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Abstract: In this paper, we derive an explicit expression for the n-th

moment of the discounted dividend payments prior to ruin, generalizing the

results on the first moment in Badescu et al. (2007). Based on the connection

between an insurer’s surplus process and its corresponding fluid flow process,

we propose a recursive algorithm to compute the higher moments of the dis-

counted dividend payments in a fairly general class of risk processes governed

by Markovian claim arrivals. Finally, numerical examples are considered to

illustrate our main results.
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1 Introduction

In this paper, we consider an insurer’s surplus process with surplus-dependent
premium rates of a threshold type. Namely, we consider a structure with a unique
threshold at level b (b > 0), the so-called threshold level. We assume that a net
positive premium of c (c′) is received by the insurer whenever the surplus level at
a given time is below (above) the threshold level b. For insurance applications,
we generally choose c to be greater than c′ due to a possible dividend rate paid to
the shareholders whenever the insurer’s surplus is at a relatively high level (here
when the surplus is greater than b), lowering the net premium received by the
insurer above level b.

We define the surplus process of interest in this paper, namely
{
Rb (t) , t ≥ 0

}
,

as

dRb(t) =






cdt − d

(
N(t)∑
n=1

Un

)
, Rb(t) < b,

c′dt − d

(
N(t)∑
n=1

Un

)
, Rb(t) ≥ b,

(1.1)

with Rb (0) = u being the initial surplus level. Note that, in the risk model (1.1),
{N (t) , t ≥ 0} is the claim counting process where N (t) represents the total num-
ber of claims by time t. In this paper, we assume that the claim number process
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follows a Markovian arrival process (MAP) which includes both the classical com-
pound Poisson risk model and the renewal risk model with phase-type interclaim
times. Also, the claim size r.v.’s {Un}

∞
n=1 in (1.1) are assumed to form a sequence

of identically distributed r.v.’s having a phase-type representation. We recall that
risk processes with interarrival times correlated to claim sizes can also be modelled
under the MAP framework (see Ahn and Badescu (2007) and references therein).

A MAP with representation MAP (α,D0,D1) of order m is a two-dimensional
Markov process on the state space N0 × {1, . . . ,m}. For this process, an under-
lying continuous-time Markov chain (CTMC) on the state space E = {1, . . . ,m}
(referred to as the environmental states) evolves such that the instantaneous rate
of transition from state i to state j 6= i in E without an accompanying claim is
given by the (i, j)-th element of D0, namely D0(i, j) ≥ 0. Similarly, the instan-
taneous rate of transition from state i to state j (possibly j = i) in E with an
accompanying claim is given by the quantity D1(i, j) ≥ 0. The diagonal elements
of D0 are assumed to be negative and such that the sum of the elements on each
row of the matrix D0 + D1 are all zero. We denote by α the initial probability
vector of the underlying CTMC. For a detailed treatment of MAPs, we refer the
reader to Latouche and Ramaswami (1993) and Neuts (1981).

Pertaining to the surplus process (1.1) is the event of ruin where ruin is defined
to occur if and when the insurer has a negative surplus. Let us define the time
to ruin τ b (u) as τ b (u) = inf

{
t : Rb (t) < 0

}
with τ b (u) = ∞ if Rb (t) ≥ 0, ∀t ≥ 0

(ruin does not occur). Note that the time to ruin is a random variable of a crucial
importance in ruin theory in the analysis of surplus processes. In Badescu et
al. (2007), an analysis of various ruin related quantities, including the Laplace
transform of the time to ruin τ b (u), as well as the triple Laplace transform of

the time to ruin τ b (u), the surplus immediately prior to ruin U(τ b (u)
−

) and the
deficit at ruin

∣∣U
(
τ b (u)

)∣∣, has been performed for the surplus process (1.1).

