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FRACTIONAL INTEGRATION WITH BLOOMFIELD EXPONENTIAL
SPECTRAL DISTURBANCES: A MONTE CARLO EXPERIMENT
AND AN APPLICATION

LUIS A. GIL-ALANA

ABsTRACT. We show in this article that fractionally integrated processes with Bloomfield
(1973) exponential spectral disturbances can be well approximations to fractional models
with AR disturbances. In fact, when testing /(d) statistical models with the tests of
Robinson (1994), the autoregressive structure underlying the 7(0) disturbances can be
distorting the order of integration of the series, because of the roots being close to the
unit root circle. In that respect, the short-run dynamics may well be approximated by
the Bloomfield (1973) exponential spectral model. This is illustrated with several Monte
Carlo experiments. An empirical application, showing the performance of this type of
model, is also carried out at the end of the article.

1. INTRODUCTION

For the purpose of the present paper, we define an 1(0) process {u;, t = 0, +1,...} as
a covariance stationary process with spectral density function that is positive and finite at
the zero frequency. In this context, we say that {x,, t = 0, £1,...} is I(d) if:

(1-L¥x=u, t=12,...
xt:0, ISO,

(1.1

where L is the lag operator (Lx; = x,—1) and the polynomial in (1.1) can be expressed in
terms of its Binomial expansion such that:

(l—L)"=Z( ‘; )(—1)fo=1—dL+ @Lz_... ,
j=0

for any real d. This type of model was introduced by Granger and Joyeux (1980), Granger
(1980, 1981) and Hosking (1981), (although earlier work by Adenstedt, 1974 and Taqqu,
1975, shows an awareness of the representation), and it was theoretically justified in
terms of aggregation of ARMA series with randomly varying coefficients by Robinson
(1978) and Granger (1980), and more recently, in terms of the duration of shocks by Parke
(1999). Similarly, Cioczek-Georges and Mandelbrot (1995), Taqqu et al. (1997), Cham-
bers (1998) and Lippi and Zaffaroni (1999) also use aggregation to motivate long memory
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processes, while Diebold and Inoue (2001) propose another source of long memory based
on regime-switching models.
Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis:

H()Id=d0, (12)

in a model given by (1.1) for any given real value dy. The test has standard null and
local limit distributions and it is parametric, in the sense that we have to specify the
functional form of the /(0) disturbances u, in (1.1), which may include, for example,
autoregressive (AR) models. Bloomfield (1973) showed that the AR specification can be
non-parametrically well approximated in terms of its spectral density function. Like the
stationary AR(p) case, this model also has exponentially decaying autocorrelations and
is very easy to implement in the context of the tests of Robinson (1994).

‘We show in this article that fractionally integrated processes with Bloomfield (1973)
exponential spectral disturbances can be well approximations to fractional models with
AR disturbances. There are several advantages in this approach. Firstly, computation-
ally, the derivation of the tests of Robinson (1994) greatly simplifies in the context of
Bloomfield’s (1973) disturbances, (see, Robinson, 1994). Secondly and more important,
there is a drawback in the performance of Robinson’s (1994) tests when AR disturbances
are entertained, in that the roots of the AR polynomial can be arbitrarily close to the unit
root case and thus, they may be competing with the order of integration in describing the
nonstationarity, invalidating the test statistic. This is sorted out when using Bloomfield’s
(1973) exponential spectral model, which is always stationary across the whole range of
values of its parameters.

The structure of the article is as follows: Section 2 briefly describes the tests of Robin-
son (1994) and the Bloomfield (1973) exponential spectral model. Section 3 reports some
Monte Carlo simulations comparing the performance of Robinson’s (1994) tests when us-
ing both AR and Bloomfield (1973) disturbances. An empirical application is carried out
in Section 4, while Section 5 contains some concluding comments.

2. THE TESTS OF ROBINSON (1994) AND THE BLOOMFIELD (1973) EXPONENTIAL SPECTRAL

MODEL
Let us suppose that {x;,¢ = 1,2,...,T} is the time series we observe. The statistic
proposed by Robinson (1994) for testing Hy (1.2) in (1.1) is given by:
T\'? a
F=l=) =, 2.1
" ( A) b2 @D
where
NS 20N el
o= D W) s 67 = o) = Zgw 71y ;

.
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L2 iy 3 5
A= 2| Dwr = Y wapeay x| Y sapsay | x Y s
= = =1 -
r A F) . 2nj
W) = log 2sm?j‘ ;B = Elogg(/lj;r); ;= 71;

# = arg min o%(7), I(A ;) is the periodogram of &, = (1 - L)% x,, and the function g above
is a known function obtained from the spectral density function of i,

2
fQ0%7) = g—ﬂg(/l;‘r), r<d<nx.

Note that these tests are purely parametric and therefore, they require specific modelling
assumptions regarding the short memory specification of u,. Thus, if u, is white noise,
then g = 1, (8(4;) = 0), and if u, is an AR process of form ¢(L)u, = &, then g = |p(e')| 2,
with o2 = V(g,), so that the AR coefficients are a function of 7.

Robinson (1994) showed that under certain regularity conditions,’

P-4 N@O,1)asT — oo. 2.2)

Thus, an approximate one-sided 100%-level test of Hy (1.2) against the alternative: H, :
d > dy (d < dy) will reject Hy (1.2) if # > z, (7 < —z,), where the probability that
a standard normal variate exceeds z, is @. Furthermore, he shows that the above test
is efficient in the Pitman sense, i.e., that against local alternatives of form: H, : d =
do +6T12, with § # 0, the limit distribution is normal with variance 1 and mean which
cannot (when i, is Gaussian) be exceeded in absolute value by that of any rival regular
statistic. Empirical applications based on this version of Robinson’s (1994) tests can be
found in Gil-Alana and Robinson (1997) and Gil-Alana (2000) and, other versions of
his tests, based on seasonal (quarterly and monthly) and cyclical data are respectively
Gil-Alana and Robinson (2001) and Gil-Alana (1999, 2001a).

