lj» @2, B} Xijs Wiis Wzi)],
we have
E(Yijlrj» a2y B xij) = a1 VP E (i) + ane i P E (wyy)

Since E (wy;) = 1 and E (wy;) = 1, we have,

E (Y,'j|6l1j, Clzj,ﬂ~, x,'j) =( + @) PPy, (2.14)

Also as the result,
Var()’ijlalj, @2}, B x;_,~) = Var [E (Yij|a]j, @2, B s Xijs Wi wzi)] +
+E [Var (Yijla']j, @2, B, Xijs Wiis Wzi)] ,
we have,
Var (Y,‘.,-lalj, @, B;, x,»_i) = Var (aleﬁ'/+ﬁ2f"’f wij + el tPati Wz,') +
+E (a,eﬁ'f%f"”w,i + apePitPaii wzi).
Since E (wy;) = E (wy) = 1, Var (wy;) = ¢; and Var (wy;) = ¢,, we have,

Var (Yijlenj, @2, i) = ¢y} tPms) 1 g,03e2 00 Par) 4 (@) + ay) ePrars,
(2.15)
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From (2.14) and (2.15), we observe that the extra-Poisson variability is given by
¢,a?e2(ﬁ"f+ﬁ21xif) + ¢2a%e2(ﬁ”+ﬁzﬂi/)’

fori=1,...,nand j=1,...,k.

Assuming model 3, the unconditional distribution for Y;; results from a mixture of
a Poisson distribution with a linear combination of gamma distributions. This is a new
modeling approach and could give more flexibility of fit for longitudinal counting data in
the presence of covariates.

The use of a linear combination of latent variables also has been considered in Tg. AC
transgenic mouse bioassays (see for example, Dunson & Herring, 2005), where the mice
have an oncogene inserted and the susceptibility to tumorigenesis is studied. In these
studies it is well known that there is extra-Poisson variability in the number of tumors per
animal, and the latent variables have transgene interpretations.

Observe that to have identifiability in model 3, some of the loading parameters q;
should be constrained; an alternative is to use appropriate informative prior distributions.
Usually, the choice for the frailty multipliers a; in some applications as genetic studies
have biological interpretations (see, Dunson & Herring, 2005); in other applications,
these choices are not so simple.

Models 1 and 2 do not have identifiability problems and are reasonable simple to get
the posterior summaries of interest using standard MCMC methods. However, we explore
the use of model 3 as an alternative to get better fit for the counting data set introduced in
Tables 1 and 2.

Other existing more sophisticated modeling for the latent variables could be used to
analyze the counting data set (see for example, Chib et al., 1998).

3. A BAYESIAN ANALYSIS

Assuming the Poisson model (2.1), the likelihood function for @ = (ay,...,a;) and
B = (By.....B) given the observed data Y;;, the non-observed variables w; and the co-
variates x;;, i =1,...,n; j=1,...,k, is given by,

—A;; y,-j
e 'f/ll.j

n k
Lep=1]]] o (3.1)

i=1 j=1

where 4;;, depending on the model, is given in (2.2), (2.7) or (2.12). That is,

n

n k k
] Z; /1,;,-] [ ]_][ 2y, (3.2)
e i

i=1 j

L(a,B) < exp {—
3.1. A Bayesian Analysis For Model 1. For the first stage of a hierarchical Bayesian
analysis for the model 1, let us assume the following prior distributions for the parameters
@;andf;
aj ~ Gamma (a; b); a, b known;
(3.3)
B;~ N(c;dz); ¢, d known;
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for j = 1,...,k; also observe that the “frailties” w; are assumed to be independent ran-
dom variables with normal distribution N (0, 7'2). For a second stage of the hierarchical
Bayesian analysis, let us assume an inverse gamma distribution for 72, that is,

2 ~IG(f,2); f, g known. (3.4)

We further assume prior independence among the parameters. The joint posterior
distribution for e, B, w and 7?2 is proportional to,

2 k a-1 ,—ba k 1 2
n(a,ﬂ,w,ﬂy,x)oc _l'[laj e fx_l_[lexp _W(ﬁj_c) X
Jj= Jj=
1 1 w? 2\~U+D 2
1 e eXP(‘F) x() 7 exp(-5) % 33

n k n k i;
X exp —Zl lelij [TIT4;
i=1 j=

i=1 j=1

were A;jisasin (2.2), w =(wy, ..., w,), @ = (@1, ..., ), B = (B, ..., B). ¥ is the vector
of counting data and x is the vector of covariates.

