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INTENSITY MODELS FOR PARAMETRIC ANALYSIS OF RECURRENT
EVENTS DATA

FRANCISCO LOUZADA-NETO

AsstrAcT. In this paper we discuss a general parametric class of mdoleanalyzing
multiple failure data where the study subjects can expeeigapeated events. The idea
is to model the global time, combining the two time scalemlttme and interval time
(intervals between successive events), and the eventsauat hybrid model, and to
decide about their appropriateness in the light of the dette.general framework allows
a broad class of hazard or intensity models including thedeni and renewal process
models as very special cases. Simulation results suggeshthtest procedures perform
well even for small and moderate sample sizes. A Real datiasgtate the methodology.

1. INTRODUCTION

Lifetime data where more than one event is observed on edigjhc$iarise in areas
such as biomedical studies, criminology, demography, f@atwring and industrial re-
liability. An offender may be convicted several times. Several tumors mapsered
for an individual. Recurrent pneumonia episodes arise fiepis with human immunod-
eficiency syndrome. A piece of equipment may experienceatepédailures or warranty
claims.

For this kind of data, for each individuaive observe the total numben, of events
(lifetimes) occurred over the time period, (¢}, the ordered epochs of thmg lifetimes
attimes 0< t; < tp < --- < tiy < 7, and, additionally, we may have covariate
information on each subject defined by a vea@@nd a vector of censoring indicators.
In such studies, interest lies on understanding and claarzicly the event occurrence
process for individual subjects and on treatment compasi®ased on the time to each
distinct event, the number of events, the type of eventslamhterdependencies between
events, explaining the nature of variation between sudjecterms of treatments, fixed
covariates or other factors (maybe unobservable ones).

Approaches often used to model recurrent event data, whimhr as to learn about
an individual process, are those based on Poisson and rigoraeasses. A Poisson rep-
resentation for the individual process is employed for nladgthe total time on study,
while a renewal process is employed for modelling the irgtktine, that is, the time from
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previous event (Cox and Isham, 1980, Cox and Lewis, 1966efg®h, Borgan, Gill and
Keiding, 1993, Lawless, 1987, Follmann and Goldberg, 1888ntice and Williams and
Peterson, 1981).

Lipschutz and Snapinn (1997) discussed that the total timgefiing seems natural if
the events can be viewed as unrelated, and therefore indepgrso it is reasonable to
assume that they can be developing simultaneously, withiskefor the occurrence of
each event beginning at the same time. In this context, tihered events simply reflect
the order of their occurrence in time. For example, patients human immunodefi-
ciency syndrome can experience recurrence of opportaimigéctions. They may be at
risk for a type of infection, such as superficial candidiaagiseveral sites from the begin-
ning of the study, with the first, second and subsequent svefiecting the order of their
occurrence as time progress. Interval time modelling, vewes appropriate for situa-
tions where the risk for the next event does not begin untdrahe previous event has
occurred, such as myocardial infarction, superficial cdiagis at a single site and war-
ranty claims on a particular system. The parameters of thaeireflect the relative risk
of the next event from the time of the previous event. Amorwer, Cox (1972b) and
Lawless and Thiagarajah (1996) considered modulated rdreavd Poisson processes,
which accommodate the two time scales.

In this paper we discuss a general parametric hybrid scé@sity model for ana-
lyzing multiple failure data for use in studies where indivals can experience recurrent
events. The general framework accommodate a broad clasteaity models including
the Poisson and renewal process models as very special thgdslea is to combine the
two time scales, total time and interval time (intervalswesn successive events), and
the event counts in a hybrid model, and to decide about tigircgriateness in the light
of the data. In the model with covariates, we assume a priopattintensity baseline
function. We envisage applications in which a moderate myelaumber of individuals
is observed and the number of events per individual may be gmall. A brief review
of intensity models is given in Section 2. In Section 3 we defime hybrid scale in-
tensity model. A very special case of the model is given intiBact where we discuss
the estimation procedure and computational issues. Ind®estwe present the results
of a simulation study on the error rates for hypothesis t@stson quantification of the
gain in the precision of parameter estimates obtained bplgyimg the model when a
possibly small or moderate number of recurrent events phvigdual is observed. A real
numerical example is provided in Section 6. Some final resarkSection 7 conclude
the paper.

