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INTENSITY MODELS FOR PARAMETRIC ANALYSIS OF RECURRENT
EVENTS DATA

FRANCISCO LOUZADA-NETO

A. In this paper we discuss a general parametric class of models for analyzing
multiple failure data where the study subjects can experience repeated events. The idea
is to model the global time, combining the two time scales, total time and interval time
(intervals between successive events), and the event counts in a hybrid model, and to
decide about their appropriateness in the light of the data.The general framework allows
a broad class of hazard or intensity models including the Poisson and renewal process
models as very special cases. Simulation results suggest that the test procedures perform
well even for small and moderate sample sizes. A Real datasetillustrate the methodology.

1. I

Lifetime data where more than one event is observed on each subject arise in areas
such as biomedical studies, criminology, demography, manufacturing and industrial re-
liability. An offender may be convicted several times. Several tumors may be observed
for an individual. Recurrent pneumonia episodes arise in patients with human immunod-
eficiency syndrome. A piece of equipment may experience repeated failures or warranty
claims.

For this kind of data, for each individuali we observe the total number,mi, of events
(lifetimes) occurred over the time period (0, τi], the ordered epochs of themi lifetimes
at times 0≤ ti1 < ti2 < · · · < timi ≤ τi, and, additionally, we may have covariate
information on each subject defined by a vectorz and a vector of censoring indicators.
In such studies, interest lies on understanding and characterizing the event occurrence
process for individual subjects and on treatment comparisons based on the time to each
distinct event, the number of events, the type of events and the interdependencies between
events, explaining the nature of variation between subjects in terms of treatments, fixed
covariates or other factors (maybe unobservable ones).

Approaches often used to model recurrent event data, which allow us to learn about
an individual process, are those based on Poisson and renewal processes. A Poisson rep-
resentation for the individual process is employed for modelling the total time on study,
while a renewal process is employed for modelling the interval time, that is, the time from
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previous event (Cox and Isham, 1980, Cox and Lewis, 1966, Andersen, Borgan, Gill and
Keiding, 1993, Lawless, 1987, Follmann and Goldberg, 1988,Prentice and Williams and
Peterson, 1981).

Lipschutz and Snapinn (1997) discussed that the total time modelling seems natural if
the events can be viewed as unrelated, and therefore independent, so it is reasonable to
assume that they can be developing simultaneously, with therisk for the occurrence of
each event beginning at the same time. In this context, the ordered events simply reflect
the order of their occurrence in time. For example, patientswith human immunodefi-
ciency syndrome can experience recurrence of opportunistic infections. They may be at
risk for a type of infection, such as superficial candidiasis, at several sites from the begin-
ning of the study, with the first, second and subsequent events reflecting the order of their
occurrence as time progress. Interval time modelling, however, is appropriate for situa-
tions where the risk for the next event does not begin until after the previous event has
occurred, such as myocardial infarction, superficial candidiasis at a single site and war-
ranty claims on a particular system. The parameters of the model reflect the relative risk
of the next event from the time of the previous event. Among others, Cox (1972b) and
Lawless and Thiagarajah (1996) considered modulated renewal and Poisson processes,
which accommodate the two time scales.

In this paper we discuss a general parametric hybrid scale intensity model for ana-
lyzing multiple failure data for use in studies where individuals can experience recurrent
events. The general framework accommodate a broad class of intensity models including
the Poisson and renewal process models as very special cases. The idea is to combine the
two time scales, total time and interval time (intervals between successive events), and
the event counts in a hybrid model, and to decide about their appropriateness in the light
of the data. In the model with covariates, we assume a proportional intensity baseline
function. We envisage applications in which a moderate or large number of individuals
is observed and the number of events per individual may be quite small. A brief review
of intensity models is given in Section 2. In Section 3 we define the hybrid scale in-
tensity model. A very special case of the model is given in Section 4 where we discuss
the estimation procedure and computational issues. In Section 5 we present the results
of a simulation study on the error rates for hypothesis testsand on quantification of the
gain in the precision of parameter estimates obtained by simplifying the model when a
possibly small or moderate number of recurrent events per individual is observed. A real
numerical example is provided in Section 6. Some final remarks in Section 7 conclude
the paper.