Note that the above test permits us to consider the unit root model as a particular
case if dy in (1.2) is equal to 1. However, unlike most classic unit root tests (Dickey and
Fuller, 1979; Phillips and Perron, 1988; etc.), which are embedded in autoregressive (AR)
alternatives, Robinson’s (1994) tests are nested in a fractional form, this being the reason
for its standard null limit distribution.? Consider, for instance, the AR model (1 —pL)x; =
u;. Clearly, if p = 1, we obtain the same null unit root model as in (1 — L)%x;, = u, with
d = 1. However, in the former specification, if |p| < 1, x, is covariance stationary: if
p = 1 we have a unit root, which is nonstationary though non-explosive, and if |p| > 1
it implies a nonstationary explosive behaviour. Thus, we observe an abrupt change in
the limit behaviour around p = 1. On the other hand, in the fractional specification,
the limit behaviour is smooth around d = 1, and the boundary line between stationarity
and nonstationarity is now around d = 0.5. Nevertheless, the behaviour in the fractional

IThese conditions are very mild regarding technical assumptions that are satisfied by model (1). Moreover,
they impose a martingale difference on «,, which is a condition substantially weaker than Gaussianity.

2In a recent paper, Phillips and Magdalinos (2007) points out that the limit theory for moderate deviations
from a unit root is quite different from stationary processes (with roots far away from the unit circle).
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model is “smooth” in the sense that we do not observe an abrupt change with small
changes in the parameters.

The AR modelling of the /(0) disturbances u, is very conventional, but there exist
many other types of 1(0) processes, including ones outside the stationary and invertible
AR(MA) case. One model that seems especially relevant and convenient in the context
of the present tests is that proposed by Bloomfield (1973). This model is non-parametric
and is exclusively specified in terms of its spectral density function, which is given by:

o2 P
f(/l,,cr (T) = — exp(ZZTl cos(4 l)]

=0

Then, the function g above is given by:

)4
g(Aj;7) = exp [2 Z 7;cos(d ,-1)] . (2.3)

=0

Formulae for Newton-type iteration for estimating the 7; are very simple (involving no
matrix inversion), updating formulae when p is increased are also simple, and we can
replace A below (2.1) (in the functional form of the test statistic) by the population quan-
tity:

I=p+1 =1

which indeed is constant with respect to the 7; (unlike what happens in the AR case). To
see this, let us first consider a pure AR(p) process of form:

p

U = Z TiU—] + & .
=1

The function g takes then the form:

P
Z e

=1

g1 =

and noting that
0
&) = log 81,
then, &(4;) will be a (p x 1) vector with k‘h-element of form:
P
a(d)) = (2 Icos ;= " 71 cos(k - 1)4_,} 2 T)] . (2.4)

I=1

Using now the model of Bloomfield (1973) and its corresponding g-function in (2.3), the
k_element of &(1 ;) adopts the form:

ex(A;) = 2 cos(ka;) , (2.5)
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which is clearly simpler than (2.4). Moreover, the expression
2«

= D ee(dy)

=1
can be approximated by 4/,,, and thus, no matrix inversion is required in the computation
of the test statistic.

The intuition behind the model of Bloomfield (1973) is the following. Suppose that u,
follows an ARMA process of form:

p q
Uy = Z Qi+ &+ Z Orerr,
r=1 r=1

where ¢, is a white noise process and all zeros of ¢(L) = (1 — ¢L — -+ — ¢,L”) lying
outside the unit circle and all zeros of 6(L) = (1 + 6L + --- + 6,L9) lying outside or on
the unit circle. Clearly, the function g of this process is then given by:

1+ 37, 6,
1 - Zle ¢rei/1jr
Bloomfield (1973) showed that the logarithm of the above function is a fairly well be-
haved function and can thus be approximated by a truncated Fourier series. He showed
that (2.3) approximates (2.6) well where p and g are small values, which usually happens
in economics. Like the stationary AR(p) case, this model has exponentially decaying
autocorrelations and thus, using this specification, we do not need to rely on so many pa-
rameters as in the ARMA processes, which always results tedious in terms of estimation,
testing and model specification. Moreover, this approximation remains valid even if the
roots of the AR polynomial are close to the unit circle.

The Bloomfield (1973) model combined with fractional integration has not been very
much used in econometrics though the Bloomfield model itself is a well-known model in
other disciplines (see, e.g., Beran, 1993). Amongst the few empirical applications found
in the literature are Gil-Alana and Robinson (1997), Velasco and Robinson (2000) and
Gil-Alana (2001b). Beran (1995) proposed an approximation to the likelihood function
to estimate the parameters which are involved in a fractional model with Bloomfield
(1973) disturbances. However, unlike that procedure, Robinson’s (1994) tests do not
require estimation of the fractional differencing parameter, since it is based on the null
differenced model, which is supposed to be 7(0). In the following section, several Monte
Carlo experiments are conducted to show that the Bloomfield (1973) exponential spectral
model can be a competitive model for the autoregressive disturbances in the context of
fractionally integrated models.

g1 = (2.6)

3. A MoNTE CARLO EXPERIMENT

Across this section we look at the rejection frequencies of the tests of Robinson (1994)
assuming that the true model is given by (1.1) with AR(1) and AR(2) disturbances, and
perform the tests using both AR and Bloomfield (1973) disturbances. We use Gaussian
series generated by the routines GASDEV and RAN of Press, Flannery, Teukolsky and
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TasLE 1. Rejection frequencies of Robinson’s (1994) tests with AR(1)
disturbances. In bold: the sizes of the tests. The nominal size is 0.050.