2. MODEL FORMULATION

Recurrent event data can be conveniently modelled by cens intensity-based
models. Suppose thatindividuals may experience a single type of recurrent eveat
m(t) denote the number of events occurring for ttreindividual over (Qt]. Assume
that theith individual is observed over the interval, (], wherer; is determined inde-
pendently ofmi(t). Letty < t < --- denote the continuous failure times for thk
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individual, and letx;; = tjj — t; j_1 be the time intervals between successive events, with
tio = 0. For simplicity, we will consider an arbitrary individuaihd drop the subscript

The intensity function at time is defined as (Cox and Isham, 1980, p. 9; Lawless,
1995)

. oprim(t, t + At) = 1| M(b)}
hit] MO} = lim, AL , (2.1)
wherem(t,t + At) denotes the number of events over the small intetvaH At), and
M(t) = {m(s) : s < t} denotes the history of the process up to time

Equation [[Z.11) represents the instantaneous rate of éadltitimet given the history
of the process\(t) up to timet. The failure process will be assumed orderly, so that the
limiting probability of two or more failures in the intervit, t + At), given that at least
one failure occurs in it, tends to zero, &is— O.

Several intensity-based models with varying degrees of ongican be established as
particular cases of (2.1). We shall divide them in two typleese which depend primarily
on the total time, and those which depend primarily on the interval timmdmportant
total-time type models are the nonhomogeneous Poisson uedbirth process, while
important interval-time type models are the renewal preeesl its natural generalization
to a semi-Markov process.

The intensity function for a nonhomogeneous Poisson psasespecified by consid-
ering, from [Z.1),

hit | M(t)} = ho(t), (2.2)
wherehp(t) > 0 (Lawless, 1982, p. 495). That is, the dependence is onlyapsed time
t. For

hit | M(t)} = m(t)ho(t), (2.3)
we obtain a nonhomogeneous pure birth process. A renewedgsas obtained fdit |
M(t)} = ho(t — tyy), which can be rewritten as

hit | M(t)} = ho(w). (2.4)

wherev; = t — tyy is the backward recurrence time frdrio the previous event (or the
time origin). A particular semi-Markov process is obtairgdn (£.4), ho(-) is replaced
by ho;j,(-), with j; = m(t) = 1, 2,.. ., wherej; is the jth point (event), so that an individual
moves to stratunj; following his (j; — 1)th failure and remains there until thgh failure
or censoring takes place (Prentice, Williams and Petetk@fil ).

It is natural to specify regression models for {2.1). FollogvCox (1972a, 1972b) we
can consider(2]1) to be the product of an nonnegative argifunction of time and a
nonnegative function of covariates. From {2.2) the nonnbgemeous Poisson process
model with covariates is defined as

hit | Z M(t)) = ho(t)9(82), (2.5)
whereg(-) is a known positive function that equals one when its argurisezero g is
a vector of unknown regression parameters, fayfty > O denotes the baseline intensity
function for an individual withe = 0.
In the same way, froni (2.4), the renewal process model witartates is defined as

hit | z M(t)} = ho(w)9(8"2), (2.6)
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wherehg(v;) > 0 denotes the baseline intensity function.

Models [2.5) and (Z2]6) are semiparametrilagf) is left arbitrary, and fully parametric
if ho() is specified up to a vector of parametefs,A variety of functional forms can
be often employed fog(-), but the simplest and most natural is e¥p (More general
expressions for moddl (2.6) are obtained by settifitpcint baseline intensity functions
to each evenj;, so thathy(-) is replaced by;,(-).

3. A GENERAL CLASS OF INTENSITY MODEL

A general class of intensity model which allows for multiptae scales in the baseline
intensity functionhg(-), and permit dependency on the event counts can be defined as

hit | Z M)} = du(vi; 61)02(t; 62)ds(ji; 63)9(8" 2), (3.1)

whereg(-) andp are defined as before, agl(-), gz(-), andqgs(-) are positive functions
denoting the parametric baseline intensity functions @nititerval time,v;, total time,

t, and event countg;, respectively, with unknown parameter vectéyst, andds. The
covariates are assumed to be fixed and thereforeffexttad by the event process. For
simplicity, hereafter andj will refer to v; and j;, respectively.

Model (3.1) covers a wide spectrum of intensity-based meodEbr instance[({3.1)
reduces to the nonhomogeneous Poisson process niodelr(2t§)parametric version
if q1() = ga(-) = 1. Forgz(-) = gs(-) = 1 we obtain the renewal process modell(2.6).
A hybrid Poissofrenewal intensity model is obtainedg$(-) = 1. More general models
can be obtained with a more complex degree of memory streigbarticularly if diferent
baseline intensity functions are set for thth event and for time-dependent covariates.