2. M 

Recurrent event data can be conveniently modelled by considering intensity-based
models. Suppose thatn individuals may experience a single type of recurrent event. Let
mi(t) denote the number of events occurring for theith individual over (0, t]. Assume
that theith individual is observed over the interval (0, τi], whereτi is determined inde-
pendently ofmi(t). Let ti1 ≤ ti2 ≤ · · · denote the continuous failure times for theith
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individual, and letxi j = ti j − ti, j−1 be the time intervals between successive events, with
ti0 = 0. For simplicity, we will consider an arbitrary individualand drop the subscripti.

The intensity function at timet is defined as (Cox and Isham, 1980, p. 9; Lawless,
1995)

h{t | M(t)} = lim
∆t→0

pr{m(t, t + ∆t) = 1 | M(t)}
∆t

, (2.1)

wherem(t, t + ∆t) denotes the number of events over the small interval [t, t + ∆t), and
M(t) = {m(s) : s < t} denotes the history of the process up to timet.

Equation (2.1) represents the instantaneous rate of failure at timet given the history
of the processM(t) up to timet. The failure process will be assumed orderly, so that the
limiting probability of two or more failures in the interval[t, t + ∆t), given that at least
one failure occurs in it, tends to zero, as∆t → 0.

Several intensity-based models with varying degrees of memory can be established as
particular cases of (2.1). We shall divide them in two types;those which depend primarily
on the total timet, and those which depend primarily on the interval timex. Important
total-time type models are the nonhomogeneous Poisson and pure birth process, while
important interval-time type models are the renewal process and its natural generalization
to a semi-Markov process.

The intensity function for a nonhomogeneous Poisson process is specified by consid-
ering, from (2.1),

h{t | M(t)} = h0(t), (2.2)

whereh0(t) ≥ 0 (Lawless, 1982, p. 495). That is, the dependence is only on elapsed time
t. For

h{t | M(t)} = m(t)h0(t), (2.3)

we obtain a nonhomogeneous pure birth process. A renewal process is obtained forh{t |
M(t)} = h0(t − tm(t)), which can be rewritten as

h{t | M(t)} = h0(vt), (2.4)

wherevt = t − tm(t) is the backward recurrence time fromt to the previous event (or the
time origin). A particular semi-Markov process is obtainedif, in (2.4), h0(·) is replaced
by h0 jt (·), with jt = m(t) = 1, 2, . . ., wherejt is the jth point (event), so that an individual
moves to stratumjt following his (jt − 1)th failure and remains there until thejtth failure
or censoring takes place (Prentice, Williams and Peterson,1981).

It is natural to specify regression models for (2.1). Following Cox (1972a, 1972b) we
can consider (2.1) to be the product of an nonnegative arbitrary function of time and a
nonnegative function of covariates. From (2.2) the nonnhomogeneous Poisson process
model with covariates is defined as

h{t | z,M(t)} = h0(t)g(βT z), (2.5)

whereg(·) is a known positive function that equals one when its argument is zero,β is
a vector of unknown regression parameters, andh0(t) ≥ 0 denotes the baseline intensity
function for an individual withz = 0.

In the same way, from (2.4), the renewal process model with covariates is defined as

h{t | z,M(t)} = h0(vt)g(βT z), (2.6)
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whereh0(vt) ≥ 0 denotes the baseline intensity function.
Models (2.5) and (2.6) are semiparametric ifh0(·) is left arbitrary, and fully parametric

if h0(·) is specified up to a vector of parameters,θ. A variety of functional forms can
be often employed forg(·), but the simplest and most natural is exp (·). More general
expressions for model (2.6) are obtained by setting different baseline intensity functions
to each eventjt, so thath0(·) is replaced byh0 jt (·).