True model: (1 — L)%x, = u;; w; = puj— + &5 d = 1

Alternatives: (1 — L)%x, = u;; u; ~ AR(1) and Bloomfield (1)

H,:d>d H,:d<dy

Size | ¢ u/d 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00
AR(1) 0.575 1 0.125 | 0.010 | 0.050 | 0.016 | 0.221 | 0.560 | 0.912 | 0.995 | 0.999
0.25 | Bloomfield | 0.998 | 0.983 | 0.856 | 0.407 | 0.038 | 0.104 | 0.528 | 0.918 | 0.995 | 1.000
AR(1) 0.741 [ 0.743 | 0.238 | 0.024 | 0.010 | 0.329 | 0.446 | 0.723 | 0.937 | 0.994
100 | 0.50 | Bloomfield | 0.999 | 0.995 | 0.945 | 0.667 | 0.161 | 0.018 | 0.207 | 0.683 | 0.952 | 0.997

ADTY nan1 NnQaor I'nqgeo I'nanc Tan1ta T n1ea T nang T nacr Tnegsgs T nqar
ARL) V. /741 | U.000 | U.OOY | U.OUD | UULY | VulOY | UAUD | U.DVZ | V.DOD | U.OH/

0.75 | Bloomfield | 0.999 | 0.999 | 0.996 | 0.960 | 0.733 | 0.030 | 0.088 | 0.100 | 0.488 | 0.873
AR(1) 0.442 | 0.632 | 0.802 | 0.751 | 0.101 | 0.037 | 0.414 | 0.186 | 0.006 | 0.265
0.95 | Bloomfield | 1.000 | 1.000 | 0.999 | 0.999 | 0.993 | 0.006 | 0.010 | 0.102 | 0.025 | 0.256
AR(1) 0.680 | 0.093 | 0.016 | 0.207 | 0.025 | 0.148 | 0.738 | 0.995 | 1.000 | 1.000
0.25 | Bloomfield | 1.000 | 0.999 | 0.994 | 0.767 | 0.057 | 0.066 | 0.721 | 0.995 | 1.000 | 1.000
AR(1) 0.820 | 0.878 | 0.303 | 0.057 | 0.020 | 0.205 | 0.521 | 0.921 | 0.998 | 1.000
200 | 0.50 | Bloomfield | 1.000 | 1.000 | 0.999 | 0.943 | 0.317 | 0.003 | 0.233 | 0.905 | 0.999 | 1.000
AR(1) 0.800 | 0.964 | 0.970 | 0.440 | 0.021 | 0.145 | 0.356 | 0.416 | 0.775 | 0.985
0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.999 | 0.961 | 0.007 | 0.006 | 0.100 | 0.725 | 0.991
AR(1) 0.538 | 0.778 | 0.941 | 0.925 | 0.080 | 0.041 | 0.257 | 0.380 | 0.423 | 0.418
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.010 | 0.023 | 0.150 | 0.307 | 0.415
AR(1) 0.748 | 0.069 | 0.020 | 0.366 | 0.029 | 0.117 | 0.865 | 0.999 | 1.000 | 1.000
0.25 | Bloomfield | 1.000 | 1.000 | 0.999 | 0.917 | 0.071 | 0.046 | 0.858 | 0.999 | 1.000 | 1.000
AR(1) 0.853 | 0.935 | 0.347 | 0.101 | 0.025 | 0.156 | 0.632 | 0.983 | 1.000 | 1.000
300 | 0.50 | Bloomfield | 1.000 | 1.000 | 0.999 | 0.992 | 0.442 | 1.000 | 0.296 | 0.978 | 1.000 | 1.000
AR(1) 0.837 | 0.985 | 0.994 | 0.544 | 0.025 | 0.128 | 0.369 | 0.519 | 0.907 | 0.998
0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.013 | 0.041 | 0.112 | 0.880 | 0.999
AR(1) 0.605 | 0.856 | 0.980 | 0.980 | 0.068 | 0.043 | 0.691 | 0.246 | 0.313 | 0.409
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.019 | 0.056 | 0.113 | 0.303 | 0.405

Vetterling (1986), with 10,000 replications of each case. The sample sizes are T = 100,
200 and 300 observations and the nominal size is in all cases 5%.°

Table 1 imposes d = 1 and AR(1) u, with the AR coefficient ¢ = 0.25, 0.50, 0.75
and 0.95 (negative values were also considered and the results were in line with those
presented here). The alternatives are in all cases fractional, testing Hy (1.2) in (1.1) with
dop =0, (0.25), 2, and supposing that the disturbances are AR(1) and Bloomfield (1). The
rejection frequencies correspond to the one-sided statistic given by 7 in (2.1). Thus, the
rejection probabilities associated to d = 1 will indicate the size of the tests.