From the practical point of view, an advantage of modellimgtbtal time  jointly with
the intervals, as if (31 1), is that we can accommodate ®nmtn which the process is
regarded as a superposition of two no observable processesiepending primarily on
the total timet and one depending primarily on the interval timeAlso, we can accom-
modate situations where the basic process is, for instan&misson process which is
perturbed (multiplicatively) by a renewal one and viceszer

Noticing that we can rewrité = Xy + --- + Xj-1 + X = tj_1 + v, the corresponding
cumulative intensity function is given by

H{t; 61, 62, 63,8 | Z M(t)} = Holt; 61,62, 63 | M(1)}g(8" 2), (3.2)

whereHoft; 01, 62,03 | M(t)} = fotho{a; 01,62, 03 | M(a)}dais the cumulative baseline
function, with ho{t; 61,02,05 | M(t)} = qu(v; 61)02(t; 62)0s(j; 63) denoting the baseline
intensity function. In general, the integral y(-) needs to be evaluated numerically,
since only in special cases analytical solutions are féasib

Assuming that each failure timg has an associated indicator variable defined by
dj = 1if tj is an observed failure time agl = 0 if t; is a right-censored observation, and
that individuali has an associated covariate vecothe contribution to the likelihood
from an individual’s interval timex;, which starts atj_s, is

Ljjj-1..1 = {hj(t; | Z’M(tj))}§je_Hj(tj|ZM(tj)), (3.3)
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whereh;(t; | z M(t;)) andHj(t; | z M(t;)) are the intensity and cumulative intensity
functions over the period of time frotp.;.

Suppose thatindividuals may experience a totalmi, . . ., m, recurrent events. From
(3.3), given a specified parametric model for the intensityctionh;(t; | z M(t;)), the
maximum likelihood estimates (MLES) can be obtained bydireaximization of the
overall likelihood

n m
L(61,602,63,p8) = 1_[ l_[{hij(tij I Za,M(tij)}ﬁ‘je_H”'(t”"‘M(t”))- (3.4)
i=1 j=1
We discuss the estimation procedure further in the nexisect
Although it will not be used in the paper latter, it is intefeg to note, following
Lawless (1987), thak(3.3) can be decomposed as

Ljjj-1...1 = L(jl)(Ql, 92)'—(]-2)(91, 62, 03, ) (3.5)

.....

where, from[(3.11) and(3.2),
L(jl)(gl, 6) = | (& 01)02(a;62) s,

g 3.6
b G1(&; 61)0(a; 62) da (3.6)

and

(01,02, 02.) =106 20 02) [ aules :)aa(es 02 el
0 (3.7)

exp—a(6" 20s(/; 62) fo ' u(; 61)2(a; 62) dal.

Thus, there is the possibility of obtaining the MLEsandé, by maximizingL® =
[T IT; L(jl)(-) without having to conside#; andp, and then estimating; and;3 by max-
imizing L@ = [T [T; ng)(~) with 6, and#, fixed até; andé,. Although this procedure
may yield poor estimates, the estimates produced can oftetide a good starting point
for any iteration procedure designed to maximizel(3.4).

Further, focusing ori(37), if all individuals are obsengar the same time period,
say (Q 7], and there are no censored lifetimes, we can decomipdse J; [1; L(].Z)(-) as

L(Z) = L(S)(ﬂ)L(4)(91’ 92, 937ﬁ)7 (38)

where . .
L®)(g) 9(8" z) m. 39
®) Q{T DL (3.9)

which is the Cox likelihood for this situation, which depsrwhly the countsny, and

L(61, 6,63, 8) ={0s(j; 03) j; 01(a; 61)02(; 62) daZ 98" z)}"

) =t ] (3.10)

expi-0u(ji6e) [ cu(aion)an(eies) ca ) ol5"2)
i=1
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4. A SPECIAL PARAMETRIC INTENSITY MODEL

To examine the fully parametric approach we shall consigerticular flexible para-
metrization of [3.11), whergy(Vv; 61) = qui(V; @, y) = ay(av)’?, ga(t; 62) = oo(t; @, ¢) =
(1 + agt), ga(j; 63) = as(j;v) = ¢t andg(8'2) = exp"2). That is, we shall consider
the intensity function

hit; @ 8,7, 6,0 | Z MO} = ay(aV)’ (1 + agt)y) &, (4.1)
wherea, y, ¢, ¥ > 0. We can have < 0 provided that 1+ a¢t > 0 for any potentially
observed value df We will further assume th#t'z = 8121 + 8,2 + - - - has no intercept
term, which is absorbed hy.

