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Abstract: In this paper certainty equivalents are considered as risk

measures. It is shown, how certainty equivalents can be characterized

axiomatically, and how properties like translation invariance, positive

homogeneity, convexity and subadditivity can be characterized by properties

of the utility function. It turns out that these risk measures typically are not

convex, but still preserve convex stochastic ordering.
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1 Introduction

In recent years there has been an increasing interest in the axiomatic approach
to risk measures, where we mean by a risk measure a functional assigning a real
number to the risk of a financial position.

Seminal papers on the axiomatic approach to risk measures have been written
by Artzner et al. (1999) and Föllmer and Schied (2002a), who introduced the
notions of coherent risk measure and convex risk measure, respectively.

In the following, we will describe the risk of a financial position by a random
variable X , where positive values of X describe gains and negative values describe
losses. A risk measure ρ is a functional, assigning a real number to the risk X .
According to Artzner et al. (1999) a risk measure is coherent, if it fulfills the
following axioms:

Monotonicity: If X ≤ Y then ρ(X) ≥ ρ(Y );

Translation invariance: if m ∈ R, then ρ(X +m) = ρ(X) −m;

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

Positive homogeneity: if λ > 0, then ρ(λX) = λρ(X);

Such risk measures have a dual representation of the form

ρ(X) = sup
Q∈Q

(EQ(−X)) , (1.1)

where Q is some set of probability measures.
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Föllmer and Schied (2002a) and Frittelli and Gianin (2002) challenge the axiom
of positive homogeneity and consider the weaker concept of ρ being a convex risk
measure. They replace the axioms of subadditivity and positive homogeneity by
the axiom of

Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for all λ ∈ [0, 1].

As subadditivity and positive homogeneity together imply convexity, any coherent
risk measure is also a convex risk measure.

Föllmer and Schied (2002a) show that any convex risk measure has a dual
representation of the form

ρ(X) = sup
Q∈Q

(EQ(−X) − α(Q)) , (1.2)

where Q is some set of probability measures, and α is a penalty function, which
can be chosen to be convex and lower semi-continuous with α(Q) ≥ −ρ(0).

A typical example of a convex risk measure, which is not coherent is the so
called entropic risk measure eβ(X), where one chooses in (1.2)

α(Q) =
1

β
H(Q|PX),

with β > 0 and H(Q|PX) the relative entropy of Q with respect to PX . This
can be stated in equivalent terms as a certainty equivalent of an exponential
utility function. Indeed, an expected utility maximizer with the utility function
u(x) = 1 − e−βx is indifferent between the risk X and the sure position −eβ(X),
i.e.

u(−eβ(X)) = Eu(X),

or in other terms, ρ(X) = eβ(X) fulfills

ρ(X) = −u−1(Eu(X)), (1.3)

For a proof of this result, see e.g. Föllmer and Schied (2002b). This fact is quite
often used in the context of so called utility indifference pricing, see e.g. Frittelli
(2000), Becherer (2003) or Mania and Schweizer (2005).

It is natural to ask the question, whether one also obtains convex or even
coherent risk measures, if one chooses other utility functions. One popular utility
function is the power utility function u(x) = xp, x ≥ 0 with p ≤ 1. In this
case the risk measure derived from the certainty equivalent as in (1.3) simply
amounts to ρ(X) = −‖X‖p. Notice that for p < 1 this is not really a norm, since
in this case in fact ‖X + Y ‖p ≥ ‖X‖p + ‖Y ‖p, see e.g. Hewitt and Stromberg
(1965). Therefore the risk measure obtained this way is subadditive, and it is easy
to see that it is positively homogeneous, however, it is not translation invariant,
and therefore it is not coherent and not a convex risk measure in the sense of
Föllmer and Schied (2002a) (though it of course fulfills the axiom of convexity as
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a consequence of subadditivity and homogeneity). Thus we see that increasing
concave utility functions do not necessarily lead to convex risk measures in the
sense of Föllmer and Schied (2002a).