Posterior summaries of interest are obtained through MCMC methods Gelfand &
Smith (1990); Smith & Roberts (1993). The conditional posterior distributions needed
for the Gibbs sampling algorithm are given in Appendix A. A great simplification is ob-
tained using the software Winbugs (Spiegelhalter et al., 1995) which requires only the
specification of the distribution for the data and the prior distributions for the parameters.

It is important to point out that we could incorporate the dependence of 3; assuming
other prior distributions; in this way, we could model 3; by a time series process.

3.2. A Bayesian Analysis For Model 2. For the first stage of a hierarchical Bayesian
analysis under model 2, let us assume the same prior distributions (3.3) for ¢; and g s
Jj = 1,...,k. Under model 2, the “frailties” w; are assumed to be independent random
variables with gamma distribution Gamma (¢" ; ¢"). For a second stage of the hierar-
chical Bayesian analysis, let us assume a gamma distribution for ¢, that is,

¢ ~ Gamma (f;g); f, g known. 3.6)
We also assume prior independence among the parameters. The joint posterior distri-

bution for @, B, w and ¢ is given by,

k k 2
7 (@ Bow,dly ) o [1 04 e 5 [T exp |3t (B - ) | x
j-1 j-1
n

Il &Z:I)W?LI exp (—¢7'wi) x ¢/~ exp (—g¢) x (3.7)

n k n k i
X exp _Zz/lfj HH/l,j]

i=1 j=1 i=1 j=1

were A;; is givenin (2.7) fori = 1,...,n; j=1,..., k. The conditional posterior distribu-
tions needed for the Gibbs sampling algorithm are given in Appendix A.
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3.3. A Bayesian Analysis For Model 3 Assuming r = 2. Assuming a special case of
model 3 with r = 2, where 4;; is given in (2.12), let us assume normal prior distribution
for,BU and ,BZj, that is,
Brj~ N (B )
(3.8)
Baj~ N (B3 5)
with d; and d, known.

Since we have identifiability problems for the parameters «;, [ = 1,2 in model 3, we
consider a Bayesian analysis in two steps: in the first step, we assume model 2 for the
counting data. In the second step of the Bayesian analysis, we assume as prior informa-
tion (an empirical Bayesian approach) for the choice of the hyperparameters 5} ;and 5 ’
in (3.8), the estimated posterior means for ; and B; in model 2 obtained from the first
step. That is, denoting by &; and ,f?j the estimated posterior means for @; and 8; in model
2, we assume B = €% and B85, = jB;.

Different prior distributions could be assumed for the loading parameters a;, [ = 1, 2.
We assume a beta prior distribution, that is,

ay ~ Beta(ay;by1); a1, by known;
3.9)

ap ~ Beta(ay; by); a, by known;
for j =1,...,k; for model 3, the “frailties” wy; and wy; are assumed independent random
variables with Gamma (¢," ; ¢1") distributions (2.13) for [ = 1,2. For a second stage of
the hierarchical Bayesian analysis, let us assume gamma prior distributions for ¢, that is,

¢, ~ Gamma (f1; 81 ; fi, g known; [ =1,2. (3.10)

We also assume prior independence among the parameters. The joint posterior distri-
bution for a1, @2, B, B2, ¢, ¢, Wi and wy is given by,

[a+by) ,a1-1 b1
ﬂ(al,azvﬁl,ﬁz,wl,W2,¢|,¢2|y,x)OC r(ull)r(hll)all (l _a]) !
r(llz+h2)

X a,llz—l (l —a )hz—l X ﬁex _L(ﬁ —ﬁ* )2
@)l Y2 2 F R e At

no o -1
¢ ¢ -1 1
E F(ch_f‘)wl; eXP(—¢1 Wli)