The first thing we observe in this table is that the sizes of the tests are too small when
directed against d > dp but too large against d < dy when ¢ = 0.25, 0.50 and 0.75.
However, if ¢ = 0.95, they behave in the opposite way, with larger sizes when directed
against d > dj (e.g., 10.1% against d > dy and 3.7% against d < dy with T = 100 for a
nominal size of 5%). Using the Bloomfield (1) model instead of the AR(1) disturbances,
the sizes improve and they approximate to the nominal value when ¢ = 0.25. However,
increasing the value of the AR coefficient, the rejection frequencies substantially increase

3The FORTRAN code used to obtain the test statistic is available from the author upon request.
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TaBLE 2. Rejection frequencies of Robinson’s (1994) tests with AR(1)
disturbances. In bold: the sizes of the tests. The nominal size is 0.050.

True model: (1 — L)%x, = u;; u, = pu—1 + &3 d = 0.50

Alternatives: (1 — L)?x, = u;; u, ~ AR(1) and Bloomfield (1)

H,:d>d H,:d<dj

Size | ¢ u/d 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90
AR(1) 0.015 | 0.038 | 0.056 | 0.040 | 0.017 | 0.221 | 0.319 | 0.470 | 0.649 | 0.802
0.25 | Bloomfield | 0.719 | 0.523 | 0.310 | 0.130 | 0.038 | 0.104 | 0.233 | 0.421 | 0.637 | 0.808
AR(1) 0.104 | 0.041 | 0.014 | 0.013 | 0.011 | 0.329 | 0.364 | 0.410 | 0.492 | 0.601
100 | 0.50 | Bloomfield | 0.875 | 0.751 | 0.566 | 0.350 | 0.161 | 0.018 | 0.054 | 0.138 | 0.286 | 0.479

ADTY nrcoa Il naany ITn1ooInnanTantoalT a1l nava T nann T nageo I nqst
ARL) V.04 | U404 | UV.1TTY | UWUJU | UULT | VudOY | UDLH | U.4UU | U.OOY | U.OUI

0.75 | Bloomfield | 0.989 | 0.973 | 0.939 | 0.863 | 0.733 | 0.003 | 0.014 | 0.104 | 0.213 | 0.037
AR(1) 0.833 | 0.804 | 0.657 | 0.356 | 0.101 | 0.037 | 0.157 | 0.341 | 0.454 | 0.368
0.95 | Bloomfield | 0.999 | 0.999 | 0.999 | 0.997 | 0.993 | 0.000 | 0.010 | 0.109 | 0.298 | 0.304
AR(1) 0.063 | 0.178 | 0.190 | 0.100 | 0.025 | 0.148 | 0.323 | 0.603 | 0.850 | 0.968
0.25 | Bloomfield | 0.996 | 0.863 | 0.624 | 0.279 | 0.056 | 0.063 | 0.240 | 0.560 | 0.848 | 0.971
AR(1) 0.140 | 0.068 | 0.046 | 0.040 | 0.020 | 0.204 | 0.294 | 0.432 | 0.614 | 0.797
200 | 0.50 | Bloomfield | 0.995 | 0.973 | 0.883 | 0.662 | 0.317 | 0.003 | 0.027 | 0.126 | 0.374 | 0.694
AR(1) 0.869 | 0.602 | 0.278 | 0.088 | 0.021 | 0.145 | 0.284 | 0.355 | 0.353 | 0.356
0.75 | Bloomfield | 0.999 | 0.999 | 0.999 | 0.993 | 0.961 | 0.007 | 0.020 | 0.209 | 0.320 | 0.021
AR(1) 0.959 | 0.955 | 0.847 | 0.443 | 0.080 | 0.041 | 0.236 | 0.516 | 0.560 | 0.325
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.004 | 0.043 | 0.147 | 0.338 | 0.347
AR(1) 0.130 | 0.344 | 0.323 | 0.154 | 0.029 | 0.118 | 0.366 | 0.724 | 0.946 | 0.994
0.25 | Bloomfield | 0.997 | 0.969 | 0.811 | 0.405 | 0.071 | 0.047 | 0.278 | 0.696 | 0.949 | 0.996
AR(1) 0.181 | 0.112 | 0.094 | 0.067 | 0.024 | 0.156 | 0.287 | 0.509 | 0.745 | 0.916
300 | 0.50 | Bloomfield | 0.999 | 0.998 | 0.976 | 0.837 | 0.442 | 0.001 | 0.016 | 0.142 | 0.494 | 0.849
AR(1) 0.947 | 0.725 | 0.359 | 0.114 | 0.024 | 0.128 | 0.278 | 0.360 | 0.371 | 0.416
0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 | 0.010 | 0.031 | 0.309 | 0.341 | 0.012
AR(1) 0.991 | 0.990 | 0.935 | 0.519 | 0.068 | 0.043 | 0.331 | 0.649 | 0.645 | 0.303
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.012 | 0.077 | 0.302 | 0.389 | 0.334

when directed against d > dy, and strongly reduce against d < dy. Thus, for example, if
¢ = 0.95 the test is clearly oversized when the alternative is of form d < 1 and undersized
for d > 1. This bias in the size may be a consequence of the different models considered
under the null and the alternative hypotheses.

If we concentrate on the rejection frequencies when d # 1 we see that they are always
higher when we employ the Bloomfield model if d < 1. Of particular interest are the
results when ¢ = 0.95. In this case, if we test Hy : d = 0 with AR(1) u,, the rejection
frequencies are 0.442; 0.538 and 0.605 with T = 100, 200 and 300 respectively. Thus,
even if the true process contains a unit root (i.e., d = 1), testing the null of d = 0 with AR
disturbances results in a significant probability of non-rejection of the null hypothesis of
stationarity /(0). Using, however, the Bloomfield model, these rejection frequencies are
1 in all cases. The relative low values obtained in the AR case may be due in large part
to the fact that the AR parameters are estimated by Yule-Walker, implying roots that are
automatically less than one in absolute value but that can be arbitrarily close to one. Thus,
the AR estimates may be competing with the order of integration in describing the unit
root component of the series. If d > 1, the rejection frequencies are higher with AR(1)
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TaBLE 3. Rejection frequencies of Robinson’s (1994) tests with AR(2)
disturbances. In bold: the sizes of the tests. The nominal size is 0.050.