3. A     

A general class of intensity model which allows for multipletime scales in the baseline
intensity function,h0(·), and permit dependency on the event counts can be defined as

h{t | z,M(t)} = q1(vt; θ1)q2(t; θ2)q3( jt; θ3)g(βT z), (3.1)

whereg(·) andβ are defined as before, andq1(·), q2(·), andq3(·) are positive functions
denoting the parametric baseline intensity functions on the interval time,vt, total time,
t, and event counts,jt, respectively, with unknown parameter vectorsθ1, θ2 andθ3. The
covariates are assumed to be fixed and therefore not affected by the event process. For
simplicity, hereafterv and j will refer to vt and jt, respectively.

Model (3.1) covers a wide spectrum of intensity-based models. For instance, (3.1)
reduces to the nonhomogeneous Poisson process model (2.5) in its parametric version
if q1(·) = q3(·) = 1. Forq2(·) = q3(·) = 1 we obtain the renewal process model (2.6).
A hybrid Poisson/renewal intensity model is obtained ifq3(·) = 1. More general models
can be obtained with a more complex degree of memory structure, particularly if different
baseline intensity functions are set for thej-th event and for time-dependent covariates.

From the practical point of view, an advantage of modelling the total time jointly with
the intervals, as in (3.1), is that we can accommodate situations in which the process is
regarded as a superposition of two no observable processes,one depending primarily on
the total timet and one depending primarily on the interval timex. Also, we can accom-
modate situations where the basic process is, for instance,a Poisson process which is
perturbed (multiplicatively) by a renewal one and vice-versa.

Noticing that we can rewritet = x1 + · · · + x j−1 + x = t j−1 + v, the corresponding
cumulative intensity function is given by

H{t; θ1, θ2, θ3, β | z,M(t)} = H0{t; θ1, θ2, θ3 | M(t)}g(βT z), (3.2)

whereH0{t; θ1, θ2, θ3 | M(t)} =
∫ t

0
ho{a; θ1, θ2, θ3 | M(a)} da is the cumulative baseline

function, with h0{t; θ1, θ2, θ3 | M(t)} = q1(v; θ1)q2(t; θ2)q3( j; θ3) denoting the baseline
intensity function. In general, the integral inH0(·) needs to be evaluated numerically,
since only in special cases analytical solutions are feasible.

Assuming that each failure timet j has an associated indicator variable defined by
δ j = 1 if t j is an observed failure time andδ j = 0 if t j is a right-censored observation, and
that individuali has an associated covariate vectorzi, the contribution to the likelihood
from an individual’s interval time,x j, which starts att j−1, is

L j| j−1,...,1 = {h j(t j | z,M(t j))}δ je−H j(t j |z,M(t j)), (3.3)
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whereh j(t j | z,M(t j)) and H j(t j | z,M(t j)) are the intensity and cumulative intensity
functions over the period of time fromt j−1.

Suppose thatn individuals may experience a total ofm1, . . . ,mn recurrent events. From
(3.3), given a specified parametric model for the intensity functionh j(t j | z,M(t j)), the
maximum likelihood estimates (MLEs) can be obtained by direct maximization of the
overall likelihood

L(θ1, θ2, θ3, β) =
n∏

i=1

mi∏

j=1

{hi j(ti j | zi,M(ti j)}δi j e−Hi j(ti j |zi,M(ti j)). (3.4)

We discuss the estimation procedure further in the next section.
Although it will not be used in the paper latter, it is interesting to note, following

Lawless (1987), that (3.3) can be decomposed as

L j| j−1,...,1 = L(1)
j (θ1, θ2)L(2)

j (θ1, θ2, θ3, β) (3.5)

where, from (3.1) and (3.2),

L(1)
j (θ1, θ2) = {

q1(a; θ1)q2(a; θ2)∫ x j

0
q1(a; θ1)q2(a; θ2) da

}δ j (3.6)

and

L(2)
j (θ1, θ2, θ3, β) ={g(βT z)q3( j; θ3)

∫ x j

0
q1(a; θ1)q2(a; θ2) da}δ j

exp{−g(βT z)q3( j; θ3)
∫ x j

0
q1(a; θ1)q2(a; θ2) da}.