In this paper, we shift our attention to the discounted sum of dividend pay-
ments before ruin. We assume that c′ < c and let their difference d = c − c′ be
the dividend rate received by the shareholders whenever the insurer’s surplus is
above the threshold level b. Note that no dividend is paid when the surplus level
is below the barrier level b. The main focus of the paper is the calculation of the
moments of the discounted dividends prior to ruin. In the actuarial literature, the
expected discounted dividend payments have been analyzed by several authors in
various risk models (see Badescu et al. (2007) and references therein). Recently,
Albrecher et al. (2005a, 2005b) considered the calculation of higher order mo-
ments in the classical compound Poisson risk model and in the Sparre Andersen
risk model with generalized Erlang-n interclaim times. The present work gen-
eralizes the semi-Markovian structure proposed by Albrecher et al. (2005a) by
considering a MAP process for the claim arrivals, at the expense of phase-type
distributed claim assumptions. Using first passage times analysis, our approach
differs from the one of Albrecher et al. (2005c) by exploiting the existing connec-
tion between risk and fluid processes (see Ahn et al. (2007) and Asmussen (2000)
for a detailed description). The mathematical tools employed under our approach
are more probabilistic in nature and heavily depend on the matrix-representation
of the claim size distribution.
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The paper is structured as follows. Section 2 consists in a short review of
the fluid flow quantities used in the subsequent analysis. In Section 3, the main
results pertaining to the higher order moments of the discounted dividends are
presented. Finally, numerical examples are considered in Section 4 to illustrate
some applications of the main results derived in this paper.

2 Mathematical background

Underlying the fluid flow processes and risk models in this paper is an irreducible
CTMC J = {J(t), t ≥ 0} defining an environmental process which governs the
interclaim intervals and the claim sizes. The states of this process are referred to
as “phases”. We assume that the CTMC J has state space S = S1∪S2 where the
set S1 contains the phases when the fluid flow increases (the interclaim intervals
in the associated risk model) and the set S2 contains the phases when the fluid
flow decreases (the claim sizes in the associated risk model). The infinitesimal
generator associated with J is partitioned as

T =

(
T11 T12

T21 T22

)
. (2.1)

Several risk processes, including the classical compound Poisson risk model and
most Sparre Andersen risk models, can be recovered by a proper selection of the
infinitesimal generator T (see Remark 2.1 (a) and (b) in Ahn and Badescu (2007)).
The paths of the risk process before ruin can be obtained from segments of the fluid
process before the fluid process becomes empty and this is achieved by replacing
downward linear paths in the fluid model by downward jumps of appropriate sizes.
This artifice requires a change in clock time to properly embed the fluid model
into the risk model (see Remark 2.1 (c) in Ahn and Badescu (2007)). Leading to
the analysis of the surplus process (1.1) is the corresponding fluid flow process

(Fb,J ) = {(F b(t), J(t)), t ≥ 0}, (2.2)

which is defined such that the rate of increase/decrease is c (c′) whenever the fluid
level is below (above) the threshold level b, i.e.

dF b(t) =






c, 0 < F b(t) < b, J (t) ∈ S1

−c, 0 < F b(t) < b, J (t) ∈ S2

c′, F b(t) ≥ b, J (t) ∈ S1

−c′, F b(t) ≥ b, J (t) ∈ S2

(2.3)

From (2.3), one observes that the rates of increase/decrease of the fluid flow pro-
cess Fb are independent of the state of the Markovian environment. To analyze
(2.2), we consider the infinite buffer (barrier-free) fluid model

(Fc,J ) = {(Fc(t), J(t)), t ≥ 0}, (2.4)
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defined as

dFc(t) =

{
c, Fc(t) > 0, J (t) ∈ S1

−c, Fc(t) > 0, J (t) ∈ S2

and its reflected version

(Fr
c ,J ) = {(F r

c (t), J(t)), t ≥ 0}, (2.5)

with

dF r
c (t) =

{
−c, F r

c (t) > 0, J (t) ∈ S1

c, F r
c (t) > 0, J (t) ∈ S2

(see Ramaswami (2006) for further details). Note that the subscript c (c > 0)
stands for the rate of increase/decrease of the fluid flow processes Fc and Fr

c (in-
dependent of the fluid level). We recall that, in the reflected fluid model, the roles
of the up and down phases are simply reversed. The crucial mathematical tools
of our analysis are the Laplace transforms (LTs) of the busy periods associated to
the fluid processes defined by (2.4) and (2.5) respectively. These quantities, de-
noted by Ψc (δ) and Ψr

c (δ), were first introduced by Ahn and Ramaswami (2004)
and their evaluation can be performed via the algorithm developed by Ahn and
Ramaswami (2005). Similarly, we define bΨc (δ) (bΨr

c (δ)) as the LT of a busy
period in the (reflected) finite buffer fluid model without visiting level b en route
(see Ahn et al. (2007) for a more formal definition as well as their calculation).