True model: (1 — L)Y%x; = uy; w; = drug—y + oy + &5 d = 1

Alternatives: (1 — L)%x, = u;; u, ~ AR(2) and Bloomfield (2)

H,:d>d H,:d<d

Size | ¢1,¢2 u/d 0.00 | 0.25 ] 0.50 | 0.75 | 1.00 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00
AR(1) 0.677 | 0.190 | 0.099 | 0.065 | 0.018 | 0.137 | 0.567 | 0.809 | 0.905 | 0.988
0.25, 0.25 | Bloomfield | 0.998 [ 0.952 | 0.743 | 0.466 | 0.042 [ 0.112 [ 0.556 | 0.911 | 1.000 | 1.000
AR(1) 0.800 | 0.689 | 0.258 [ 0.076 | 0.015 | 0.119 | 0.452 | 0.675 [ 0.909 | 0.982
100 | 0.25, 0.50 | Bloomfield | 0.997 [ 0.991 | 0.879 | 0.764 | 0.131 [ 0.011 | 0.233 | 0.681 | 0.971 | 0.991

AD/TY nodtIngaalngentnatti InnraTat1alnang T nacr Tngcsgs T nqar
AR(L) U.741 | U.00Y | U.OJU | UD11 | UNVLT | VeddlT | UAUD | UDOL | U.D0O | U.OH/

0.50, 0.25 | Bloomfield | 0.989 | 0.984 | 0.982 | 0.961 | 0.718 | 0.045]0.048 | 0.132 ] 0.338 | 0.973
AR(1) 0.62 |0.8320.866 | 0.761 | 0.114 | 0.039 | 0.414 | 0.186 | 0.106 | 0.365
0.50, 0.45 | Bloomfield | 1.000 | 1.000 | 0.995|0.991 | 0.953 | 0.010 ] 0.012 | 0.032 | 0.065 | 0.345
AR(1) ]0.682(0.193 | 0.123 | 0.266 | 0.029 | 0.132 | 0.738 | 0.995 | 1.000 | 1.000
0.25, 0.25 | Bloomfield | 1.000 | 0.997 | 0.991 | 0.760 | 0.049 | 0.068 | 0.822 | 0.991 | 1.000 | 1.000
AR(1) ]0.903 | 0.890 | 0.467 | 0.087 | 0.032 | 0.212 | 0.621 | 0.903 | 0.999 | 1.000
200 | 0.25, 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.971 | 0.201 | 0.013 | 0.312 | 0.910 | 0.999 | 0.999
AR(1) ]0.942(0.924 | 0.971 | 0.354 | 0.030 | 0.123 | 0.332 | 0.411 | 0.735| 0.935
0.50, 0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.991 | 0.911 | 0.003 | 0.013 | 0.233 | 0.785 | 0.993
AR(1) ]0.738 |0.801 | 0.941 | 0.913 | 0.076 | 0.044 | 0.066 | 0.289 | 0.383 | 0.413
0.50, 0.45 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.009 | 0.017 | 0.107 | 0.282 | 0.417
AR(1) |0.456 |0.201 | 0.085 | 0.334 | 0.037 | 0.129 | 0.899 | 0.999 | 1.000 | 1.000
0.25, 0.25 | Bloomfield | 1.000 | 1.000 | 0.999 | 0.954 | 0.077 | 0.049 | 0.867 | 0.999 | 1.000 | 1.000
AR(1) ]0.953(0.921 | 0.754 | 0.202 | 0.035 | 0.165 | 0.576 | 0.993 | 1.000 | 1.000
300 | 0.25, 0.50 | Bloomfield | 1.000 | 1.000 | 0.948 | 0.923 | 0.146 | 0.043 | 0.287 | 0.998 | 0.997 | 1.000
AR(1) ]0.939 [0.935 | 0.896 | 0.543 | 0.035 | 0.123 | 0.355 | 0.519 | 0.909 | 0.998
0.50, 0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.994 | 0.895 | 0.006 | 0.009 | 0.119 | 0.890 | 0.999
AR(1) |0.708 [ 0.697 | 0.943 | 0.807 | 0.066 | 0.046 | 0.694 | 0.434 | 0.416 | 0.597
0.50, 0.45 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.015|0.105]0.210 | 0.413 | 0.411

disturbances if d = 1.25 or 1.50, being similar to the Bloomfield model when d > 1.50.
As a conclusion, we can summarize the results in this table by saying that the Bloomfield
exponential spectral model can be used as an approximation to the AR(1) i, when testing
the null hypothesis of a unit root in the presence of AR(1) disturbances. The rejection
frequencies are higher in all cases when the alternatives are of form d < 1, and even if
d > 1, they are competitive to the AR(1) model for values of d relatively far away from
1.

Table 2 extends the results of Table 1 to the case of fractionally integrated processes.
Thus, the true model is now given by an 1(0.5) process, with the alternatives testing H
(1.2) with dp-values = 0.10, (0.10), 0.90. Other fractional models were also considered
and the results were completely in line with those presented in Table 2. The same conclu-
sions as in Table 1 are obtained here. Thus, starting with the size, we see that if the AR
coeflicient is low (¢ = 0.25), the sizes of the tests improve when using the Bloomfield ap-
proximation, however, as we increase the value of the AR coefficient, the distortions also
increase. If the alternatives are of form d < 0.5, the rejection frequencies are in all cases
higher with Bloomfield disturbances, being particularly remarkable this improvement if
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TaBLE 4. Rejection frequencies of Robinson’s (1994) tests with AR(1)
disturbances. In bold: the sizes of the tests. The nominal size is 0.050.