< Tl exp [ (-3, %
J=1 2

*tﬁ_l
n ® 2 (/)—I_I 1 ‘ fi-1
T igmywii  exp (=03 wa) x 011" exp (=g141)
. n k n k
-1 i
X ¢éz exp (—826,) X exp (_ ZI ZI /li/') nl _nl /I}Yj/
i=1 j= i=1 j=
(3.11)
where 4;; is given in (2.12) fori = 1,...,n; j = 1,...,k. The conditional posterior
distributions needed for the Gibbs sampling algorithm are given in Appendix A.
Similar results are obtained considering » > 2 in (2.11); in this way, we could consider
different fixed values for r and to chose the best model using some existing Bayesian
discrimination criterion.
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4. ANALYSIS OF THE GROOMING COUNTING DATA

For a Bayesian analysis of the data set of Tables 1 and 2, we assume for models 1
and 2, the following hyperparameters values for the prior distributions (3.3), (3.4) and
(3.6): a =b=001;¢c =0; d> = 1000; f = g = 0.1. For model 3, we assume
ay=a,=b;y =by=1.0;d? =d? = 1.0; fi = fo = g1 = g2 = 1.0 for the hyperparame-
ters of the prior distributions (3.8), (3.9) and (3.10). This choice for the hyperparameters
values was motivated to have approximately noninformative prior distributions and also
to have convergence for the MCMC algorithm used for simulation of Gibbs sample for
the joint posterior distribution of interest using the Winbugs software Spiegelhalter et al.
(1995). The codes of the Winbugs program are given in Appendix B. For models 1, 2,
and 3, we simulated 1005000 samples, where the first 5000 samples (“burn-in-samples”)
were discarded to eliminate the effect of the initial values for the Gibbs sampling al-
gorithm. To have approximately uncorrelated Gibbs sample, we considered the samples
1004,200¢, 3004, ..., which results in final samples of size 10000 for each parameter. Con-
vergence of the Gibbs sampling algorithm was monitored by usual time series plots for the
simulated samples and also using some existing convergence methods Gelman & Rubin
(1992).

The posterior summaries for the parameters of the models 1, 2, and 3 are given in
Figures 1 to 3. In Figure 4, we have the sample variances for the counting data in each
combination time X treatment and Monte Carlo estimates for the posterior means of the
variances in each combination time X treatment considering models 1, 2 and 3. From the
results of Figure 4, we observe, in general, a better fit of model 3 for the data set of Tables
1 and 2, since the estimated variances are more close to the obtained sample variances.

For model selection, we can use some existing adequacy measures as the Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2000). Smaller values of DIC indicates
better models. In Table 3, we have the estimated DIC for each model obtained using the
Winbugs software. We observe that model 3 is better fitted by the counting data of Tables
1 and 2 (smaller values of DIC). We also observe that the differences among the estimated
variance and the sample variances are, in general, smaller considering model 3. In Table
4, we have the sum of squares of these differences assuming each proposed model. From
the results of Table 4, we observed smaller sum of squares of these differences for model
3, especially for the Wistar group (x = 0); when compared to models 1 and 2.

TasLE 3. DIC Criterion.

Model DIC Number of parameters

Model 1 2016.790 49
Model 2 2016.360 49
Model 3 2011.480 52

In this way, we assume model 3 to get other Bayesian inferences of interest for the
counting data of Tables 1 and 2. To verify treatment effect for the Wistar group of rats, in
each time, we considered the parameters,

O = (a1 + @) P12 — () + ap) Pix,



STATISTICAL ANALYSIS FOR LONGITUDINAL COUNTING DATA 193

TaBLE 4. Sum of squares for the differences between the estimated vari-
ances and the sample variances.

X Modell Model2 Model3
0 5073.575 5907.703 4982.026
1 3354.934 4398.451 3452.206

were k = 1,2,...,12; we also considered the model 3, to verify treatment effect for the
War group of rats in each time, considering the parameters
M= () + az)eﬁl.A+12+ﬁz,k+1z —(a + @) eﬂl.A*‘ﬁz.A’
werek=1,2,...,12.
Monte Carlo estimates for 6; and 1, k = 1,2, ..., 12 considering the 10000 generated
Gibbs samples are given in Table 5. We observe that we have significant treatment effects
for times k = 2,4,5,6,7,8,9,10, 11, 12 for the Wistar group of rats since zero is not

included in the 95% credible intervals for each 6;. Considering the War group of rats, we
observe significant treatment effects for times k = 2, 3,5,6,7,8,10, 11, 12.