3 Main results

In this section, we propose a two-step procedure to compute the moments of
the discounted dividend payments before ruin in the surplus process (1.1). As a
first step, we derive a general expression for the n-th moment of the discounted
dividends in the barrier-free risk model

Rc′ (t) = u + c′t −

N(t)∑

n=1

Un, (3.1)

assuming that a dividend rate d is paid continuously from time 0 to the time of
ruin τc′ (u) = inf {t : Rc′ (t) < 0} (with τc′ (u) = ∞ if ruin does not occur). Note
that the ruin process (3.1) can be linked to the ”original” surplus process (1.1) by
assuming that level b in the latter corresponds to the new origin (level 0) in the
former (i.e. considering only the top surplus-layer of the surplus process (1.1)).
Using results pertaining to the barrier-free surplus process (3.1), we then pro-
pose a recursive scheme to compute the n-th moment of the discounted dividend
payments in the surplus process of interest in this paper.

To do so, let Dc′ (u, δ) be the present value (at a force of interest δ) of the
dividend payments prior to ruin in the barrier-free risk model (3.1). Also, let
−→
V n,c′ (u, δ) be a column vector whose i-th element

[−→
V n,c′ (u, δ)

]

i
represents the

n-th moment of the r.v. Dc′ (u, δ) given that J (0) = i (i ∈ S1), i.e.
[−→
V n,c′ (u, δ)

]

i
= Ei [(Dc′ (u, δ))

n
] , (3.2)
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where Ei [·] stands for the conditional expectation of · given that the initial state

of the CTMC J is i. In order to state the following result, we define
−→
1 |Sj | as a

column vector of 1 of size |Sj | for j = 1, 2 and I|Sj | as the identity matrix of the
same dimension.

Proposition 3.1. For the barrier-free surplus process (3.1), the n-th conditional
moments of the discounted dividend payments prior to ruin (n = 1, 2, ...) are given
by

−→
V n,c′ (u, δ) =

(
d

δ

)n



−→
1 |S1| +

n∑

j=1

(
n

j

)
(−1)

j −→ρ jδ,c′ (u)



 , (3.3)

where

−→ρ δ,c′ (u) = e
uδ
2c′ Ψc′

(
δ

2

)
eHc′( δ

2 )u−→1 |S2|, (3.4)

and

Hc′ (δ) =
(
T22 − δI|S2|

)
+ T21Ψc′ (δ) .

Proof. The proof of this proposition uses a similar line of logic as the one used in
Dickson and Waters (2004) for the classical compound Poisson risk model. From
(3.2), we know

[−→
V n,c′ (u, δ)

]

i
= Ei

[(
da

τc′ (u)|

)n]
=

(
d

δ

)n

Ei

[(
1 − e−δτc′ (u)

)n]
, (3.5)

where a
t|

stands for the present value of a continuous annuity that pays at a rate

of 1 over the next t periods. From (3.5), a binomial expansion of
(
1 − e−δτc′ (u)

)n

directly leads to (3.3) where −→ρ δ,c′ (u) is a column vector (of size |S1|) of the
conditional Laplace transform of the time to ruin τc′ (u) starting with an initial
capital of u, i.e.

[−→ρ δ,c′ (u)]
i
= Ei

[
e−δτc′ (u)

]
.

The reader is referred to Badescu et al. (2005) for a proof of the representation
(3.4) for the Laplace transform −→ρ δ,c′ (u). ¤

The unconditional moments of Dc′ (u, δ) can be obtained by pre-multiplying
−→
V n,c′ (u, δ) by the initial probability vector α.