True model: (1 — L)%x, = u;; u, = u—y + & d = 1 (t3-distribution)
Alternatives: (1 — L)?x, = u;; u, ~ AR(1) and Bloomfield (1)

H,:d>d H,:d<dj

Size | ¢ u/d 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00
AR(1) 0.000 | 0.005 | 0.017 | 0.033 | 0.015 | 0.219 | 0.365 | 0.726 | 0.959 | 0.996
0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.894 | 0.028 | 0.094 | 0.309 | 0.707 | 0.970 | 1.000
AR(1) 0.000 | 0.002 | 0.010 | 0.020 | 0.009 | 0.232 | 0.296 | 0.437 | 0.800 | 0.965
100 | 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.959 | 0.089 | 0.022 | 0.088 | 0.354 | 0.822 | 0.986

ADTY nnnn InonnnTnnnoTfnnti nonm I asoz T nagt Nn1zy I'nna0 Tnzas
ARL) U.UUVU | U.UUU | U.UUY | U.ULL UVU/ | VulTO | UDOI V. 100 | V.LO07 | U.0DOO

0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.998 | 0169 | 0.000 | 0.001 | 0.108 | 0.245 | 0.650
AR(1) 0.000 | 0.000 | 0.003 | 0.006 | 0.000 | 0.097 | 0.754 | 0.291 | 0.015 | 0.018
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.203 | 0.000 | 0.100 | 0.202 | 0.204 | 0.307
AR(1) 0.000 | 0.009 | 0.019 | 0.088 | 0.019 | 0.153 | 0.418 | 0.945 | 0.996 | 1.000
0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.058 | 0.046 | 0.392 | 0.947 | 0.999 | 1.000
AR(1) 0.000 | 0.005 | 0.014 | 0.031 | 0.013 | 0.173 | 0.232 | 0.626 | 0.973 | 0.997
200 | 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.117 | 0.003 | 0.064 | 0.583 | 0.983 | 0.999
AR(1) 0.000 | 0.002 | 0.011 | 0.014 | 0.009 | 0.223 | 0.191 | 0.090 | 0.394 | 0.933
0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.273 | 0.000 | 0.009 | 0.204 | 0.309 | 0.947
AR(1) 0.000 | 0.000 | 0.001 | 0.003 | 0.000 | 0.088 | 0.812 | 0.177 | 0.000 | 0.000
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.313 | 0.000 | 0.203 | 0.306 | 0.201 | 0.105
AR(1) 0.000 | 0.022 | 0.088 | 0.109 | 0.024 | 0.113 | 0.513 | 0.989 | 1.000 | 1.000
0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.073 | 0.034 | 0.485 | 0.989 | 1.000 | 1.000
AR(1) 0.000 | 0.004 | 0.021 | 0.044 | 0.009 | 0.113 | 0.205 | 0.836 | 0.996 | 1.000
300 | 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.252 | 0.000 | 0.039 | 0.804 | 0.999 | 1.000
AR(1) 0.000 | 0.000 | 0.004 | 0.010 | 0.008 | 0.128 | 0.098 | 0.052 | 0.603 | 0.987
0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.395 | 0.000 | 0.039 | 0.300 | 0.517 | 0.993
AR(1) 0.000 | 0.001 | 0.003 | 0.004 | 0.000 | 0.079 | 0.905 | 0.086 | 0.000 | 0.007
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.503 | 0.009 | 0.229 | 0.300 | 0.209 | 0.105

¢ = 0.25 or 0.50 and we test lower orders of integration. If d > 0.5, the AR(1) model
behaves better when d is relatively close to the true value, the rejection probabilities being
similar if d > 0.70 with low values of the AR coefficient.

Table 3 extends the analysis to the case of AR(2) disturbances. The true model is now
given by:

d .
(I =L)x = w5 uy = $rug—1 + douy 2 + &,

with d = 1 (a unit root) and (¢1, ¢;) = (0.25,0.25); (0.25, 0.50); (0.50, 0.25) and (0.50,
0.45). The alternatives are again fractional with dy = 0, (0.25), 2, and both AR(2) and
Bloomfield (2) u,. Similarly to Tables 1 and 2, if (¢1, ¢2) = (0.25,0.25); (0.25, 0.50);
(0.50, 0.25), the sizes of the tests are too small against d > dj but too large againstd < d.
However, as we approximate to the nonstationary case, (i.e., (¢1,¢2) = (0.50,0.45)),
this behaviour reverses. Once more, if d < 1, higher rejection frequencies are obtained
with Bloomfield disturbances, and testing with d > 1, the rejection probabilities are
competitive in both cases for values of d > 1.50.
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TaBLE 5. Rejection frequencies of Robinson’s (1994) tests with AR(1)
disturbances. In bold: the sizes of the tests. The nominal size is 0.050.