An advantage of this parametrization is its relatively emsgrpretation. Whiley, ¢
andy are dimensionless numbersdenotes the exchange rate between the time scales
(total and interval times). Moreover, the renewal compadyoai), is driven by a Weibull-
type model, while the Poisson componegi(-), works as a time dependent Poisson
process part. The event count functigs(;), penalizes large numbers of events for 1.

An exponentially proportional covariatectg(-) completes the formulation. Apart from

B anda, the three parameteys¢ andy represent departures from the Poisson intensity
model, but often there would be some indication on generlmps that some of the
parameters should be omitted.

Several important intensity models can be obtained ascpiéaticases of (411). For
instance, fory = 0 andy = 1, it is an ordinary Weibull renewal model for the interval
times. It is a special nonhomogeneous Poisson process rifodet y = 1. With
v =y = 1andg = 0 it reduces to an ordinary homogeneous Poisson procesd.mode

An important measure in survival studies is the relativk bistween pacients on two
different covariate levels, sag andz. Although two time scales are involved in the
intensity function[(4.11), in the light of its proportionatscture, the relative risk betwen
pacients on two dierent covariate levelg andz is given by

hit; @, 8, v, ¢, ¢ | o, M(t)} F(a-2)

= 1-22) 4.2

hit; a. 8.y, ¢, ¢ | 2, M(1)} e

Following (3.4) and[{4]1), the contribution of an interviah¢ x; starting att;_; from
an arbitrary individual to the log-likelihood is

i1 g7 4.3
—{1+aptj_1 + aqﬁij}(axj)VW‘leB Z, (4.3)
vy+1
In our experience, the log-likelihood
n.m
1= > lina (4.4)
i=1 j=1

is straightforward to be maximized using a standard roysneh aslmin in the pack-
ageS-Plus, which finds a local maximum of a function using a general giizsvton
method (Seber and Wild, 1989, ch. 13). It may be appropriatensider reparametriza-
tion. We avert numerical problems from parameters with wimlded ranges.
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Large-sample inference for the parameters can be baseadiltEs and their esti-
mated standard errors, or, preferably, on the profile liagd, the latter being invariant
under reparametrization. Further, asymptotic approonatto the likelihood ratio sta-
tistics (LRS) distribution are likely to be more accuratsimall or moderate samples than
are asymptotic approximations to the distribution of theB4L Formal goodness-of-fit
tests are feasible in principle. Model[(4.1) is a nestedtydel, and it provides an easy
way to test whether or not a particular case fits a dataset tingfispecial models and
comparing the fit with the saturated model. For instancesidening [4.1), we can use
LRS for testing goodness-of-fit of hypotheses such@sy = 1,Ho: ¢ = 0,Ho : y = 1,
Ho:w=1L¢=0,Hy:y=1,y=1,Hp:¢=0y=1andHy:y =1,¢ =0,y = 1,
which postulate the special cases[of|4.1). Although it i#f kreown that, under general
grounds, the LRS test will work well if there is no boundargiplems on the hypothesis
test, which is our case, the adequacy of these proceduremfdl and moderate sample
sizes is studied via simulation in the next section.

5. A SIMULATION STUDY

Itis common in practice to find studies with a possibly smalimmderate number of
recurrent events per individual on a moderate number ofiddals. In order to assess the
applicability of the asymptotic results in such situatiarsmulation study was performed
to estimate the error rates of the hypothesis tests. The stad based on generated
samples of unit exponential random variables, assumingetheh one oh individuals
experienced the same number of recurrent ewents2, 4, 7, 15, 30 withn = 20, 50, 100.

In addition to setting the parameters at the null pgint 1,¢ = 0,y = 1 and atx = 1, we
also sep3 = 0.7 and considered a dichotomous covariagguals to-1 and 1, indexing a
control group and a treatment group, respectively. The sam#er of individualsn/2,
were considered at each covariate level. A case study isaiiyn andm, and by one of
the three dierent hypothesis tests, which will be set up below. Thus,ifferént cases
were simulated, each with @00 samples.

