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Abstract: We study a class of cellular automata, that is random oper-

ators acting on normed measures on the space {0, . . . , m}ZZ
d

which can be

presented as superpositions FrD, where D is a monotonic deterministc oper-

ator with uniform local interaction and Fr turns every component into the

maximal state m with probability r independently from fate of other com-

ponents. We call an island any configuration, whose set of components with

non-zero state is finite, but not empty. We assume that D transforms the

configuration “all zeros” into itself and say that D erodes an island x if there

is t such that Dtx =“all zeros”. We say that D is an eroder if it erodes all is-

lands. We say that D is a linear eroder if D erodes any island in a time which

does not exceed a linear function of diameter of this island. Two special cases

have been studied before: one with m = 1 and another with d = 1. In both

cases necessary and sufficient conditions for an eroder have been presented

and all eroders are linear. We find that as soon as m > 1 and d > 1, there are

non-linear eroders. We concentrate our attention on one cellular automaton

G with m = d = 2 and show that FrG is ergodic for all r > 0.

Key words: Cellular automata, critical droplet, ergodicity, eroder,

metastability.

1 Introduction

It is common to believe that studies of ergodicity of cellular automata or CA for
short are relevant to statistical physics. However, it is well-known that for too
large classes of CA their ergodicity is undecidable (Kurdyumov, 1978 and Toom,
2000a,b). So, to obtain positive results, one has to reduce attention to some special
class of CA.

In our case the space is ZZ
d and all its elements are called points. The con-

figuration space is Ω = {0, . . . , m}ZZ
d

and its elements are called configurations.

Any configuration x has components xv ∈ {0, . . . , m} at all points v ∈ ZZ
d. We

denote M the set of normed measures on Ω (that is, on the σ-algebra generated
by cylinder sets). As usual, a measure µ ∈ M is called invariant for an operator
P : M → M if Pµ = µ and P is called ergodic if it has exactly one invariant
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measure µinv and
∀ µ ∈ M : lim

t→∞
P tµ = µinv,

where convergence means convergence on all cylinder sets.
In fact, we consider superpositions FrD (first D, then Fr) acting on M. Here

Fr is the well-known random operator, which turns the state of every component
into m with probability r independently from fate of other components. D is a
uniform monotonic deterministic operator with local interaction. To describe a
specific D, we choose a non-empty finite list of vectors v1, . . . , vn and a function

f : {0, . . . , m}n → {0, . . . , m}

and define the value of v-th component after application of D to any configuration
x as follows:

(Dx)v = f(xv+v1
, . . . , xv+vn

). (1.1)

We denote by τv the shift of the space ZZ
d at a vector v and use the same notation

for the corresponding shifts of Ω and M. We call an operator from Ω to Ω or
from M to M uniform if it commutates with all shifts. It is evident that Fr and
D are uniform.

However, this approach still leads to undecidabilities, as was shown by Petri
(1987), so we additionally assume monotonicity of D, which means the following.
Given two configurations x, y ∈ Ω, we say that x ≺ y or y ≻ x if xv ≤ yv for all
v ∈ ZZ

d. We call D monotonic if

x ≺ y =⇒ Dx ≺ Dy.

This amounts to saying that f used in (1.1) is monotonic, that is

x1 ≤ y1, . . . , xn ≤ yn =⇒ f(x1, . . . , xn) ≤ f(y1, . . . , yn).

Since monotonicity is assumed, it is not a great loss of generality to assume also
that

f(0, . . . , 0) = 0 and f(m, . . . , m) = m. (1.2)

Now to define monotonicity of stochastic operators. A real function F on Ω is
called monotonic if

x ≺ y =⇒ F (x) ≤ F (y).

Given two measures µ and ν on our configuration space, we say that µ ≺ ν or
ν ≻ µ if for every monotonic function F , we have

E(F | µ) ≤ E(F | ν),

where E(· | ·) is expectation. We shall say that a sequence µn is non-decreasing
if µn ≺ µn+1 for all n. An operator P on M is called monotonic if

µ ≺ ν =⇒ Pµ ≺ Pν.
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Any measure concentrated in one configuration is called a δ-measure. We shall
always denote such measures using the letter δ with various indices. In particular,
δa means the measure concentrated in the configuration “all a”, all of whose
components equal a.