It is the aim of this paper to consider an arbitrary increasing and concave utility
function u and the corresponding risk measure derived from a utility indifference
pricing principle via

ρu(X) = −u−1(Eu(X)), (1.4)

and to characterize the axioms for risk measures mentioned above in terms of
properties of the utility function. The quantity u−1(Eu(X)) is a well known
object in the theory of individual decision making under risk, as it is the certainty
equivalent of an expected utility maximizer with utility function u. This is also
known under the name of a quasi-linear mean, and has a long history. Indeed, this
topic has been treated already by famous people like Bonferroni, Kolmogorov and
de Finetti, when they founded modern probability theory, see e.g. Muliere and
Parmigiani (1993) for a review of the early history of such certainty equivalents.

There is also a rich literature in actuarial science on premium calculation
principles, where similar axioms are discussed as in the theory of risk measures.
In that literature certainty equivalents as discussed here can sometimes be found
under the name mean value principle, which is a little misleading. This should not
be confused with the well known zero utility principle, where for a utility function
u one defines the premium π(X) implicitly as the solution of the equation

u(0) = Eu(X − π(X)).

This zero utility principle has properties quite different from the ones of certainty
equivalents. In fact, the risk measure ρ(X) = π(−X) derived from a zero utility
principle is always a convex risk measure in the sense defined by Föllmer and
Schied (2002a), whereas the certainty equivalent typically is not, as we will see in
this paper. Only in the case of a linear or an exponential utility function, these
two concepts coincide. In fact, Bühlmann et al. (1988) generalized the concepts
of certainty equivalents and zero utility principle to the so called Swiss premium
principle πz(X) with a parameter z ∈ [0, 1] which is implicitly defined by the
equation

u((1 − z)πz(X)) = Eu(X − zπz(X)),

where the extreme cases are given by the certainty equivalent (z = 0) and by
the zero utility principle (z = 1). Goovaerts and Vylder (1980) give conditions
on the function u to yield some properties of the Swiss premium principle,
which can be considered as weakened versions of the axioms considered here.
In particular, Goovaerts and Vylder (1980) consider the properties of positive
subtranslativity and of subadditivity for independent random variables, which are
weakened versions of translation invariance and subadditivity, respectively.
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2 Main results

Let (Ω,F , P ) be a general probability space, and let I = (a, b), −∞ ≤ a < b ≤ ∞,
be an arbitrary interval. We denote by L∞(I) the set of all bounded random
variables with values in I. We follow the usual convention in mathematical finance
that a risk is described by a random variable X , where positive values of X
correspond to rewards and negative values of X to losses. So, if we assume that
X has only values in I = R+ = [0,∞), this means that we only consider risks with
non-negative rewards. If we want to consider only potential losses (as is usually
done in actuarial sciences, for instance) then we will choose I = R− = (−∞, 0],
and if we want to allow rewards as well as losses, then we will consider I = R.
Throughout the paper we will assume that one of these three cases occurs, that
is we assume I ∈ {R,R+,R−}.

We denote by I ′ = (−b,−a) the set of possible values of −X , if X ∈ L∞(I).
For any strictly increasing and convex loss function ℓ : I ′ → R we define
ρℓ : L∞(I) → I ′ by

ρℓ(X) = ℓ−1(Eℓ(−X)). (2.1)

To any such loss function ℓ there corresponds an increasing concave utility function
uℓ : I → R, defined by uℓ(x) = −ℓ(−x). In terms of the utility function the risk
measure can alternatively be defined as

ρℓ(X) = −u−1
ℓ (Euℓ(X)). (2.2)

Throughout the paper we will assume for simplicity that all loss functions and
utility functions are twice differentiable. Notice that ρℓ is well defined and finite,
since m ≤ X ≤ M implies −m ≥ ρℓ(X) ≥ −M . The functional −ρℓ is a
generalized mean as considered in Chapter 4 of Pecarić et al. (1992), or quasi-
linear mean, see Muliere and Parmigiani (1993). If Ω is finite, then −ρℓ is a
quasi-arithmetic mean, see e.g. Bullen et al. (1977). We will use results from
these references later in this section.

