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1 Introduction

Central and noncentral matrix variate beta type I and II distributions have been
studied by different authors utilising diverse approaches, see Olkin and Rubin
(1964), Khatri (1970), Muirhead (1982), Cadet (1996), Gupta and Nagar (2000),
Dı́az-Garćıa and Gutiérrez-Jáimez (2001), among many others. These distribu-
tions play a very important role in various problems for proving hypotheses in
the context of multivariate analysis, including canonical correlation analysis, the
general linear hypothesis in MANOVA and the multiple matrix variate correla-
tion analysis, see Muirhead (1982), Rao (1973), Srivastava (1968) and Kshirsagar
(1961). Similarly, beta noncentral distributions are to be found in the context of
shape theory, see Goodall and Mardia (1993).

In all these applications, the use of beta-type distributions had not been de-
veloped as expected and wished for, due particularly to the fact that such distri-
butions depend on hypergeometric functions with a matrix argument or on zonal
polynomials, which until very recently were quite complicated to evaluate. The
literature has recently included descriptions of algorithms that are very efficient
for calculating both zonal polynomials and hypergeometric functions with a ma-
trix argument; these can be used more widely and more efficiently in noncentral
distributions in general, see Gutiérrez et al. (2000), Sáez (2004), Demmel and
Koev (2006), Koev (2004), Koev and Demmel (2006) and Dimitriu et al. (2005).

As well as the classification of the beta distribution, as beta type I and type II
(see Gupta and Nagar (2000) and Srivastava and Khatri (1979)), two definitions
have been proposed for each one of these. Let us focus initially on the beta type
I distribution; if A and B have a central Wishart distribution, i.e. A ∼ Wm(r, I)
and B ∼ Wm(s, I) independently, then the beta matrix U can be defined as

U =

{

(A + B)−1/2A((A + B)−1/2)′, Definition 1 or,
A1/2(A + B)−1(A1/2)′, Definition 2,

(1.1)
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where C1/2(C1/2)′ = C is a reasonable nonsingular factorization of C, see Gupta
and Nagar (2000), Srivastava and Khatri (1979) and Muirhead (1982). Is easy to
see that under definition 1 and 2 its density function is given by

fU (U) =
1

βm[r/2, s/2]
|U |(r−m−1)/2|Im − U |(s−m−1)/2, 0 < U < Im, (1.2)

denoting as U ∼ BIm(r/2, s/2), with r ≥ m and s ≥ m; where βm[r/2, s/2]
denotes the multivariate beta function defined by

βm[b, a] =

∫

0<S<Im

|S|a−(m+1)/2|Im − S|b−(m+1)/2(dS) =
Γm[a]Γm[b]

Γm[a + b]
,

where Γm[a] denotes the multivariate gamma function and is defined as

Γm[a] =

∫

R>0

etr(−R)|R|a−(m+1)/2(dR),

Re(a) > (m − 1)/2 and etr(·) ≡ exp(tr(·)).
Alternatively, a third version of the beta type I matrix has been proposed, see

Srivastava and Khatri (1979, pp. 94-95), Srivastava (1968), Muirhead (1982, pp.
451-452) and Gupta and Nagar (2000). We assumed above that B ∼ Wm(s, I)
and we wrote Y ∼ Nr×m(0, Ir ⊗ Im), m > r, independently of B. Then U =
Y (Y ′Y + B)−1Y ′ = Y (A + B)−1Y ′, and moreover U ∼ BIr(m/2, (s + r − m)/2).
However, note that in the central and non-central cases, the density, properties and
associated distributions can be obtained from the definitions in (1) by replacing
m by r, r by m and s by s + r − m, i.e., by making the substitutions

m → r, r → m, s → s + r − m, (1.3)

see Srivastava and Khatri (1979, p. 96) or Muirhead (1982, eq. (7), p. 455).
For this reason, we focus on the definitions given in (1.1). On extending these
definitions to the noncentral case, i.e. when B has a noncentral Wishart distribu-
tion, B ∼ Wm(s, I, Ω), a further classification is given in the literature, in which
the beta matrix is defined as follows, see Greenacre (1973) and Gupta and Nagar
(2000):

U =

{

(A + B)−1/2A((A + B)−1/2)′, denoting as BI1(A)m(r/2, s/2, Ω)

(A + B)−1/2B((A + B)−1/2)′, denoting as BI1(B)m(s/2, r/2, Ω)
(1.4)

under Definition 1; or

U =

{

A1/2(A + B)−1(A1/2)′, denoting as BI2(A)m(r/2, s/2, Ω)