Due to (1.2), the measure δm concentrated in the configuration “all m” is
invariant for D. Of course, δm is invariant for Fr also, so it is invariant for their
superposition FrD. Therefore ergodicity of FrD is equivalent to

∀ µ ∈ M : lim
t→∞

P tµ = δm.

From monotonicity, this condition is equivalent to

lim
t→∞

P tδ0 = δm,

where δ0 is the measure concentrated in the configuration “all zeros”.
Since the operator Fr is quite simple and standard, all the originally is concen-

trated in D. We want to know, which properties of D are important for ergodicity
of FrD. We call a configuration x an island if the set {v ∈ ZZ

d : xv 6= 0} is finite,
but not empty. (So “all zeros” is not an island.) Due to (1.2), f(0, . . . , 0) = 0.
Thus D transforms every island into an island or into “all zeros”.

We call toptime of an island x and denote toptimeD(x) the smallest t such
that all components of Dtx are less than m. If there is no such t, the toptime is
infinite by definition. Our main results are presented below as Theorems 1 and 2.
To provide a background, we start with a simple Theorem 0.

Theorem 0. Given D, suppose that there is an island, whose toptime is infinite.
Then FrD is ergodic for all r > 0.

Let us prove Theorem 0 for the reader’s convenience and to prepare proofs of
our main Theorems 1 and 2. Throughout this article we shall present our process
as a measure on the space

Ω = {0, 1, . . . , m}ZZ
d·ZZ+

induced by a product-measure P on the auxiliary space

Γ = {0, 1}ZZ
d·ZZ+ .

We denote γ ∈ Γ the elements of Γ and γt
v the components of γ indexed by v ∈ ZZ

d

and t ∈ ZZ+.
Let P be a product-measure on Γ such that

γt
v =

{

1 with probability r,

0 with probability 1-r.

Our process is induced by P with a map defined in the following inductive way.
Base of induction: x0

v = 0 for all v ∈ ZZ
d, where xt

v are components of configuration
x in Ω. Induction step for all t = 0, 1, 2, . . . :

xt+1
v =

{

m if γt+1
v = 1,

f(xt
v+v1

, . . . , xt
v+vn

) otherwise.
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We shall use the letter P also to denote probabilities of events of our process
meaning probabilities of their pre-images in Γ. Due to uniformity, Theorem 0 is
equivalent to

lim
T→∞

P (xT
0 = m) = 1. (1.3)

Let us denote z the island, whose toptime is infinite. Then for every natural t
there is vt such that (Dtz)vt

= m. Therefore, due to uniformity,

(Dt(τ−vt
z))0 = m.

For each t ∈ [1, T ], we consider the event

Et = {γ : γt
w = 1 for all w such that (τ−vT−t

z)w 6= 0}.

Due to monotonicity, this event is a guarantee that the configuration at time t
is not less than τ−vT−t

z, which, in its turn, is a guarantee that xT
0 = m. We

know that γt
v = 1 with probability r > 0 independently for each pair (v, t).

Therefore P(Et) = rk, where k is the number of non-zero components of z. Thus
P( not Et) = 1 − rk. Since events Et are independent from each other,

P

(

not Et for all t ∈ [1, T ]

)

= (1 − rk)T .

Therefore
P(xT

0 = m) ≥ 1 − (1 − rk)T .

The right side of this inequality tends to 1 when T → ∞, which implies (1.3).
Theorem 0 is proved.

Our main Theorems 1 and 2 pertain to the line of study concerned with er-
godicity of superpositions FrD. It is well-known that every such superposition
is ergodic for r close enough to 1 . However, for small values of r > 0 these
superpositions behave in different ways. Some attempts have been made to find
properties of D relevant to existence of r > 0 for which FrD is non-ergodic. In
this connection it is common to say that D erodes an island x if there is t such that
Dtx =“all zeros”. The smallest t with this property is denoted lifetimeD(x) and
called the lifetime of this island. If there is no such t, lifetime of x equals ∞ by
definition. D is called an eroder if it erodes all islands. Toom (1980) examined the
case m = 1 and arbitrary d, gave a condition for D to be an eroder and proved
that D is an eroder if and only if FrD is not ergodic for small enough r > 0.
Galperin (1976) examined the case d = 1 and arbitrary m and gave a condition
for D to be an eroder in this case. However, Toom (1976) showed that in this case
there is an eroder D such that FrD is ergodic for all r > 0. All these results were
obtained under the assumption of monotonicity of D. Without this assumption,
as Petri (1987) showed, both the set of eroders and the set of non-eroders are
non-enumerable even in the case d = 1.