Any risk measure ρℓ as defined in (2.1) is obviously law invariant, i.e. if X and
Y have the same distribution, then ρℓ(X) = ρℓ(Y ). Therefore we will also write
ρℓ(F ) := ρℓ(X), if F is the cumulative distribution function of X .

Moreover, any risk measure ρℓ is monotone, and has the following constancy
property:

Constancy: ρℓ(m) = −m for all deterministic m ∈ I,

This axiom has been introduced in Frittelli and Gianin (2002). Of course this
property holds for any translation invariant risk measure fulfilling ρ(0) = 0.

Finally, for any ℓ the functional ρℓ has the following property, which is called
associativity or quasi-linearity:

Quasi-linearity: for any cumulative distribution functions F,G and H it holds:
ρℓ(F ) = ρℓ(G) implies ρℓ(αF + (1 − α)H) = ρℓ(αG + (1 − α)H) for all
0 < α < 1.
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The following well known theorem axiomatically characterizes certainty
equivalents. It is known as Nagumo-Kolmogorov-de Finetti theorem. A proof
is given e.g. in Hardy et al. (1934), a more general result can be found in Chew
(1983).

Theorem 2.1. A functional ρ : L∞(I) → R can be written in the form
ρ(X) = ℓ−1(Eℓ(−X)) if and only if it has the following properties:

1. monotonicity;

2. law invariance;

3. constancy;

4. quasi-linearity.

However, such a functional does not always have all the properties of a coherent
or convex risk measure as defined above, even if ℓ is increasing and convex. For
general ℓ the risk measure ρℓ is not translation invariant. This only holds for
exponential loss functions, as is well known in the literature. As an early reference,
see Bemporad (1928). For completeness we give here a simple sketch of a proof.

Theorem 2.2. ρℓ is translation invariant, if and only if ℓ is either exponential
or linear.

Proof. If ρℓ is translation invariant, then

∂

∂t
ρℓ(X + t) = −1

for all X and all t. This obviously holds for ℓ linear, i.e. for ρℓ(X) = EX .
Therefore assume that ℓ is non-linear with ℓ′ > 0 on some interval (a, b). For
bounded X such that X + t has values in (a, b) we can interchange differentiation
and expectation and get

∂

∂t
ρℓ(X + t) =

∂

∂t
ℓ−1(Eℓ(−X − t))

= − Eℓ′(−X − t)

ℓ′(ℓ−1(Eℓ(−X − t)))
.

The last expression equals −1 for all bounded X and all t if and only if

g−1(Eg(Y )) = ℓ−1(Eℓ(Y )) (2.3)

for all bounded Y , where we have now written g := ℓ′. According to Bullen et al.
(1988), Theorem 5, p. 221, equation (2.3) holds if and only if g = αℓ+β for some
β ∈ R and α 6= 0. Thus ℓ must satisfy a linear differential equation and therefore
must be exponential. Moreover, it is clear that the maximal interval (a, b) with
ℓ′ > 0 then must be (a, b) = R, and the loss function must be an exponential
function on the whole real line.
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Theorem 2.3. The risk measure ρℓ : L∞(R−) → R+ is positively homogeneous,
if and only if uℓ is either a power function or uℓ(x) = log x.

Proof. This is an immediate consequence of Theorem 2.2 noticing that ρℓ(X+t) =
ρℓ(X) − t for all t ∈ R and all X is equivalent to ρg(sY ) = sρg(Y ) for all s ≥ 0
and all Y ≥ 0, if we define g(x) := ℓ(log x), s := e−t and Y := −e−X .

Notice that we assume throughout that ℓ is increasing and convex. Therefore
the result of Theorem 2.3 is more restrictive than it may look at first sight. It says
that for I = R the only positive homogeneous risk measure ρℓ is ρℓ(X) = −EX ,
as linear functions are the only increasing convex power functions ℓ : R → R.
On I = R+, however, there are more positive homogeneous risk measures derived
from utility function. There, the risk measure derived from logarithmic utility
has this property, too, and any power function uℓ(x) = xα with α ≤ 1 yields
a positively homogeneous risk measure ρℓ. The same holds for the power loss
function ℓ(x) = xα with α ≥ 1 in case I = R−.