B1/2(A + B)−1(B1/2)′, denoting as BI2(B)m(s/2, r/2, Ω)
(1.5)

under Definition 2. Both distributions, types A and B, play a fundamental role in
various areas of statistics, for example in the W and U criteria proposed by Wilks
(1932).
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The density BI1(A)m(·, ·, ·), when the range of Ω is one, the linear case,
has been obtained by Kshirsagar (1961). In the general case, the distributions
BI1(A)m(·, ·, ·) and BI1(B)m(·, ·, ·) are found by Gupta and Nagar (2000, pp. 188-
189)1, but both expressions depend on an integral of the following type (see also
Greenacre (1973) or Roux (1975))

∫

C>0

|C|a+b−(m+1)/2 etr
(

− 1
2R−1C

)

0F1

(

b; 1
4SC1/2X(C1/2)′

)

(dC), (1.6)

where 0 < X < Im and aFb is the matrix argument hypergeometric function, see
Muirhead (1982, p. 258). The problem of evaluating this integral was proposed
earlier by Constantine (1963), Khatri (1970) and reconsidered in Farrell (1985, p.
191).

This problem of finding a closed form for the beta distributions was addressed
by Greenacre (1973), who proposed the symmetrised multivariate density of a
positive definite matrix, defined as

fS(W ) =

∫

O(m)

f(HWH ′)(dH), (1.7)

where W : m×m > 0 has the density function f(W ), O(m) = {H ∈ ℜm×m|HH ′ =
H ′H = Im} and (dH) denotes the normalised invariant measure on O(m) (Muir-
head, 1982, p. 72), obtaining the symmetrised density of BI1(A)m(·, ·, ·) and
BII2(B)m(·, ·, ·), see also Roux (1975).

Under Definition 2, only the distribution BI2(A)m(·, ·, ·) presents the same
problem, i.e. its density depends on an integral of the type (1.6). On the other
hand, Dı́az-Garćıa and Gutiérrez-Jáimez (2001) found an explicit expression for
the density of the distribution BI2(B)m(·, ·, ·) and applied it to calculating the
expected value of a zonal polynomial, see also Srivastava (1968). This same dis-
tribution was given as an extension of the univariate beta density by Asoo (1969)
(cited by Gupta and Nagar (2000)) and proposed as a definition of the noncentral
matrix variate beta type I density, see Gupta and Nagar (2000, Definition 5.5.1,
p. 190).

A similar situation arises with the beta type II distribution, with which we
have the following three definitions:

V =







B−1/2A(B−1/2)′, Definition 1,

A1/2B−1(A1/2)′, Definition 2,
Y 1/2B−1Y ′, Definition 3.

(1.8)

with the distribution being denoted as V ∼ BIIm(r/2, s/2). Similarly to the case
of the beta type I distribution, the results under Definition 3 can be found from
the results obtained with Definition 2, applying the transforms (1.3), see James
(1964) and Muirhead (1982, pp. 451-455).

1In both final expressions there is a small error, that is: in the second argument of the

hypergeometric function 0F1 in both densities is necessary to interchange Σ−1 and Θ, in their

notation.
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On extending these definitions to the noncentral case, we obtain definitions
that are parallel to those given in (1.4) and (1.5),

V =

{

B−1/2A(B−1/2)′, denoting as BII1(A)m(r/2, s/2, Ω)

A−1/2B(A−1/2)′, denoting as BII1(B)m(s/2, r/2, Ω)
(1.9)

under Definition 1; or

V =

{

A1/2B−1(A1/2)′, denoting as BII2(A)m(r/2, s/2, Ω)

B1/2A−1(B1/2)′, denoting as BII2(B)m(s/2, r/2, Ω)
(1.10)

under Definition 2.
In this case, the distributions BII1(A)m(·, ·, ·) and BII2(B)m(·, ·, ·) have been

studied by James (1964), Muirhead (1982, Section 10.4) and Gupta and Nagar
(2000, Section 5.5). Once again, Asoo (1969) (cited by Gupta and Nagar (2000))
proposed BII2(B)m(·, ·, ·) as a definition of the noncentral matrix variate beta
type II density, see Gupta and Nagar (2000, Definition 5.5.12, p. 190).

Note that, to a certain extent, the fact that under the type I definitions, both
for beta type I and type II, their corresponding densities cannot be found in an
explicit form, which is why the type 2 definitions were proposed, thus avoiding
the difficulty in evaluating the type of integrals found in (1.6).