(3.7)

Thus, there is the possibility of obtaining the MLEsθ̂1 andθ̂2 by maximizingL(1) =∏
i
∏

j L(1)
j (·) without having to considerθ3 andβ, and then estimatinĝθ3 andβ̂ by max-

imizing L(2) =
∏

i
∏

j L(2)
j (·) with θ1 andθ2 fixed at θ̂1 and θ̂2. Although this procedure

may yield poor estimates, the estimates produced can often provide a good starting point
for any iteration procedure designed to maximize (3.4).

Further, focusing on (3.7), if all individuals are observedover the same time period,
say (0, τ], and there are no censored lifetimes, we can decomposeL(2) =

∏
i
∏

j L(2)
j (·) as

L(2) = L(3)(β)L(4)(θ1, θ2, θ3, β), (3.8)

where

L(3)(β) =
n∏

i=1

{
g(βT zi)∑n

i=1 g(βT zi)
}mi , (3.9)

which is the Cox likelihood for this situation, which depends only the countsmi, and

L(4)(θ1, θ2, θ3, β) ={q3( j; θ3)
∫ τ

0
q1(a; θ1)q2(a; θ2) da

n∑

i=1

g(βT zi)}m

exp{−q3( j; θ3)
∫ τ

0
q1(a; θ1)q2(a; θ2) da

n∑

i=1

g(βT zi)}.

(3.10)
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4. A    

To examine the fully parametric approach we shall consider aparticular flexible para-
metrization of (3.1), whereq1(v; θ1) = q1(v;α, γ) = αγ(αv)γ−1, q2(t; θ2) = q2(t;α, φ) =
(1+ αφt), q3( j; θ3) = q3( j;ψ) = ψ j−1 andg(βT z) = exp(βT z). That is, we shall consider
the intensity function

h{t;α, β, γ, φ, ψ | z,M(t)} = αγ(αv)γ−1(1+ αφt)ψ j−1eβ
T z, (4.1)

whereα, γ, φ, ψ > 0. We can haveφ < 0 provided that 1+ αφt > 0 for any potentially
observed value oft. We will further assume thatβT z = β1z1 + β2z2 + · · · has no intercept
term, which is absorbed byα.

An advantage of this parametrization is its relatively easyinterpretation. Whileγ, φ
andψ are dimensionless numbers,α denotes the exchange rate between the time scales
(total and interval times). Moreover, the renewal component, q1(·), is driven by a Weibull-
type model, while the Poisson component,q2(·), works as a time dependent Poisson
process part. The event count function,q3(·), penalizes large numbers of events forj > 1.
An exponentially proportional covariate effectg(·) completes the formulation. Apart from
β andα, the three parametersγ, φ andψ represent departures from the Poisson intensity
model, but often there would be some indication on general grounds that some of the
parameters should be omitted.

Several important intensity models can be obtained as particular cases of (4.1). For
instance, forφ = 0 andψ = 1, it is an ordinary Weibull renewal model for the interval
times. It is a special nonhomogeneous Poisson process modelif γ = ψ = 1. With
γ = ψ = 1 andφ = 0 it reduces to an ordinary homogeneous Poisson process model.

An important measure in survival studies is the relative risk between pacients on two
different covariate levels, say,z1 andz2. Although two time scales are involved in the
intensity function (4.1), in the light of its proportional structure, the relative risk betwen
pacients on two different covariate levelsz1 andz2 is given by

h{t;α, β, γ, φ, ψ | z1,M(t)}
h{t;α, β, γ, φ, ψ | z2,M(t)}

= eβ
T (z1−z2). (4.2)

Following (3.4) and (4.1), the contribution of an interval time x j starting att j−1 from
an arbitrary individual to the log-likelihood is

l j| j−1,...,1 =δ j{β
T z + logγ + γ logα + (γ − 1) logx j + log(1+ αφt j) + ( j − 1) logψ}

− {1+ αφt j−1 + αφ
γ

γ + 1
x j}(αx j)

γψ j−1eβ
T z.