TaBLE 5. Posterior summaries considering model 3

Parameter Mean SD 93% Credible Parameter Mean SD 93% Credible
Interval Interval
6, 1.300 0.964 (-0.524;3.302) 7 0.889 1.252  (-1.506;3.448)
6, 3486 1.423 (0.824,6.472) M 5.171 1.507  (2.604;8.513)
65 2713 1.528 (-0.160;5.841) M 5.166 1.818  (2.041;9.158)
64 7.347  1.677 (4.455;11.050) 4 1.601 1.726 (-1.671;5.126)
05 8.078 1.868  (4.836;12.160) s 8.384 2.196  (4.690; 13.320)
G5 10.660 2.017  (7.274;15.150) 76 9.076 2.048  (5.764;13.700)
6, 6.287 1.587  (3.511;9.704) 7, 9.794 2.146  (6.319; 14.630)
O 7.343  1.582 (4.620;10.880) g 8.531 1.827 (5.588;12.680)
6y 7.456 1421  (5.105;10.550) 1y 1.546 1.014 (-0.313;3.745)
610 5762 1.214  (3.742;8.451) Mo 6.945 1.589 (4.379;10.510)
01, 3975 1.143 (1.973;6.419) i 5.135 1.312 (2.986;8.113)
01> 2316  0.658  (1.234;3.802) Mo 3.016 1.551 (0.237,6.405)

5. CoNcLUDING REMARKS AND DiscussioN

Longitudinal counting data in the presence of one or more covariates are very com-
mon, especially in medical studies. Usually we need models to capture the correlation
among the counting data and the presence of superdispersion. Different "frailty” models
are introduced in the literature to analyze counting Poisson data. The use of hierarchical
Bayesian methods is a suitable way to analyze Poisson longitudinal data, especially us-
ing recent software to simulate samples for the joint posterior distribution of interest. In
this way, the use of Winbugs software gives a great simplification to obtain the posterior
summaries of interest.
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Figure 1. Graphics for the posterior summaries assuming model 1.
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Figure 2. Graphics for the posterior summaries assuming model 2.
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To analyze the counting data set introduced in Tables 1 and 2, we considered three
models with different frailty” structures. Assuming models 1 and 2, given in sections
2.1 and 2.2, respectively, we observed very similar DIC values (close to 2016). That is,
using this discrimination criterion, we can not say that one of these two models is better
fitted by the data. However, if our goal is related to model the variances of the counting
data, model 1 is better fitted by the data (see Table 4).

Under the DIC criterion, we observe that model 3 is better fitted by the data, since
the estimated DIC is given by 2011.48 (smaller than the DIC values for model 1 and 2).
We also observe that in terms of estimated variances, model 3 gives similar results as
compared to model 1 (see Table 4), considering X = 0 or X = 1. Other discrimination
criterion also could be used to compare the three models (see for example, Gelfand &
Ghosh, 1998).

In the data analysis considered as an example, we observed better fit for model 3
(an additive “frailty” model) introduced in section 2 assuming r = 2. Possibly, better
fit could be obtained considering model 3 with r > 2. It is important to point out that
expert opinion could be considered for the choice of the hyperparameters of the prior dis-
tributions (3.8) and (3.9), usually assuming biological interpretation Dunson & Herring
(2005). Other possibility is to use prior information to fix one of the a;, [ = 1,2 (see
(3.8)) in the Bayesian analysis (or one of the ¢;, [ = 1,2 given in (3.9)). In this way, we
could obtain better inference results. Further research should be done in this direction.

Other important positive aspect of the Bayesian methodology is related to the discrim-
ination of the proposed models, and the possible use of informative prior distributions
considering the opinion of experts, which is common in medical studies.

APPENDIX

Appendix A: Conditional Posterior Distributions Needed For The Gibbs Sampling
Algorithm .