In the present paper, we propose a very simple means of evaluating this integral
(1.6), see Section 2. In Section 3 we describe all the densities of the type I
distributions that are obtained from Definitions (1.4) and (1.5), observing that
the corresponding non-central densities coincide under Definitions 1 and 2. These
results are presented in Section 4 for the case of the beta type II distribution.
Finally, we propose definitions for the beta type I and II distributions under their
different definitions.

2 Preliminar results

From Greenacre (1973), denote

f(X) = etr
(

− 1
2Σ−1XX ′

)

,

from which the symmetrised function fs(X) is given by, see Muirhead (1982,
Theorem 7.3.3, p. 260),

fs(X) =

∫

O(m)

etr(− 1
2Σ−1HXH ′HX ′H)(dH)

= 0F
(m)
0

(

− 1
2Σ−1, XX ′

)

, H ∈ O(m),

where aF
(m)
b is the hypergeometric function with two matrix arguments, see Muir-

head (1982, p. 260).
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Our approach is also to apply this idea from Greenacre (1973), in an inverse
way, i.e. in the knowledge that

fs(X) = 0F
(m)
0

(

− 1
2Σ−1, XX ′

)

=

∫

O(m)

f(HXH ′)(dH), (2.1)

we wish to identify the function f(X). Of course, this procedure can be applied
for any function f(X), and so it is easy to evaluate the integral (1.6) in an explicit
way, as shown below:

Theorem 2.1. Denote the integral (1.6) by g(X). Then

i) gs(X) = Γ[(a + b)]|2R|(a+b)
1F

(m)
1

(

a + b; b; 1
2SR, X

)

,

ii) g(X) = Γ[(a + b)]|2R|(a+b)
1F1

(

a + b; b; 1
2SRX

)

.

Proof.

g(X) =

∫

C>0

|C|a+b−(m+1)/2 etr
(

− 1
2R−1C

)

0F1

(

b; 1
4SC1/2X(C1/2)′

)

(dC),

then the symmetrised function g is given by

gs(X) =

∫

C>0

|C|a+b−(m+1)/2 etr
(

− 1
2R−1C

)

∫

O(m)
0F1

(

b; 1
4SC1/2HXH ′(C1/2)′

)

(dH)(dC),

from Muirhead (1982, theorem 7.3.3, p. 260) we have

gs(X) =

∫

C>0

|C|a+b−(m+1)/2 etr
(

− 1
2R−1C

)

0F
(m)
1

(

b; 1
4SC, X

)

(dC),

therefore, from Muirhead (1982, theorem 7.3.4, p. 260)

gs(X) = Γ[(a + b)]|2R|(a+b)
1F

(m)
1

(

a + b; b; 1
2SR, X

)

.

Now, by applying the inverse procedure (2.1)

gs(X) = Γ[(a + b)]|2R|(a+b)
1F

(m)
1

(

a + b; b; 1
2SR, X

)

,

=

∫

O(m)

g(HXH ′)(dH)

= Γ[(a + b)]|2R|(a+b)

∫

O(m)
1F1

(

a + b; b; 1
2SRHXH ′

)

(dH),

from which
g(X) = Γ[(a + b)]|2R|(a+b)

1F1

(

a + b; b; 1
2SRX

)

.

�
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Henceforth, the density function of X is denoted by fX(X) and its corre-
sponding symmetrised density function by fs(X). Moreover, the density function
obtained by applying the idea behind Theorem 2.1 will be termed the nonsym-
metrised density function in order to distinguish it from the integral form of its
density in the corresponding cases. Nevertheless, we should always bear in mind
that the fundamental goal of this study is, in fact, to propose the nonsymmetrised
density as the real density.

3 Noncentral beta type I distribution

Let us denote the central beta type I density (1.2) as BIm(U ; r/2, s/2), thus,

Theorem 3.1. Let W ∼ BI1(A)(r/2, s/2, Ω) then

1. Its density function is

fW (W ) =
etr(− 1

2Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|W |(r−m−1)/2|I − W |(s−m−1)/2

×

∫

C>0

|C|(r+s−m−1)/2 etr
(

− 1
2C

)

0F1

(

1
2s; 1

4ΩC1/2(I − W )(C1/2)′
)

(dC).