(4.3)

In our experience, the log-likelihood

l =
n∑

i=1

mi∑

j=1

li, j| j−1,...,1 (4.4)

is straightforward to be maximized using a standard routine, such asnlmin in the pack-
ageS-Plus, which finds a local maximum of a function using a general quasi-Newton
method (Seber and Wild, 1989, ch. 13). It may be appropriate to consider reparametriza-
tion. We avert numerical problems from parameters with unbounded ranges.
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Large-sample inference for the parameters can be based on the MLEs and their esti-
mated standard errors, or, preferably, on the profile likelihood, the latter being invariant
under reparametrization. Further, asymptotic approximations to the likelihood ratio sta-
tistics (LRS) distribution are likely to be more accurate insmall or moderate samples than
are asymptotic approximations to the distribution of the MLEs. Formal goodness-of-fit
tests are feasible in principle. Model (4.1) is a nested-type model, and it provides an easy
way to test whether or not a particular case fits a dataset by fitting special models and
comparing the fit with the saturated model. For instance, considering (4.1), we can use
LRS for testing goodness-of-fit of hypotheses such asH0 : ψ = 1, H0 : φ = 0, H0 : γ = 1,
H0 : ψ = 1, φ = 0, H0 : ψ = 1, γ = 1, H0 : φ = 0, γ = 1 andH0 : ψ = 1, φ = 0, γ = 1,
which postulate the special cases of (4.1). Although it is well known that, under general
grounds, the LRS test will work well if there is no boundary problems on the hypothesis
test, which is our case, the adequacy of these procedures forsmall and moderate sample
sizes is studied via simulation in the next section.

5. A  

It is common in practice to find studies with a possibly small or moderate number of
recurrent events per individual on a moderate number of individuals. In order to assess the
applicability of the asymptotic results in such situationsa simulation study was performed
to estimate the error rates of the hypothesis tests. The study was based on generated
samples of unit exponential random variables, assuming that each one ofn individuals
experienced the same number of recurrent eventsm = 2, 4, 7, 15, 30 with n = 20, 50, 100.
In addition to setting the parameters at the null pointψ = 1, φ = 0, γ = 1 and atα = 1, we
also setβ = 0.7 and considered a dichotomous covariatez equals to−1 and 1, indexing a
control group and a treatment group, respectively. The samenumber of individuals,n/2,
were considered at each covariate level. A case study is defined byn andm, and by one of
the three different hypothesis tests, which will be set up below. Thus, 45 different cases
were simulated, each with 1, 000 samples.

For survival data, it is definitively important to address the impact of censoring. Then,
the overall study described above was repeated with righ-censored samples withm =
4, 7, 15, 30. Form = 4 we consider one censored observation, form = 7 we consider
two censored observations, form = 15 we considered four censored observation and for
m = 30 we considered nine censored observations, which correspond approximately to
25, 30, 30 and 30 percent of censoring.

Considering (4.1), we use the LRS to test the following hypothesis: (a) H0 : ψ =
1, φ = 0, γ = 1 againstH1 : ψ , 1, φ = 0, γ = 1, (b) H0 : ψ , 1, φ = 0, γ = 1 against
H1 : ψ , 1, φ , 0, γ = 1, and(c) H0 : ψ , 1, φ , 0, γ = 1 againstH1 : ψ , 1, φ , 0, γ ,
1. The LRS was treated as a chi-squared distribution with 1 degree of freedom. Table
1 presents the empirical rejection rates for different numbersm of recurrent events per
individual and different numbern of individuals. The empirical rejection rates are close
to the nominal rejection rate 0.05. For small values ofm andn however the empirical
rejection rates are within about 0.05 of the nominal. The censoring effect is to present
estimate empirical rejection rates within about 0.10 of the nominal.
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T 1. Confidence intervals forβ1: coverages (%) and lengths; un-
balanced design and skewed errors.