For survival data, it is definitively important to address tmpact of censoring. Then,
the overall study described above was repeated with rigisared samples witin =
4,7,15,30. Form = 4 we consider one censored observation,foe 7 we consider
two censored observations, flor= 15 we considered four censored observation and for
m = 30 we considered nine censored observations, which camesgpproximately to
25, 30, 30 and 30 percent of censoring.

Considering[(4]1), we use the LRS to test the following hizpsts: (a) Hp : ¢ =
1L,¢=0,y=21againstH; : ¢y # L,¢ =0,y =1,(b) Ho : ¥ # 1,¢ = 0, = 1 against
Hi:y#L¢#0,y=1,and(c)Ho: ¢y # 1, ¢ # 0,y =1lagainsH; : ¢y #1,¢ # 0,y #

1. The LRS was treated as a chi-squared distribution withgtesdeof freedom. Table

1 presents the empirical rejection rates fafetient numbersn of recurrent events per
individual and dfferent numben of individuals. The empirical rejection rates are close
to the nominal rejection rate.@. For small values afn andn however the empirical
rejection rates are within about0® of the nominal. The censoringfect is to present
estimate empirical rejection rates within abouit@of the nominal.
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TasLe 1. Confidence intervals fgs;: coverages (%) and lengths; un-
balanced design and skewed errors.

Form=4,7,15 and 30, in each cell the left result correspond to the cetagamples
while the righ result correspond to the censored samples.

Test n m
2 4 7 15 30
20 0.082 0.07®.122 0.0620.103 0.058.098 0.05/.078
(@ 50 0.076 0.06®.097 0.054.092 0.054.084 0.053.071
100 0.058 0.058.079 0.0510.075 0.0500.069 0.0520.065
20 0.083 0.08D.112 0.064.101 0.050.098 0.05/.077
(b) 50 0.075 0.06®.093 0.054.093 0.054.089 0.0540.073
100 0.054 0.059.072 0.05%.071 0.0510.069 0.0510.069
20 0.085 0.07/0.114 0.06.099 0.050.097 0.05%.078
(0 50 0.069 0.06®.098 0.0520.097 0.053.088 0.05/.071
100 0.053 0.050.078 0.0520.073 0.0500.071 0.0520.068

It is of practical interest to quantify the gain in the prémsof parameter estimates
obtained by simplifying the model when a possibly small oderate number of recurrent
events per individual is observed. In many applicationsiit ke sensible to examine
simple submodels of (4.1), in which only one or two of the éhparamenterg, ¢ andys
are not omitted.

For instance, three simplified models are considered asgyitmit there is no covariate
information on each individual, i.e., considering modeljdvithout the term exy(’ 2),
hereafter model (1). Model (2) will refer to the full model) (&ithout the event count
effect, that is,

hit; @.8,7.¢ 1 2 M)} = ay(av)’ (1 + agt), (5.1)
model (3) is model (1) without the Poisson component,
hit; . 87,9 | Z M)} = ay(av) ', (5.2)
while model (4) is the renewal-type intensity model,
hit; . 8,7 | Z M) = ay(av) ™, (5.3)

which is driven by a Weibull-type model.

Assuming that there is no censoring, a numerical study, dbasethe parameters
observed information matrix (calculated numerically sir® maijor simplification is
possible), was carried out with the same specification ab®e considered a,D00
generated randon samples of exponential random variblesmF= 2,4, 7, 15,30 and
n = 20,50, 100, we calculated the relativéfieiency (RE) of the MLE obtained by con-
sidering the reduced models (2), (3) and (4) relative to tihéNMbtained by considering
the full model (1). The RE fow, is defined to be RE{, @) = var(@)/var(@;), where
r = 2,3, 4 corresponds to the estimates obtained by consideringlsje (3) and (4),
respectively, an@; is the MLE of « obtained by considering model (1). We define the
RE for they, ¢ andy analogously.
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Tasie 2. RE of the estimates obtained by considering the reducetiso

(2), (3) and (4) relative to the estimates obtained undentbéel (1) for
samem values andh = 50.