2. Its symmetrised density function is

fs(W ) = BIm(W ; r/2, s/2) etr
(

− 1
2Ω

)

1F
(m)
1

(

1
2 (r + s); 1

2s; 1
2Ω, (I − W )

)

3. Its nonsymmetrised density function is

fW (W ) = BIm(W ; r/2, s/2) etr
(

− 1
2Ω

)

1F1

(

1
2 (r + s); 1

2s; 1
2Ω(I − W )

)

Proof. (1) is given in Gupta and Nagar (2000, Theorem 5.5.1, p. 188). (2)
and (3) follow from (1) by the application of Theorem 2.1. �

Theorem 3.2. Let U ∼ BI1(B)(s/2, r/2, Ω) then

1. Its density function is

fU (U) =
etr(− 1

2Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|U |(s−m−1)/2|I − U |(r−m−1)/2

×

∫

C>0

|C|(r+s−m−1)/2 etr
(

− 1
2C

)

0F1

(

1
2s; 1

4ΩC1/2U(C1/2)′
)

(dC).

2. Its symmetrised density function is

fs(U) = BIm(U ; s/2, r/2) etr
(

− 1
2Ω

)

1F
(m)
1

(

1
2 (r + s); 1

2s; 1
2Ω, U

)
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3. Its nonsymmetrised density function is

fU (U) = BIm(U ; s/2, r/2) etr
(

− 1
2Ω

)

1F1

(

1
2 (r + s); 1

2s; 1
2ΩU

)

Proof. (1) is considered in Gupta and Nagar (2000, p. 189) and Roux (1975).
(2) is proposed by Greenacre (1973) and Roux (1975) and (3) follows from (1) or
(2) follows from (1) or (2) by the application of Theorem 2.1. �

Similarly, from Definition 2 we have:

Theorem 3.3. Let W ∼ BI2(A)(r/2, s/2, Ω) then

1. Its density function is

fW (W ) =
etr(− 1

2Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|W |(r−m−1)/2|I − W |(s−m−1)/2

×

∫

A>0

|A|(r+s−m−1)/2 etr
(

− 1
2AW−1

)

0F1

(

1
2s; 1

4ΩA1/2(I − W )W−1(A1/2)′
)

(dA).

2. Its symmetrised density function is the same as in Theorem 3.1(2).

3. Its nonsymmetrised density function is the same as in Theorem 3.1(3).

Proof. (1) is obtained in a similar way to the result for Theorem 3.1(1). (2)
and (3) follow from (1) by the application of Theorem 2.1. �

Theorem 3.4. Let U ∼ BI2(B)(s/2, r/2, Ω) then

1. Its density function and nonsymmetrised density agree and are the same that
in Theorem 3.2(3).

2. Its symmetrised density function is the same as in Theorem 3.2(2).

Proof. (1) is obtained by Dı́az-Garćıa and Gutiérrez-Jáimez (2001), see also
Srivastava (1968). And (2) follows from (1) by the application of Theorem 7.3.3
in Muirhead (1982, p.260). �

4 Noncentral beta type II distribution

Let us denote the central beta type II density as

BIIm(V ; r/2, s/2) =
1

β[r/2, s/2]
|V |(r−m−1)/2|I + V |−(r+s)/2, V > 0.

Then from Definition 1, we have

Theorem 4.1. Let V ∼ BII1(A)(r/2, s/2, Ω) then
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1. Its density function and non-symmetrised density agree, and moreover are
given by

fV (V ) = BIIm(V ; r/2, s/2) etr
(

− 1
2Ω

)

1F1

(

1
2 (r + s); 1

2s; 1
2Ω(I + V )−1

)

2. Its symmetrised density function is

fs(V ) = BIIm(V ; r/2, s/2) etr
(

− 1
2Ω

)

1F1

(

1
2 (r + s); 1

2s; 1
2Ω, (I + V )−1

)

Proof. (1) is addressed in Gupta and Nagar (2000, Theorem 5.5.3, p. 190).
And (2) is obtained from (1) by the application of Theorem 7.3.3 in Muirhead
(1982, p.260), see also Greenacre (1973). �

Theorem 4.2. Let F ∼ BII1(B)(s/2, r/2, Ω) then

1. Its density function is

fF (F ) =
etr(− 1

2Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|F |(s−m−1)/2

×

∫

B>0

|B|(r+s−m−1)/2 etr
(

− 1
2 (I + F )B

)

0F1

(

1
2s; 1

4ΩB1/2F (B1/2)′
)

(dB).