For m = 4, 7, 15 and 30, in each cell the left result correspond to the complete samples
while the righ result correspond to the censored samples.

Test n m
2 4 7 15 30

20 0.082 0.079/0.122 0.062/0.103 0.055/0.098 0.056/0.078
(a) 50 0.076 0.066/0.097 0.054/0.092 0.054/0.084 0.053/0.071

100 0.058 0.053/0.079 0.051/0.075 0.050/0.069 0.052/0.065
20 0.083 0.081/0.112 0.063/0.101 0.052/0.098 0.056/0.077

(b) 50 0.075 0.069/0.093 0.053/0.093 0.054/0.089 0.054/0.073
100 0.054 0.055/0.072 0.053/0.071 0.051/0.069 0.051/0.069
20 0.085 0.077/0.114 0.060/0.099 0.052/0.097 0.055/0.078

(c) 50 0.069 0.065/0.098 0.052/0.097 0.053/0.088 0.056/0.071
100 0.053 0.050/0.078 0.052/0.073 0.050/0.071 0.052/0.068

It is of practical interest to quantify the gain in the precision of parameter estimates
obtained by simplifying the model when a possibly small or moderate number of recurrent
events per individual is observed. In many applications it will be sensible to examine
simple submodels of (4.1), in which only one or two of the three paramentersγ, φ andψ
are not omitted.

For instance, three simplified models are considered assuming that there is no covariate
information on each individual, i.e., considering model (4.1) without the term exp(βT z),
hereafter model (1). Model (2) will refer to the full model (1) without the event count
effect, that is,

h{t;α, β, γ, φ | z,M(t)} = αγ(αv)γ−1(1+ αφt), (5.1)

model (3) is model (1) without the Poisson component,

h{t;α, β, γ, ψ | z,M(t)} = αγ(αv)γ−1ψ j−1, (5.2)

while model (4) is the renewal-type intensity model,

h{t;α, β, γ | z,M(t)} = αγ(αv)γ−1, (5.3)

which is driven by a Weibull-type model.
Assuming that there is no censoring, a numerical study, based on the parameters

observed information matrix (calculated numerically since no maijor simplification is
possible), was carried out with the same specification above. We considered a 1, 000
generated randon samples of exponential random varibles. For m = 2, 4, 7, 15, 30 and
n = 20, 50, 100, we calculated the relative efficiency (RE) of the MLE obtained by con-
sidering the reduced models (2), (3) and (4) relative to the MLE obtained by considering
the full model (1). The RE for̂αl is defined to be RE(̂αr, α̂l) = var(̂αl)/var(̂αr), where
r = 2, 3, 4 corresponds to the estimates obtained by considering models (2), (3) and (4),
respectively, and̂αl is the MLE ofα obtained by considering model (1). We define the
RE for thêγ, φ̂ andψ̂ analogously.
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T 2. RE of the estimates obtained by considering the reduced models.

(2), (3) and (4) relative to the estimates obtained under themodel (1) for
samem values andn = 50.

RE m
2 4 7 15 30(

α̂2, α̂1
)

1.10 1.19 1.18 1.11 1.06(
α̂3, α̂1

)
1.31 1.09 1.06 1.02 1.01(

α̂4, α̂1
)

2.44 3.02 3.25 3.46 3.58(̂
γ2, γ̂1

)
1.11 1.11 1.10 1.06 1.03(̂

γ3, γ̂1
)

1.67 1.33 1.20 1.10 1.04(̂
γ4, γ̂1

)
1.68 1.33 1.20 1.10 1.04(

φ̂2, φ̂1

)
1.28 1.67 2.18 3.58 5.89(

ψ̂3, ψ̂1

)
1.27 1.67 2.18 3.58 5.89

A case study is defined byn andm, and by one of the three different hypothesis tests,
which will be set up below. Thus, 45 different cases were simulated.

Table 2 shows the RE of the estimates obtained by consideringthe reduced models
(2), (3) and (4) relative to the estimates under the model (1)for m = 2, 4, 7, 15, 30. The
RE are very similar undern variantion and only the results related ton = 50 are shown.
Overall, the parameter estimates are obtained with more precision under simpler models
than under the full model (1).