Model 1.
(i):

n n
ajla), B, W%y, x ~ Gamma (a + nyj, b+ Z eW'e/’f"v] ;

i=1 i=1
where a;) = (al,...,aj_l,a'j.;.l,...,ak); Jj=1,... k.
(i1):
ﬂ(ﬁ.fla’ﬂ(.i)’w’ T2’ Y, X) o N(C»d2)¢| (Q’,ﬂ, w, 729 y. X),
where

n

n
l//l ((Z,ﬁ,W,Tz,y,X) = eXp(—a’ngWieﬁjxll +,Bj2yfjxfj]; j= 1,...,k.
i=1

i=1
(dii):
ﬂ(wila,,B, Wi, 7Y, x) o« N (0, Tz)wz (a,ﬂ, W, 7Y, X),
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where

W, (a,ﬂ, w, ‘rz,y, x) = exp

k k
—eW’Zajeﬁf"‘/+Zw,-y,-j ci=1,...,n.

J=1 J=1

(iv):
n 1<
2 2
~ = — 1.
|, B, W,y,X G(f+2,g+2i=§1 W;]

Observe that we need to use the Metropolis-Hastings algorithm to simulate samples
for B; and w;.
Model 2.
(i):
n (e jlag,. B. w2 y.x) o< 4 e Py, (@. B w. 6.y, %),

where
Yy (@, B, W, $,y,X) = exp (—a‘,- Z w;eli%ii + Zyi_, In (a/‘,-)]; j=1... k.
i=1 i=1

(ii):
”(ﬁj'a’ﬁ(j)’ w, ¢’ y’ X) oc N (C’ d2) WZ (Q’,B, W, ¢’ y, X) s

where
U, (@, B, W, 9,y,X) = exp (—a‘,- Z el +5; Zyi_,xi_,]; j=1,... k.
i=1 i=1

(iii):
7 (wile, B, Wiy, .y, X) cc Gamma (¢" , ¢") s (@, B, W, 0,Y,X),
where
k k
Vs (@, B, W, 9,y,X) = exp l—w,- Zajeﬂ/"'/ + Zy,-j ln(w,-)l; i=1,...,n.
j=1 j=1
(iv):
T (¢|avﬁ’ W, y’ X) o Gamma (fv g) ¢’4 (avﬁv w, ¢’ yv X) ’

where

(@, B,w,0,y,X) = exp [—ngb‘l In(¢)—n lnF(d)‘l)] X
¢! Z In(w) — ¢!
i=1

n

X exp

w,]; i=1,...,n.

i=1
Observe that we need to use the Metropolis-Hastings algorithm to simulate samples
for a;, ,Bj, w; and ¢.
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Model 3.
(@):
m(@ilaa. Br. o Wi, Way. .y, %) < @™ (1 — )"y, (0),
where 6 = (a1, @z, B, B>, Wi, Wa,0,, b5, ¥, X) and

k n k
U, (6) = exp —Zn:ZA,-J- <[ ][ s 1=1.2

i=1 j=1 i=1 j=1

where 4;; is given in (2.12).
(i1):
1
2d}

n (ﬁljlﬁ(lj)v y, @2, Wi, Wa,d1, 6., X) oc exXp [_ (ﬁlj _ﬁjj)2:| v, (0),

forl=1,2;j=1,...,k.
(iii):
-1 .
7 (Wil Wi, @1 @2, By, Bouby . 3. Y. X) < Wi exp [—¢1 IWli] ¥, (0),
fori=1,....,n;1=1,2.
(iv):
7r(¢]|¢(]), a, az»BI,BZ’ Wi, W, y, X) oc ¢lfl_le_g[¢lw2 (¢l) ’

where
n

1 < 1
Us ($) = exp —%lw,—nlnT(cpf')—E;Inwﬁ—aZwﬁ ,

i=1
for [ = 1,2; observe that we need to use the Metropolis-Hastings algorithm to
simulate samples for all parameters.

Appendix B: Winbugs Codes .

Listing 1. Main code of the Winbugs program (Model 1).