As a corollary of Theorem 2.2 and 2.3 we get the following result about
coherence of ρℓ.

Corollary 2.1. The risk measure ρℓ is coherent if and only if ρℓ(X) = −EX.

Next we want to consider convexity and subadditivity of the risk measures ρℓ.
To the best of our knowledge this question has not been considered before in the
literature on risk measures. We need the following preliminary result.

Theorem 2.4. Let f : I ′×I ′ → I ′ be an arbitrary function and define f̃ : I×I → I
by

f̃(x, y) := −f(−x,−y).
Then

ρℓ(f̃(X,Y )) ≤ f(ρℓ(X), ρℓ(Y )) (2.4)

holds for all X,Y ∈ L∞(I) if and only if the function H : ℓ(I ′)×ℓ(I ′) → R defined
by

H(x, y) := ℓ(f(ℓ−1(x), ℓ−1(y))) (2.5)

is concave.

Proof. This is a special case of Theorem 4.31 in Pecarić et al. (1992). Choose
there for A the expectation operator, n = 2, g1 = −X , g2 = −Y , and
χ = ψ1 = ψ2 = ℓ. For the case of a finite Ω see also Bullen et al. (1988),
Theorem 3 on page 249.

Of special interest are the cases f(x, y) = x+ y and f(x, y) = (x + y)/2. For
these two cases we will characterize concavity of H in the next two lemmas.

We use the following notation as an abbreviation:

ℓ∗(x) =
ℓ′(x)

ℓ′′(x)
, x ∈ I ′.
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Lemma 2.1. For f(x, y) = f̃(x, y) = x + y the function H defined in (2.5) is
concave if and only if ℓ∗ fulfills the following two conditions:

(i) ℓ∗(a+ b) ≥ ℓ∗(a) for all a, b ∈ I ′;

(ii) ℓ∗(a+ b) ≥ ℓ∗(a) + ℓ∗(b) for all a, b ∈ I ′.

Proof. We prove the result only in the case thatH is twice differentiable. Without
differentiability the idea of proof is the same, but one has to replace the derivatives
by differences and this becomes quite tedious. Recall that a differentiable H is
concave if and only if its second derivatives satisfy

Hxx ≤ 0 and HxxHyy −H2
xy ≥ 0.

Here H(x, y) = ℓ(ℓ−1(x) + ℓ−1(y)). Thus

Hx(x, y) =
ℓ′(ℓ−1(x) + ℓ−1(y))

ℓ′(ℓ−1(x))

and

Hxx(x, y) =
ℓ′′(ℓ−1(x) + ℓ−1(y)) − ℓ′(ℓ−1(x) + ℓ−1(y))ℓ′′(ℓ−1(x))/ℓ′(ℓ−1(x))

ℓ′((ℓ−1(x))2
.

Writing a = ℓ−1(x) and b = ℓ−1(y) we see that Hxx ≤ 0 if and only if

ℓ′′(a+ b)

ℓ′(a+ b)
≤ ℓ′′(a)

ℓ′(a)

i.e., if and only if ℓ∗(a) ≤ ℓ∗(a+ b). For the mixed derivative we get

Hxy(x, y) =
ℓ′′(a+ b)

ℓ′(a)ℓ′(b)

and thus

Hxx(x, y)Hyy(x, y) −Hxy(x, y)
2

=
(ℓ′′(a+ b) − ℓ′(a+ b)ℓ′′(a)/ℓ′(a)) (ℓ′′(a+ b) − ℓ′(a+ b)ℓ′′(b)/ℓ′(b)) − ℓ′′(a+ b)2

ℓ′(a)2ℓ′(b)2

≥ 0

if and only if
(

1 − ℓ∗(a+ b)

ℓ∗(a)

)

·
(

1 − ℓ∗(a+ b)

ℓ∗(b)

)

≥ 1

⇔ ℓ∗(a+ b)

ℓ∗(a)
+
ℓ∗(a+ b)

ℓ∗(b)
≤ ℓ∗(a+ b)2

ℓ∗(a)ℓ∗(b)

⇔ ℓ∗(a) + ℓ∗(b) ≤ ℓ∗(a+ b).
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Replacing x+y by (x+y)/2 we get the following Lemma. As the proof is very
similar, we omit it.