RE m
> Z 7 15 30
@2 a1) 1.10 1.19 118 111 1.06
(@, @1) 131 1.09 1.06 1.02 1.01
(@, @) 2.44 3.02 3.25 3.46 3.58
G271 111 111 1.10 1.06 1.03
52.71) 1.67 1.33 1.20 1.10 1.04
Ta71) 1.68 1.33 1.20 1.10 1.04
(2. 41) 1.28 1.67 2.18 3.58 5.89
(V3.11) 1.27 1.67 2.18 3.58 5.89

A case study is defined byandm, and by one of the threeftierent hypothesis tests,
which will be set up below. Thus, 45ftkrent cases were simulated.

Table 2 shows the RE of the estimates obtained by considérmgeduced models
(2), (3) and (4) relative to the estimates under the modéiailin = 2,4,7,15,30. The
RE are very similar under variantion and only the results relatedrte= 50 are shown.
Overall, the parameter estimates are obtained with mo@gioa under simpler models
than under the full model (1).

6. REANALYZING THE MAMMARY TUMORS DATA

The hybrid scale model{4.1) was fitted to a dataset extrdoved Table 1 of Gail,
Santner and Brown (1980) on the times to development of magntamors for 48 rats
in a carcinogenicity experiment. The rats were assignedaay to a treatment group
(23 rats) and the remaining 25 to a control group. The aniregierienced dierent
number of tumors and no censored lifetimes were observeel ctariate was set equal
to O for the control group and 1 for the treatment group.

The LRS for testing the full mode[(4.1) against the submedetontains in a hier-
archical manner were obtained (the models are all nestd®.LRS for testing the full
model against the model with = 1 is 332, while that for testing model witly = 1
against the model witly = 1 and¢ = 0 is 064. For testing the model with = 1 and
¢ = 0 against the model witih = 1, ¢ = 0 andy = 1 the LRS is 042. Using the
asymptoticy? distribution of the LRS, the significance levels ar®Q 042, and (62,
respectively. This gives evidence in favor of a homogen@misson intensity model, but
with event count ffect. The MLE of the covariatefiect 3 indexing the homogeneous
Poisson intensity model with event couffitezt is equal to-0.29 with 90% profile con-
fidence interval given by-0.44, —-0.15), implying in a relative risk between the rats on
the treatment group to the rats on the control group. @b Qvith 90% profile confidence
interval given by(0.64, 0.86). This is clear evidence of the treatment benefit, which is in
broad agreement with Lawless (1995).
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7. CONCLUDING REMARKS

The hybrid scale intensity models developed in this papeibeaused &ectively for
analyzing recurrent event data. The special mddel (4.13s#yeinterpretable, and con-
tains several common intensity models as particular casesse models provide a con-
venient approach for analyzing data where the covaridfestahe intensity functions
proportionally. Besides, although there are gains in giegion the parameter estimates
obtained under simpler models than under the full model ooulsition results suggest
that the test procedures performs well even for small andaratd sample sizes.

Although the specific parametric forms fgu(-), gz(-) andgs(:) in (4.1) have analytical
convenience and are flexible, they are not critical, in ppiles for the overall approach to
hold and alternative forms could be considered. Howevediss of model mispecifica-
tion should be considered further by assuming alternativa$ forgi(-), g2(-) andas(-),
since, as pointed out by a referee, the LRS tests for modattieh would be seriously
compromised if the full model is incorrectly specified. Fostance, in the light of the
mannary tumors data, there is no formal justification fongghe specific parametric
forms of gi1(+), gz2(-) andgs(-) in (Z.1) and this numerical example should be seem as an
illustration for the overall procedure.

Specifying hybrid intensity models with a non-proportibregression structure may
have physical appeal and can be considered. For instancewle consider an acceler-
ated failure time model (Cox and Oakes, 1984, p. 64). Thisldvbowever introduce
extra dificulties in the analysis and needs further work. Time-vayyiovariates are nat-
ural in several situations, but are not considered undempproach. The problem is
however not straightforward in our case, and should be tigeged further.

As pointed out by a referee, in our formulation, the covagabave the same im-
pact on the time intervals between failures as well as ondted time. However, one
could have a given treatment withfiirent éfects on the time scales. This situations is
out of the scope of the paper and needs further work.

ACKNOWLEDGEMENTS

I am very grateful to D.R. Cox, A.C. Davison, D. Firth, V. IshaJ. Carpenter and J.G.
Leite for their comments and suggestions on this work. | & aéry grateful to the Edi-
torial board and to one of the referees for his suggestiotls®paper, addressing several
importantissues. F. Louzada-Neto is supported by CNP¢ gtanber 300042003-4.