Model 1.
model

{ for(i in 1:rats)
! for(j in 1:times)
! y[i,j] = dpois(lambda[i,j])
lambda[i,j] <— alpha[j]xexp(beta[jlxx[i,jl+w[i])
w[i] ~ dnorm(al,sigma)
foi(j in 1:times)

{
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alpha[j] ~ dgamma(a2,b2)

be
}

sigma
tau2 <

}

ta[j] =~ dnorm(a3,b3)

~ dgamma(a4 ,b4)
— 1/sigma

(ak,bk), k=1,...,

Model 2.

4, represent known hyperparameters.

Listing 2. Main code of the Winbugs program (Model 2).

model

{
for (1

{
fo

wl
}
for (]
{

in l:rats)

r(j in l:times)
{
yli,j] = dpois(lambda[i,j])
lambda[i,j] <— w[i]=alpha[j]«xexp(beta[j]*xx[i,]j])
}
i] ~ dgamma(pri,pri)

in 1l:times)

alpha[j] ~ dgamma(al,bl)

be

}
pri <—
phi

}

ta[j] =~ dnorm(a2,b2)

1/phi

~ dgamma(a3,b3)

(ak,bk), k=1,2,3

Model 3.

, represent known hyperparameters.

Listing 3. Main code of the Winbugs program (Model 3).

model

{
for( 1

{
fo

wl

in 1 : rats)

r( j in 1 : times)
{
yli,j] 7 dpois(lambdali,j])
lambda[i,j] <— (alphalswl[i]+alpha2=w2[i])=x
exp(betal[j]+beta2[j]=x[i,]])
1
[i] = dgamma(pril ,pril)
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w2([1]

}
alphal
alpha?2

pril <— 1/phil
pri2 <— 1/phi2

phil
phi2

betal[1] -
betal [2] -
betal [3] -
betal [4] -
betal [5] -
betal [6] -
betal [7] -
betal [8] -
betal [9] -
betal [10] -
betal[11] -
betal [12] -
betal [13] -
betal [14] -
betal[15] -
betal [16] -
betal [17] -
betal [18] -
betal [19] -
betal [20] -
betal [21] -
betal [22] -
betal [23] -
betal [24] -

beta2[1] -
beta2[2] -
beta2[3] -
beta2 [4] -
beta2[5] -
beta2 [6] -
beta2[7] -
beta2 [8] -

~ dgamma(pri2 , pri2)

~ dbeta(al,bl)
dbeta(a2,b2)

~ dgamma(a3,b3)
~ dgamma(a4 ,b4)

dnorm (a5 ,b5)

dnorm (a6 ,b6)

dnorm (a7 ,b7)

dnorm (a8 ,b8)

dnorm (a9 ,b9)

dnorm (al0,b10)
dnorm(all,bll)
dnorm(al2,bl2)
dnorm(al3,bl13)
dnorm(al4,bl4)
dnorm(al5,bl5)
dnorm(al6,bl16)
dnorm(al7,bl17)
dnorm (al8,bl18)
dnorm (al9,b19)
dnorm (a20,b20)
dnorm (a2l ,b21)
dnorm (a22,b22)
dnorm (a23,b23)
dnorm (a24 ,b24)
dnorm (a25,b25)
dnorm (a26,b26)
dnorm (a27,b27)
dnorm (a28 ,b28)

dnorm (a29,b29)
dnorm (a30,b30)
dnorm (a31,b31)
dnorm (a32,b32)
dnorm (a33,b33)
dnorm (a34 ,b34)
dnorm (a35,b35)
dnorm (a36,b36)
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57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
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beta2 [9] dnorm (a37,b37)
beta2[10] dnorm (a38,b38)
beta2[11] dnorm (a39,b39)
beta2[12] dnorm (a40,b40)
beta2[13] dnorm(a41,b41)
beta2[14] dnorm (a42 ,b42)
beta2[15] dnorm (a43,b43)
beta2[16] dnorm (a44 ,b44)
beta2[17] dnorm (a45 ,b45)
beta2 [18] dnorm (a46 ,b46)
beta2[19] dnorm (a47 ,b47)
beta2[20] dnorm (a48 ,b48)
beta2[21] dnorm (a49 ,b49)
beta2[22] dnorm (a50,b50)
beta2[23] dnorm (a51,b51)
beta2[24] dnorm (a52,b52)

203

}

(ak,bk),k=1,..., 52, represent known hyperparameters.
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