True model: (1 — L)%x, = u;; u, = pu—1 + &3 d = 0.50

Alternatives: (1 — L)%x, = u;; u; ~ AR(1) and Bloomfield (1)

H,:d>d H,:d<dy

Size | ¢ u/d 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90
AR(1) 0.000 | 0.011 | 0.027 | 0.020 | 0.062 | 0.012 | 0.219 | 0.253 | 0.293 | 0.413
0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.976 | 0.027 | 0.083 | 0.218 | 0.554 | 0.933 | 0.990
AR(1) 0.001 | 0.009 | 0.039 | 0.016 | 0.010 | 0.467 | 0.339 | 0.246 | 0.218 | 0.232
100 | 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 0.993 | 0.091 | 0.019 | 0.039 | 0.193 | 0.700 | 0.966

ADTY nnnn I'nnnn 'nnot Y YE] nons o ca1 nzeny Inacr T nnzo T nont
ARL) U.UUVU | U.UUU | U.UZ1 \VAVI U.UVUO | V.U4LL | U.OUD | U.DOT | UV.LOT | U.LUIL

0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.253 | 0.015 | 0.041 | 0.101 | 0.251 | 0.496
AR(1) 0.000 | 0.000 | 0.018 | 0.008 | 0.003 | 0.048 | 0.315 | 0.693 | 0.801 | 0.630
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.341 | 0.011 | 0.086 | 0.194 | 0.206 | 0.301
AR(1) 0.000 | 0.027 | 0.101 | 0.196 | 0.027 | 0.136 | 0.188 | 0.209 | 0.326 | 0.620
0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.061 | 0.052 | 0.219 | 0.866 | 0.999 | 1.000
AR(1) 0.000 | 0.011 | 0.094 | 0.023 | 0.019 | 0.289 | 0.198 | 0.122 | 0.111 | 0.189
200 | 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.207 | 0.013 | 0.097 | 0.349 | 0.964 | 1.000
AR(1) 0.000 | 0.001 | 0.071 | 0.032 | 0.003 | 0.554 | 0.363 | 0.184 | 0.083 | 0.033
0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.371 | 0.014 | 0.102 | 0.203 | 0.318 | 0.297
AR(1) 0.000 | 0.001 | 0.019 | 0.020 | 0.002 | 0.184 | 0.585 | 0.862 | 0.884 | 0.745
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.449 | 0.009 | 0.200 | 0.407 | 0.331 | 0.200
AR(1) 0.000 | 0.076 | 0.213 | 0.553 | 0.018 | 0.116 | 0.187 | 0.217 | 0.442 | 0.810
0.25 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.056 | 0.038 | 0.283 | 0.997 | 0.999 | 1.000
AR(1) 0.000 | 0.031 | 0.102 | 0.179 | 0.017 | 0.225 | 0.137 | 0.079 | 0.093 | 0.259
300 | 0.50 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.253 | 0.000 | 0.097 | 0.589 | 0.996 | 1.000
AR(1) 0.000 | 0.000 | 0.077 | 0.034 | 0.005 | 0.449 | 0.285 | 0.086 | 0.025 | 0.012
0.75 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.394 | 0.010 | 0.088 | 0.100 | 0.295 | 0.990
AR(1) 0.000 | 0.000 | 0.005 | 0.013 | 0.002 | 0.264 | 0.719 | 0.922 | 0.946 | 0.797
0.95 | Bloomfield | 1.000 | 1.000 | 1.000 | 1.000 | 0.457 | 0.007 | 0.197 | 0.251 | 0.207 | 0.109

Though not reported in the paper, we also examined the case of misspecification in the
order p for the AR and the Bloomfield disturbances. As expected, the rejection probabil-
ities were relatively high in all cases, being close to 1 if 7 > 100. Other versions of LM
tests for fractional integration have been recently proposed in the literature (e.g. Tanaka,
1999; Breitung and Hassler, 2002; Dolado et al., 2002), however, they are not directly
comparable to Robinson (1994) in the context of Bloomfield disturbances, since they are
specified in the time domain, while Bloomfield is a frequency domain non-parametric
approach.

Finally, since the tests of Robinson (1994) are supposed to be robust to non-Gaussian
disturbances, we also examined in this section the case of departures from Gaussianity.
Tables 4 and 5 report the rejection frequencies for the cases of #3 and t5 disturbances
respectively. In Table 4 we suppose that the true model is given by an /(1) process with
AR(1) u, and perform the two test statistics (AR and Bloomfield) in a similar way as
in Table 1, i.e., testing Hy (1.2), with dy = 0,0.25,...,1.75 and 2. The first thing we
observe in this table is that the model based on the Bloomfield approach performs much
better in all cases in terms of both the size and the power properties, especially if the AR
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TaBLE 6. Testing the order of integration in the Spanish real GDP (°
and in bold: Non-rejection values of the null hypothesis at the 5% sig-
nificance level).

u/d 0.00 | 0.25 | 050 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00
White noise | 22.42 | 22.18 | 21.58 | 19.16 | 10.62 | 2.51 |-1.17° | -2.83 | -3.74
AR(1) -0.40 | 0.05 | 1.63 | 0.18 | -0.05 | 0.31 | -0.49 | -1.33 | -2.05

AR(2) -23.81(-9.79 | 2.13 | 1.58 | -0.67 | 0.61 | 0.33 |-0.09 | -0.56
Bloomfield(1) | 11.83 | 10.78 | 10.73 | 8.46 | 4.29 | 0.59’ | -1.32’ | -2.23 | -2.75
Bloomfield(2) | 12.40 [ 11.48 | 11.05| 6.78 | 2.84 | 0.04’ | -1.53* | -2.31 | -2.49

parameter is not large. Thus, for example, if we direct the tests against alternatives of
form: Hy : d > dp, the rejection frequencies for dy = 0 are zero for the AR model and
1 with the Bloomfield approach. Very similar results are obtained in Table 5, where a #5-
distribution is considered for an I(0.5) process, and the highest improvement is obtained
for departures far below the true value of d (d = 0.10 or 0.20).