REFERENCES

Abramowitz, M. and Stegun, |. (1972andbook of Mathematical Functions, New York: Dover
Publications.

Andersen, P.K., Borgan, O., Gill, R.D. and Keiding (1998jtistical Models Based on Counting
Processes, New York: Springer.

Cox D.R. (1972a), ‘Regression models and life tables (wiitubssion)’,Journal of the Royal
Satistical Society B 34, 187-220.

Cox D.R. (1972b)The statistical analysis of dependencies in point processes. In Sochastic Point
Processes, Ed. P.A.W. Lewis, pp. 55-66, New York: Wiley.



INTENSITY MODELS FOR PARAMETRIC ANALYSIS OF RECURRENT EVENS DATA 33

Cox, D.R. and Lewis, P.A.W. (1966)The Satistical Analysis of Series of Events, London:
Methuen.

Cox, D.R. and Isham, V. (1980pint Processes, London: Chapman and Hall.

Cox, D.R. and Oakes, D. (1984nalysis of Survival Data, London: Chapman and Hall.

Follmann, D.A. and Goldberg, M.S. (1988), ‘Distinguishingterogeneity from decreasing hazard
rates’, Technometrics 30, 389—-96.

Gail, M.H., Santner, T.J. and Brown, C.C. (1980), ‘An analysf comparative carcinogenesis
experiments based on multiple times to tumoBibmetrics 36, 255—66.

Johnson, N.L., Kotz, S. and Balakrishnan. N. (19®bntinuous Univariate Distributions 1, New
York: Wiley.

Lawless, J.F. (19821tatistical Models and Methods for Lifetime Data, New York: Wiley.

Lawless, J.F. (1987), ‘Regression methods for Poissonegsomodel’ Journal of the American
Satistical Association 82, 808—15.

Lawless, J.F. (1995), ‘The analysis of recurrent eventsrioitiple subjects’ Applied Satistics 44,
487-98.

Lawless, J.F. and Nadeau, C. (1995), ‘Some simple robustadstfor the analysis of recurrent
events’, Technometrics 37, 158—68.

Lawless, J.F. and Thiagarajah, K. (1996), ‘A point-proaesslel incorporating renewals and time
trends, with application to repairable systenT&chnometrics 38, 131-38.

Lipschutz, K.H. and Snapinn, S.M. (1997), ‘Discussion af thaper by Wei, L.J. and Glidden,
D.V., Satisticsin Medicine 16, 846-48.

McGilchrist, C.A. and Aisbett, C.W. (1991), ‘Regressiortiwirailty in survival analysis’Biomet-
rics47, 461-66.

Nelson, W. (1988), ‘Graphical analysis of system repaiataburnal of Quality Technology 20,
24-35.

Nelson, W. (1995), ‘Confidence limits for recurrence data -ppked to cost or number of product
repairs’, Technometrics 37, 147-57.

Oakes, D. (1997), Models-based gardmarginal analysis for multiple event-time data, ‘In Pro-
ceedings of the First Seattle Symposium in Biostatistiagvi8al Analysis’, Ed. D.Y. Lin and
T.R. Fleming, pp. 85-98. New York: Springer.

Pepe, M.S. and Cai, J. (1993), ‘'Some graphical displays ardinmal regression analyses for recur-
rent failure times and time dependent covariatésirnal of the American Satistical Association
88, 811-20.

Prentice, R.L., Williams, B.J. and Peterson, A.V. (1980 the regression analysis of multivariate
failure time data’ Biometrika 68, 373—79.

Ross, G.J.S. (1990Nonlinear Estimation, New York: Springer-Verlag.

Seber, G.A.F. and Wild, C.J. (198%pnlinear Regression, New York: Wiley.

Wei, L.J., Lin, D.Y. and Weissfeld, L. (1989), ‘Regressiomalysis of multivariate incomplete
failure time data by modeling marginal distributionddurnal of the American Satistical Asso-
ciation 84, 1065-73.

DEPARTAMENTO DE EstatisTica, UNIVERSIDADE FEDERAL DE SA0 CarLos, CP 676, 30 CarLos/SP, 13565-906,
BraziL
E-mail address, F. Louzada-Netodfln@power.ufscar.br



	1. Introduction
	2. Model formulation
	3. A general class of intensity model
	4. A special parametric intensity model
	5. A simulation study
	6. Reanalyzing the mammary tumors data
	7. Concluding remarks
	Acknowledgements
	References