Using Proposition 3.1, we now consider the calculation of the moments of the
discounted dividend payments in the surplus process (1.1). This class of risk
models was considered previously by Badescu et al. (2007) where an expression
for the expected discounted dividend payments was derived. We let Db (u, δ) be
the discounted dividends associated to the surplus process (1.1) and denote by
−→
V b

n (u, δ) the column vector of its n-th conditional moment (n = 1, 2, ...). To find

a general expression for
−→
V b

n (u, δ), we first derive an expression for
−→
V b

n (b, δ), i.e.
the n-th moment of the discounted dividends with an initial surplus u = b.



18 Andrei Badescu and David Landriault

Proposition 3.2. For the surplus process (1.1) with an initial surplus u = b,
the n-th conditional moment of the discounted dividend payments prior to ruin
(n = 1, 2, ...) is given by

−→
V b

n (b, δ) =

(
I|S1| − Ψc′

(
nδ

2

)
bΨr

c

(
nδ

2

))−1

·
−→
V n,c′ (0, δ)

+

(
I|S1| − Ψc′

(
nδ

2

)
bΨr

c

(
nδ

2

))−1

·

n−1∑

j=1

(
n

j

)(
d

δ

)j

j∑

k=0

(
j

k

)
(−1)

k
Ψc′

(
(n + k − j) δ

2

)
bΨr

c

(
(n − j) δ

2

)
−→
V b

n−j (b, δ) , (3.6)

where the starting point of this recursive scheme is given by

−→
V b

1 (b, δ) =

(
I|S1| − Ψc′

(
δ

2

)
bΨr

c

(
δ

2

))−1
−→
V 1,c′ (0, δ) . (3.7)

Proof. To obtain the explicit expression (3.6) for the n-th moment of Db (b, δ),
we first group the dividend payments prior to ruin with respect to their timing :

(a) dividends from time 0 to the first return of the surplus process
{
Rb (t) , t ≥ 0

}

to the threshold level b in S2 (namely τc′ (0));

(b) dividends paid after the first return of the surplus process
{
Rb (t) , t ≥ 0

}

to the threshold level b in S1 (namely τc′ (0) + bτ r
c (0) , where bτ r

c (0) corre-
sponds to the busy period of a reflected finite buffer (of level b) risk process
operating at premium rate c, without visiting level b en route)

Using the proposed decomposition of Db (b, δ), it follows that

Db (b, δ) = da
τc′ (0)|

+ e−δ(τc′ (0)+
bτr

c (0))Db
∗ (b, δ) , (3.8)

where Db
∗ (b, δ) corresponds to the present value (at time τc′ (0) + bτ r

c (0)) of the
future dividend payments. From (3.8), one finds

[−→
V b

n (b, δ)
]

i
= Ei

[(
da

τc′ (0)|
+ e−δ(τc′ (0)+

bτr
c (0))Db

∗ (b, δ)
)n]

. (3.9)
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Using a binomial expansion, (3.9) becomes

[−→
V b

n (b, δ)
]

i
= Ei

[(
da

τc′ (0)|

)n]

+

n−1∑

j=1

(
n

j

)
Ei

[(
da

τc′ (0)|

)j

e−(n−j)δ(τc′ (0)+
bτr

c (0)) (
Db

∗ (b, δ)
)n−j

]

+ Ei

[
e−nδ(τc′ (0)+

bτr
c (0)) (

Db
∗ (b, δ)

)n
]

= ei

−→
V n,c′ (0, δ)

+

n−1∑

j=1

(
n

j

)
Ei

[(
da

τc′ (0)|

)j

e−(n−j)δτc′ (0)e−(n−j)δ bτr
c (0)

(
Db

∗ (b, δ)
)n−j

]

+ Ei

[
e−nδ(τc′ (0)+

bτr
c (0)) (

Db
∗ (b, δ)

)n
]
. (3.10)

where ei is a row vector (of size |S1|) with a ”1” at the i-th position and 0 elsewhere.
Note that, for n > 0, the conditional distribution of Db

∗ (b, δ) given that τc′(0)+
bτ r

c (0) < ∞ (i.e. that there is at least one return to level b in an increasing phase
without ruin en route) is equal to the distribution of Db (b, δ). Using this fact and
a binomial expansion of the term (a