Lemma 2.2. For f(x, y) = f̃(x, y) = (x + y)/2 the function H defined in (2.5)
is concave if and only if ℓ∗ fulfills the following two conditions:

(i) ℓ∗((a+ b)/2) ≥ ℓ∗(a)/2 for all a, b ∈ I ′;

(ii) ℓ∗((a+ b)/2) ≥ (ℓ∗(a) + ℓ∗(b))/2 for all a, b ∈ I ′.

These lemmas can be used to characterize convexity and subadditivity for the
risk measures ρℓ.

Theorem 2.5. (a) For I = R the risk measure ρℓ is convex, if and only if ℓ is
either linear or exponential.

(b) For I = R+ the risk measure ρℓ is convex, if and only if ℓ∗ : R− → R+ is
decreasing and concave.

(c) For I = R− the risk measure ρℓ is convex, if and only if ℓ∗ : R+ → R+ is
increasing and concave.

Proof. The function α 7→ ρℓ(αX + (1 − α)Y ) is measurable, and therefore ρℓ is
convex if and only if it is mid-convex, i.e. if and only if

ρℓ

(X + Y

2

)

≤ 1

2
(ρℓ(X) + ρℓ(Y )),

see e.g. Rockafellar (1970). Thus we can apply Theorem 2.4 with

f(x, y) = f̃(x, y) =
x+ y

2
.

Lemma 2.2 therefore implies that ρℓ is convex, if and only if the function
ℓ∗ : I ′ → R+ is concave and satisfies

ℓ∗
(a+ b

2

)

≥ ℓ∗(a)

2
for all a, b ∈ I ′. (2.6)

For I = R this can only hold if ℓ∗ is constant, due to the non-negativity of ℓ∗.
This proves (a). If I = R+, then I ′ = R− and ℓ∗ : R− → R+ can only be concave
if it is decreasing. But then (2.6) also holds. This shows part (b), and the proof
of part (c) is similar.

Remark 2.1. A related result has been proved in Ben-Tal and Teboulle (1986)
in the context of nonlinear stochastic programming.

Example 2.1. An example, where the condition of Theorem 2.5 (b) is fulfilled,
is given by the utility function

u(x) = 1 − e−
√

x(1 +
√
x), x ≥ 0.
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A simple calculation shows that in this case the function ℓ∗ is given by

ℓ∗(x) = 2
√
−x, x ≤ 0,

which is clearly concave and decreasing. Another even simpler example is given
by u(x) = xα, x ≥ 0, 0 < α < 1, which leads to ℓ∗(x) = (−x)/(1−α), x ≤ 0. An
example, where the condition of Theorem 2.5 (c) is fulfilled, is discussed in detail
in Example 2.2 below.

Using Lemma 2.1 we can also characterize subadditivity. We omit the proof,
as it is very similar to the one of Theorem 2.5 (b).

Theorem 2.6. (a) For I = R the risk measure ρℓ is subadditive, if and only if
ℓ is either linear or exponential.

(b) For I = R+ the risk measure ρℓ is subadditive, if and only if ℓ∗ : R− → R+

is decreasing and subadditive.

(c) For I = R− the risk measure ρℓ is subadditive, if and only if ℓ∗ : R+ → R+

is increasing and subadditive.

Remark 2.2. It follows from Goovaerts and Vylder (1980), Corollary 6.4, that
for ρℓ to be subadditive for non-positive independent random variables X and Y ,
it is sufficient that ℓ∗ is increasing. Thus compared to our Theorem 2.6 (c) they
need a weaker assumption to prove a weaker result.

Subadditivity and Convexity are properties of a risk measure, which reflect the
fact that diversification pays. This should be related to well known concepts of
risk aversion like stochastic dominance. In fact, several authors have studies the
question, whether convex or coherent risk measures are consistent with stochastic
dominance, see e.g. Dana (2005), Leitner (2005) or Bäuerle and Müller (2006).