4. AN EMPIRICAL APPLICATION

The time series data analysed in this section correspond to the Spanish real GDP
in 1990 prices, annually from 1900 to 1999, obtained from the International Monetary
Fund’s (IMF) database. Denoting the time series by x;, we employ throughout model
(1.1), testing Hy (1.2) with dy = 0, (0.25) and 2, and white noise, AR and Bloomfield
(1973) disturbances.*

The test statistic reported in Table 6 is the one-sided one given by 7 in (2.1), so that
significantly positive values of this are consistent with higher orders of integration (d >
dp), whereas significantly negative ones are consistent with smaller values of d (d < dp).
Starting with the case of white noise u;, we observe that the values of 7 monotonically
decrease with dj. This is something to be expected given that it is a one-sided test statistic.
Thus, for example, we would wish that if d = 0.75 is rejected against d > 0.75, an even
more significant result in this direction would be obtained when d = 0.50 or 0.25 are
tested. We also observe in this case that the unit root null hypothesis (i.e., d = 1) is
strongly rejected in favour of more nonstationary alternatives (d > 1), and the only non-
rejection value takes place when d = 1.50. The following two rows in Table 6 report
the results with AR(1) and AR(2) disturbances respectively. Here we observe a lack of
monotonic decrease in the value of the test statistic with respect to dy, for small values of
dp. This lack of monotonicity could be explained in terms of model misspecification as
is argued, for example, in Gil-Alana and Robinson (1997). However, it may also be due
to the lack of power of the tests of Robinson (1994) in this context of AR disturbances,
especially if the AR parameters are close to the unit root. Thus, in the last two rows of
Table 6, we report values of 7 using the Bloomfield (1973) exponential spectral model

“4The tests of Robinson (1994) permit us to include deterministic components with no effect on its standard
null limit distribution. We try with an intercept and with an intercept and a linear trend, and the results did not
substantially change from those reported in the paper.
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for the disturbances described in Section 2. We see that monotonicity is now always
achieved and the non-rejection values correspond to d = 1.25 and 1.50. Note that these
values were non-rejected when AR disturbances were entertained, suggesting that the
Bloomfield (1973) model can be taken as a credible alternative to the AR specification
for the 1(0) disturbances, especially in those cases where the roots of the AR polynomial
are close to the unit circle.

5. CONCLUDING REMARKS

We have shown in this article that the Bloomfield (1973) exponential spectral model
can be a credible and useful alternative when testing I(d) statistical models with weakly
autocorrelated (AR) disturbances. It is well known that unit-root tests (with integer or
fractional orders of integration) have in general low power in the context of autocorre-
lated disturbances (Diebold and Rudebusch, 1989; Hassler and Wolters, 1994). Several
experiments conducted via Monte Carlo showed that the Bloomfield (1973) model ap-
proximates fairly well autoregressive models in the context of unit roots with fractional
orders of integration. We have shown that this approximation is particularly relevant in
the cases where the /(0) disturbances associated to the fractional model are close to the
unit root case. An empirical application carried out in Section 4 showed that the tests of
Robinson (1994) can have problems when looking at /(d) processes in the presence of
AR disturbances. In that respect, the Bloomfield (1973) exponential spectral model can
be adopted as a credible alternative when fractional models are combined with autore-
gressions. We used data of the Spanish real GDP to illustrate this point. Thus, testing the
degree of integration of the series with the tests of Robinson (1994), it was observed a lack
of monotonicity in the value of the one-sided statistic with respect to d if the disturbances
were autoregressive. However, using the Bloomfield’s (1973) model, monotonicity was
achieved in all cases and the null could not be rejected for d = 1.25 and 1.50, imply-
ing thus nonstationarity and lack of mean reversion in its behaviour. This final result,
however, should be taken with caution. Spanish data from 1900 to 1999 cover at least
three different political and economic regimes, and regime shifts with structural breaks
may cause artificial long memory (see, Diebold and Inoue, 2001, and Gourieroux and
Jasiak, 2001). The tests of Robinson (1994) presented in this paper permit us to incor-
porate dummy variables to take into account the breaks, with no effect on the standard
limit behaviour. In that respect, the Monte Carlo results reported here should not either
be affected by the inclusion of such deterministic regressors.

Finally, it is important to note that since the tests of Robinson (1994) are based on the
spectral density function of &, = (1 — L)% x,, or on the truncated Fourier series (if the
Bloomfield model is used), then we may expect that the ill-posed estimation problem dis-
cussed in Potscher (2002) applies. Note that Potscher (2002) (Theorem 5.1., page 1054)
makes clear that the estimation of the long memory parameter d is an ill-posed prob-
lem. Thus, in order to overcome such a problem, quite restrictive assumptions on the set
of spectral densities are needed (see, e.g., Giraitis, Robinson and Samarov, 1997, 2000).
However, as mentioned in other parts of the paper, the tests of Robinson (1994) employed
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here do not require estimation of the long memory parameter as is the case in other pro-
cedures (Sowell, 1992; Beran, 1995), and simply computes diagnostics for departures of
real values of d from the null. Moreover, the goal in Robinson’s (1994) procedure is not
the estimation of the short run parameters of the model but testing the order of integration
of the series for a sequence of values of d, and “pointwise” consistency should then be the
only requirement for the short run coefficients. The Monte Carlo experiments conducted
in Section 3 show that the Bloomfield model can be considered as a viable alternative in
those cases where the AR structure leads to inconsistencies in the test results.
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