τc′ (0)|
)j , (3.10) becomes

[−→
V b

n (b, δ)
]

i
= ei

−→
V n,c′ (0, δ) +

n−1∑

j=1

(
n

j

)(
d

δ

)j

j∑

k=0

(
j

k

)
(−1)

k
Ei

[
e−(n+k−j)δτc′ (0)e−(n−j)δ bτr

c (0)
(
Db

∗ (b, δ)
)n−j

]

+ eiΨc′

(
nδ

2

)
bΨr

c

(
nδ

2

)
−→
V b

n (b, δ)

= ei

−→
V n,c′ (0, δ) +

n−1∑

j=1

(
n

j

)(
d

δ

)j

j∑

k=0

(
j

k

)
(−1)

k
ei Ψc′

(
(n + k − j) δ

2

)
bΨr

c

(
(n − j) δ

2

)
−→
V b

n−j (b, δ)

+ eiΨc′

(
nδ

2

)
bΨr

c

(
nδ

2

)
−→
V b

n (b, δ) ,

from which one deduces
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−→
V b

n (b, δ) =

(
I1 − Ψc′

(
nδ

2

)
bΨr

c

(
nδ

2

))−1

·
−→
V n,c′ (0, δ)

+

(
I1 − Ψc′

(
nδ

2

)
bΨr

c

(
nδ

2

))−1

·
n−1∑

j=1

(
n

j

) (
d

δ

)j

j∑

k=0

(
j

k

)
(−1)

k
Ψc′

(
(n + k − j) δ

2

)
bΨr

c

(
(n − j) δ

2

)
−→
V b

n−j (b, δ) .

Finally, the starting point (3.7) was derived in Badescu et al. (2007) and can
easily be obtained from (3.6) with n = 1. ¤

From Proposition 3.2, one concludes that the calculation of the moments of
the r.v. Dc′ (b, δ) will have to be performed recursively with respect to the order
of the moments (starting with the first moment and incrementing its order n at
each iteration). In the next theorem, an expression for the higher order moments
of the discounted dividends is given for an arbitrary initial capital u ≥ 0.

Theorem 3.1. For the surplus process (1.1), the n-th conditional moment of the
discounted dividend payments prior to ruin (n = 1, 2, ...) is given by

−→
V b

n (u, δ) =






e−
nδ
2

b−u
c 0f̂11,c

(
u, b, n δ

2

)−→
V b

n (b, δ), u < b

−→
V n,c′ (u − b, δ)

+

n−1∑

j=0

(
n
j

) (
d
δ

)j
j∑

k=0

(
j
k

)
(−1)

k
e

(n+k−j)δ

2 (u−b

c′ )

Ψc′

(
δ(n+k−j)

2

)

eHc′(
δ(n+k−j)

2 (u−b)) bΨr
c

(
(n−j)δ

2

)−→
V b

n−j (b, δ), u ≥ b

(3.11)

where 0f̂11,c (x, y, δ) represents the Laplace transform of the first passage of the
fluid flow process Fc from level x in S1 to level y in S1 avoiding level 0 en route

and
−→
V b

n (b, δ) (n = 1, 2, ...) are obtained from Proposition 3.2.

Proof. For u < b, dividends will be paid only for those sample paths reaching level
b without a visit to level 0 en route. The Laplace transform of this first passage

time in the risk process is e−
nδ
2

b−u
c 0f̂11,c

(
u, b, n δ

2

)
(see Ramaswami (2006)). Now

at level b,
−→
V b

n (b, δ) corresponds to the n-th moment of the future discounted
dividends. For u ≥ b, a decomposition of the discounted dividend payments
Db (u, δ) similar to (3.8) followed by its ensuing analysis leads to (3.11). We omit
the details. ¤
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4 Illustrations