2. Its symmetrised density function is

fs(F ) = BIIm(F ; s/2, r/2) etr
(

− 1
2Ω

)

1F
(m)
1

(

1
2 (r + s); 1

2s; 1
2Ω, (I + F )−1F

)

3. Its nonsymmetrised density function is

fF (F ) = BIIm(F ; s/2, r/2) etr
(

− 1
2Ω

)

1F1

(

1
2 (r + s); 1

2s; 1
2Ω(I + F )−1F

)

Proof. (1) is obtained in a similar way to the result in Theorem 3.1(1). (2)
and (3) are obtained from (1) by the application of Theorem 2.1. �

Similarly, under Definition 2, we can state:

Theorem 4.3. Let V ∼ BII2(A)(r/2, s/2, Ω) then

1. Its density function is

fV (V ) =
etr(− 1

2Ω)

2m(r+s)/2Γm[r/2]Γm[s/2]
|V |−(s+m+1)/2

×

∫

A>0

|A|(r+s−m−1)/2 etr
(

− 1
2A(I + V −1)

)

0F1

(

1
2s; 1

4ΩA1/2V −1(A1/2)′
)

(dA).

2. Its symmetrised density function is the same as in Theorem 4.1(1).
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3. Its nonsymmetrised density function is the same as in Theorem 4.1(2).

Proof. (1) is obtained in a similar way to the result in Theorem 3.3(1). (2)
and (3) follow from (1) by the application of Theorem 2.1. �

Theorem 4.4. Let F ∼ BII2(B)(s/2, r/2, Ω) then

1. Its density function and non-symmetrised density agree and are the same as
in Theorem 4.2(3).

2. Its symmetrised density function is the same as in Theorem 4.2(2).

Proof. (1) is obtained from Muirhead (1982, Theorem 10.4.1, p.449), see also
James (1964). And (2) is obtained from (1) by the application of Theorem 7.3.3
in Muirhead (1982, p.260). �

5 Conclusions

It is immediately apparent that from nonsymmetrised densities we can obtain the
same distributions of the eigenvalues of the beta type I and II matrices obtained by
Constantine (1963) in the case of the beta type I distribution and by James (1964)
and Muirhead (1982, pp. 450-451) for the case of the beta type II distribution.
What is important, as established in Theorems 3.1- 4.4, is the fact that these
nonsymmetrised densities are invariant under definitions type 1 and 2 for the beta
type I and II distributions. Note, too, that there are various transformations to
relate the beta type I distributions in their different versions with the beta type
II distributions (also for their different versions), both in the central case and in
the noncentral one. Thus it is possible in a very simple way, for example, when
we know the beta type I(A) density, to determine the beta type I(B) density, see
Srivastava and Khatri (1979, problem 3.24, p. 102) and Gupta and Nagar (2000,
Section 5.5).

Now, let us observe that, for Theorems 3.4 and 4.4, the beta type I(B) and
II(B) distributions are specified by Definitions 5.5.1 and 5.5.2 in Gupta and Nagar
(2000, pp. 190 and 192), respectively, irrespective of whether the type I or type II
definition is employed to define them. Similarly, for Theorems 3.3 and 4.3, we have
the following definitions for the case of the beta type I(A) and II(A) distributions,
respectively:

Definition 5.1 (Noncentral matrix variate beta type I(A)). A symmetric positive
definite random matrix W : m×m is said to have non central matrix variate beta
type I(A) distributions with parameters a, b and Θ : m×m, if its density function
is given by

fW (W ) = BIm(W ; a, b) etr (−Θ) 1F1 ((a + b); b; Θ(I − W )) , 0 < W < I.

where a > (m − 1)/2 and b > (m − 1)/2.

and
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Definition 5.2 (Noncentral matrix variate beta type II(A)). A symmetric positive
definite random matrix V : m×m is said to have non central matrix variate beta
type II(A) distributions with parameters a, b and Θ : m×m, if its density function
is given by

fs(V ) = BIIm(V ; a, b) etr (−Θ) 1F1

(

(a + b); b; Θ(I + V )−1
)

, V > 0

where a > (m − 1)/2 and b > (m − 1)/2.

Finally, observe that the joint cumulative distribution functions of the Beta
type I and II matrices can be obtained from the corresponding nonsymmetrised
densities and Theorem 7.2.10 in Muirhead (1982, p. 254).
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Koev, P. (2004). http://www.math.mit.edu/˜plamen.

Koev, P. and Demmel, J. (2006). The efficient evaluation of the hypergeometric
function of matrix argument. Math. Comp., 75, 833-846.

Kshirsagar, A. M. (1961). The non-central multivariate beta distribution. Ann.
Math. Statist., 32, 104-111.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. New York:
John Wiley and Sons.

Olkin, I. and Rubin, H. (1964). Multivariate beta distributios and independence
properties of Wishart distribution. Ann. Math. Statist., 35, 261-269. Correction
1966, 37, 297.
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