Recall that two random variables are said to be ordered with respect to convex
order (written as X ≤cx Y ), if Ef(X) ≤ Ef(Y ) for all convex functions f (see
Müller and Stoyan (2002) for a detailed account to this and related stochastic
orders). In Bäuerle and Müller (2006) the following result is proved.

Theorem 2.7. Assume that (Ω,A, P ) is either finite with P the uniform
distribution or non-atomic. Then a convex risk measure is consistent with convex
stochastic order in the following sense:

X ≤cx Y implies ρ(X) ≤ ρ(Y ). (2.7)

Dana (2005) denotes a risk measure with property (2.7) as being Schur-convex.
Thus Theorem 2.7 says that any convex risk measure is Schur-convex. It is a
natural question to ask, whether there are interesting risk measures which are
Schur-convex, but not convex. As ρℓ is only convex, if ℓ is exponential or linear,
the following result shows that certainty equivalents form a nice class of risk
measures, which are always Schur-convex, but not necessarily convex. The proof
of the following theorem is obvious.
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Theorem 2.8. X ≤cx Y implies ρℓ(X) ≤ ρℓ(Y ) for any increasing and convex
function ℓ.

Remark 2.3. The risk measure ρℓ is not only Schur-convex, it is also quasi-
convex. Recall that a function ρ on a linear space is called quasi-convex, if the
sublevel sets Aρ(t) := {X : ρ(X) ≤ t} are convex for all t ∈ R. It is easy to see that
any monotone transform of a convex function is quasi-convex. As the functional
X → Eℓ(X) is convex for an increasing convex function ℓ, this obviously implies
that ρℓ is quasi-convex for ℓ convex. The topic of quasi-convex risk measures will
be considered in more detail in a forthcoming paper.

Example 2.2. Assume that risks describe potential losses (as in a typical
insurance context), i.e. I = R− and therefore I ′ = R+. Consider as loss function
ℓ : I ′ → R a power function ℓ(x) = xp, x ≥ 0 with p > 1. This yields the risk
measure

ρℓ(X) = ‖ −X‖p

and a well known representation theorem for the norm ‖ · ‖p (see e.g. Hewitt and
Stromberg (1965)) yields

ρℓ(X) = sup{E(−XY ) : ‖Y ‖q ≤ 1, Y ≥ 0}

= sup{−
∫

XdQ : ‖dQ/dP‖q ≤ 1},

where 1/p+ 1/q = 1.

Thus we have a representation similar to the representation of a coherent risk
measure as worst case expectation described in (1.1). However, here we have a
set of measures, which are in general not probability measures, as ‖dQ/dP‖q ≤ 1
does not imply Q(Ω) = 1. This reflects the fact that ρℓ is not coherent and not
a convex risk measure in the sense of Föllmer and Schied, as it is not translation
invariant. However, it has all other properties of interest: law invariance,
monotonicity, subadditivity, positive homogeneity, convexity, constancy, quasi-
linearity and monotonicity with respect to convex ordering. This is a consequence
of the results of this section, taking into account that here ℓ∗(x) = x/(p − 1) is
increasing, concave and subadditive.

(Received January, 2006. Accepted April, 2006.)
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Hardy, G. H., Littlewood, J.E. and Pólya, G. (1934). Inequalities. Cambridge:
Cambridge University Press.

Hewitt. E. and Stromberg, K. (1965). Real and abstract analysis. New York:
Springer-Verlag.



12 Alfred Müller

Leitner, J. (2005). A short note on second-order stochastic: dominance
preserving coherent risk measures. Math. Finance, 15, 649-651.

Mania, M. and Schweizer, M. (2005). Dynamic exponencial utility indifference
valuation. Ann. Appl. Probab., 15, 2113-2143.

Muliere, P. and Parmigiani, G. (1993). Utility and means in the 1930s. Statist.
Sci., 8, 421-432.

Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models
and Risks. Chichester: Wiley Series in Probability and Statistics, John
Wiley and Sons Ltd.
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