We first consider a modified version of Example 4.1 in Albrecher et al. (2005a).
The assumptions are repeated here for purposes of completeness. In the context
of the Sparre Andersen risk model, we assume that the interclaim times and the
claim sizes are both Erlang-(2, 2) distributed. The discount rate δ is chosen at 3%.
While Example 4.1 of Albrecher et al. (2005a) assumes a barrier-type model at
level b, a modified version is considered here by assuming a threshold-type model
at level b. As in Example 4.1 of Albrecher et al. (2005a), we set the net premium
rate for surplus levels below b at c = 1.1. However, for surplus levels greater
than b, Albrecher et al. (2005a) assumes that the total premium rate is paid as

a dividend rate (i.e. c
′

= 0) while, in our setup, a dividend rate of d = 1.09 is
paid whenever the surplus level is greater than b leading to a small net premium
rate of c

′

= 0.01 above the threshold b). Figures 1 and 2 contain the numerical
values of the first moment and the standard deviation of the discounted dividend
payments prior to ruin. Note that Figures 1 and 2 consider cases where u ≤ b and
u > b as opposed to Albrecher et al. (2005a) where similar graphs are obtained
for u ≤ b only due to the barrier-type dividend structure.

5 10 15 20
b

1

2

3

4

5

First Moment

Figure 1 The first moment of the dividends prior to ruin (u = 0, 1, ..., 5),
from bottom to top

A comparison of Figures 1 and 2 to those obtained by Albrecher et al. (2005a)
shows that a similar behavior is observed to these two ruin related quantities for
initial surplus levels below b. This can be explained by the fact that the net
premium rate retained by the insurer whenever the surplus level is greater than b
is relatively small (c

′

= 0.01). However, an important observation in the threshold
type risk model is that the derivative of the moments of the discounted dividends
does not exist at u = b. A similar conclusion has been drawn by e.g. Lin and
Sendova (2006) in the study of the Gerber-Shiu discounted penalty function in
the context of the classical risk model with a threshold dividend structure.
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5 10 15 20
b

0.5

1

1.5

2

2.5

3

St.Deviation

Figure 2 The standard deviation of the dividends prior to ruin (u =
0, 1, ..., 5), from bottom to top

In the second example, we consider a more complicated scenario, namely the
“contagion” example first introduced in Badescu et al. (2005). This example
moves away from the renewal model assumptions assuming claim amounts that
are correlated with the interclaim times. In this MAP risk model, we assume the
existence of a claim arrival process in which standard claims occur according to a
Poisson process at rate λ1 = 1 and that, during periods of contagion, infectious
claims can also occur at Poisson rate λ2 = 10. Standard claim sizes are expo-
nentially distributed with mean 1/µ1 = 1/5, whereas infectious claim sizes are
exponentially distributed with mean 1/µ2 = 15/µ1 = 3. The rate at which the
process enters the infectious environment is αI = 0.02 and the return rate to the
standard environment is αS = 1, so that in the long run, standard claims will
occur with probability πS = 50/51 (for more details see Badescu et al. (2005)).

In Figure 3, we present the first moment of the discounted dividend payments
(at a discount rate δ = 3%) as a function of the threshold level b. The premium
rates are c = 1.5 and c′ = 1. We choose 4 different values of the initial capital,
namely u = 0, 10, 20, 50.

One of the classical problems in a threshold-type risk model is to find the
optimal threshold level b under different sets of constraints. In ruin theory, a
standard criterion is to set b such that the expected dividend payments prior to
ruin is maximized. From Figure 3, one would choose a relatively small b under
such a criterion. However, a closer look at Figure 4 indicates that the standard
deviation is quite significant for small values of b (when compared to larger values
of b). Thus, the choice of a small threshold level b would maximize the expected
discounted dividends at the cost of increasing the uncertainty (variability) in the
actual sum of discounted dividends paid. This provides an example against the
consideration of only the first moment as a sufficient optimization criterion. Thus,
higher order moments need to be carefully investigated in order to understand the
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risks carried by the choice of the threshold level on the overall risk management
strategy of an insurance company.

20 40 60 80 100
b

2

4
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8

10

12

First Moment

Figure 3 The first moment of the dividends prior to ruin (u = 0, 10, 20, 50),
from bottom to top
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Figure 4 The standard deviation of the dividends prior to ruin (u =
0, 10, 20, 50), from bottom to top on the right-hand side
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