6. R    

The hybrid scale model (4.1) was fitted to a dataset extractedfrom Table 1 of Gail,
Santner and Brown (1980) on the times to development of mammary tumors for 48 rats
in a carcinogenicity experiment. The rats were assigned randomly to a treatment group
(23 rats) and the remaining 25 to a control group. The animalsexperienced different
number of tumors and no censored lifetimes were observed. The covariate was set equal
to 0 for the control group and 1 for the treatment group.

The LRS for testing the full model (4.1) against the submodels it contains in a hier-
archical manner were obtained (the models are all nested). The LRS for testing the full
model against the model withψ = 1 is 3.32, while that for testing model withψ = 1
against the model withψ = 1 andφ = 0 is 0.64. For testing the model withψ = 1 and
φ = 0 against the model withψ = 1, φ = 0 andγ = 1 the LRS is 0.42. Using the
asymptoticχ2 distribution of the LRS, the significance levels are 0.07, 0.42, and 0.52,
respectively. This gives evidence in favor of a homogeneousPoisson intensity model, but
with event count effect. The MLE of the covariate effectβ indexing the homogeneous
Poisson intensity model with event count effect is equal to−0.29 with 90% profile con-
fidence interval given by(−0.44,−0.15), implying in a relative risk between the rats on
the treatment group to the rats on the control group of 0.75 with 90% profile confidence
interval given by(0.64, 0.86). This is clear evidence of the treatment benefit, which is in
broad agreement with Lawless (1995).
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7. C 

The hybrid scale intensity models developed in this paper can be used effectively for
analyzing recurrent event data. The special model (4.1) is easily interpretable, and con-
tains several common intensity models as particular cases.These models provide a con-
venient approach for analyzing data where the covariates affect the intensity functions
proportionally. Besides, although there are gains in precision on the parameter estimates
obtained under simpler models than under the full model our simulation results suggest
that the test procedures performs well even for small and moderate sample sizes.

Although the specific parametric forms forq1(·), q2(·) andq3(·) in (4.1) have analytical
convenience and are flexible, they are not critical, in principle, for the overall approach to
hold and alternative forms could be considered. However, studies of model mispecifica-
tion should be considered further by assuming alternative forms forq1(·), q2(·) andq3(·),
since, as pointed out by a referee, the LRS tests for model reduction would be seriously
compromised if the full model is incorrectly specified. For instance, in the light of the
mannary tumors data, there is no formal justification for using the specific parametric
forms ofq1(·), q2(·) andq3(·) in (4.1) and this numerical example should be seem as an
illustration for the overall procedure.

Specifying hybrid intensity models with a non-proportional regression structure may
have physical appeal and can be considered. For instance we could consider an acceler-
ated failure time model (Cox and Oakes, 1984, p. 64). This would however introduce
extra difficulties in the analysis and needs further work. Time-varying covariates are nat-
ural in several situations, but are not considered under ourapproach. The problem is
however not straightforward in our case, and should be investigated further.

As pointed out by a referee, in our formulation, the covariates have the same im-
pact on the time intervals between failures as well as on the total time. However, one
could have a given treatment with different effects on the time scales. This situations is
out of the scope of the paper and needs further work.

A

I am very grateful to D.R. Cox, A.C. Davison, D. Firth, V. Isham, J. Carpenter and J.G.
Leite for their comments and suggestions on this work. I am also very grateful to the Edi-
torial board and to one of the referees for his suggestions onthe paper, addressing several
important issues. F. Louzada-Neto is supported by CNPq grant number 300045/2003-4.

R

Abramowitz, M. and Stegun, I. (1972),Handbook of Mathematical Functions, New York: Dover
Publications.

Andersen, P.K., Borgan, O., Gill, R.D. and Keiding (1993),Statistical Models Based on Counting
Processes, New York: Springer.

Cox D.R. (1972a), ‘Regression models and life tables (with discussion)’,Journal of the Royal
Statistical Society B 34, 187–220.

Cox D.R. (1972b),The statistical analysis of dependencies in point processes. In Stochastic Point
Processes, Ed. P.A.W. Lewis, pp. 55–66, New York: Wiley.



INTENSITY MODELS FOR PARAMETRIC ANALYSIS OF RECURRENT EVENTS DATA 33

Cox, D.R. and Lewis, P.A.W. (1966).The Statistical Analysis of Series of Events, London:
Methuen.

Cox, D.R. and Isham, V. (1980),Point Processes, London: Chapman and Hall.
Cox, D.R. and Oakes, D. (1984),Analysis of Survival Data, London: Chapman and Hall.
Follmann, D.A. and Goldberg, M.S. (1988), ‘Distinguishingheterogeneity from decreasing hazard

rates’,Technometrics 30, 389–96.
Gail, M.H., Santner, T.J. and Brown, C.C. (1980), ‘An analysis of comparative carcinogenesis

experiments based on multiple times to tumour’,Biometrics 36, 255–66.
Johnson, N.L., Kotz, S. and Balakrishnan. N. (1994),Continuous Univariate Distributions 1, New

York: Wiley.
Lawless, J.F. (1982),Statistical Models and Methods for Lifetime Data, New York: Wiley.
Lawless, J.F. (1987), ‘Regression methods for Poisson process model’,Journal of the American

Statistical Association 82, 808–15.
Lawless, J.F. (1995), ‘The analysis of recurrent events formultiple subjects’,Applied Statistics 44,

487–98.
Lawless, J.F. and Nadeau, C. (1995), ‘Some simple robust methods for the analysis of recurrent

events’,Technometrics 37, 158–68.
Lawless, J.F. and Thiagarajah, K. (1996), ‘A point-processmodel incorporating renewals and time

trends, with application to repairable systems’,Technometrics 38, 131–38.
Lipschutz, K.H. and Snapinn, S.M. (1997), ‘Discussion of the paper by Wei, L.J. and Glidden,

D.V.’, Statistics in Medicine 16, 846–48.
McGilchrist, C.A. and Aisbett, C.W. (1991), ‘Regression with frailty in survival analysis’,Biomet-

rics 47, 461–66.
Nelson, W. (1988), ‘Graphical analysis of system repair data’, Journal of Quality Technology 20,

24–35.
Nelson, W. (1995), ‘Confidence limits for recurrence data — Applied to cost or number of product

repairs’,Technometrics 37, 147–57.
Oakes, D. (1997), Models-based and/or marginal analysis for multiple event-time data, ‘In Pro-

ceedings of the First Seattle Symposium in Biostatistics: Survival Analysis’, Ed. D.Y. Lin and
T.R. Fleming, pp. 85–98. New York: Springer.

Pepe, M.S. and Cai, J. (1993), ‘Some graphical displays and marginal regression analyses for recur-
rent failure times and time dependent covariates’,Journal of the American Statistical Association
88, 811–20.

Prentice, R.L., Williams, B.J. and Peterson, A.V. (1981), ‘On the regression analysis of multivariate
failure time data’,Biometrika 68, 373–79.

Ross, G.J.S. (1990),Nonlinear Estimation, New York: Springer-Verlag.
Seber, G.A.F. and Wild, C.J. (1989),Nonlinear Regression, New York: Wiley.
Wei, L.J., Lin, D.Y. and Weissfeld, L. (1989), ‘Regression analysis of multivariate incomplete

failure time data by modeling marginal distributions’,Journal of the American Statistical Asso-
ciation 84, 1065–73.

D  Eı́, U F  S̃ C, CP 676, S˜ C/SP, 13565-906,
B

E-mail address, F. Louzada-Neto:dfln@power.ufscar.br


	1. Introduction
	2. Model formulation
	3. A general class of intensity model
	4. A special parametric intensity model
	5. A simulation study
	6. Reanalyzing the mammary tumors data
	7. Concluding remarks
	Acknowledgements
	References