For any island x, we call its diameter diam(x) the greatest Euclidean distance
between v and w such that xv 6= 0 and xw 6= 0. Thus, every island has a finite
diameter. (Remember that “all zeros” is not an island.) An eroder D is called
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linear if there is a number c such that the lifetime of any island x does not exceed
c(diam(x) + 1). Toom (1979) and Galperin (1976) showed that in all the cases
considered by them, namely m = 1 or d = 1, all eroders are linear. As a contrast
with this, we shall show that as soon as m ≥ 2 and d ≥ 2, there are non-linear
eroders.

In the same vein we call D a top-eroder if toptime of every island is finite. We
call D a linear top-eroder if there is a constant c such that toptime of any island x
does not exceed c(diam(x)+1). Of course, toptime of any island cannot exceed its
lifetime, so all the eroders considered by Galperin and Toom are linear top-eroders
also. We hypothesize that for any non-linear top-eroder D the operator FrD is
ergodic for all r > 0. Our Theorem 2 proves this hypothesis for one non-linear
eroder, which we denote G.

In all the following text we assume that m = d = 2 and use letters i and j
to denote the coordinates of our two-dimensional space. We associate the words
“east” and “west” with the positive and negative directions of the first axis i and
“north” and “south” with the positive and negative directions of the second axis j.
Operator G has n = 5 and its neighbor vectors are

v1 = (−1, 0), v2 = (0, 1), v3 = (0, 0), v4 = (0,−1), v5 = (1, 0), (1.4)

so that the components are placed like this:

N = x(0,1)

W = x(−1,0) C = x(0,0) E = x(1,0)

S = x(0,−1)

Our notations are helpful because they remind W- west, N - north, C- center,
S- south and E- east. We define a function f : {0, 1, 2}5 → {0, 1, 2} as follows:

f(x) =







1 if C = 2, N ≤ 1, E = 0,
0 if C = 1, S = 0, E = 0,
C in all the other cases.

(1.5)

In is easy to check that f is monotonic and f(0, . . . , 0) = 0 and f(2, . . . , 2) = 2.
Notice also that

f(x) =
{

2 whenever C = E = 2. (1.6)

Our G is defined as follow:

(Gx)v = f(xv+v1
, xv+v2

, xv+v3
, xv+v4

, xv+v5
),

where v1, . . . , v5 are defined in (1.4) and f is defined in (1.5). Our main Theorems
1 and 2 describe behavior of G without and with one-sided random noise.

Given integer numbers imin ≤ imax and jmin ≤ jmax, we denote by

[imin, imax][jmin, jmax]
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and call a rectangle the following subset of ZZ
2:

{(i, j) : imin ≤ i ≤ imax, jmin ≤ j ≤ jmax}. (1.7)

By Q[imin, imax][jmin, jmax] we denote the island, which has twos in the set (1.7)
and zeros outside it. Any island of this form is called rectangular.

Due to uniformity, instead of all rectangular islands, it is sufficient to deal only
with those of them, for which imin = jmin = 0 and in this case we use a simplified
notation

Q(q, n) = Q[imin, imax][jmin, jmax],

where
imin = jmin = 0, imax = q − 1, jmax = n − 1.

Theorem 1.
a) For any rectangular island Q(q, n)

lifetimeG(Q(q, n)) = 2nq and toptimeG(Q(q, n)) = 2nq − n.

b) For any island x

toptimeG(x) ≤ lifetimeG(x) ≤ 2(diam(x) + 1)2.

The item b) of this theorem shows that G is an eroder (hence top-eroder) and
the item a) shows that it is non-linear both as eroder and top-eroder.

We do not present a detailed proof of item a). Instead we show the process of
evolution of a square island Q(3, 3) under the action of G, at the end of which it
turns into “all zeros”.

Figure 1 shows that the toptime of this island is 15 and lifetime is 18 in
agreement with item a). It is easy to generalize this example to prove item a).

Proof of item b) of Theorem 1. Given any island x, let us denote imin and
imax the minimal and maximal values of i for which there is j such that xi,j 6= 0.
Analogously we define jmin and jmax. Then

x ≺ Q[imin, imax][jmin, jmax].

Notice that

imax − imin ≤ diam(x) and jmax − jmin ≤ diam(x).

Shifting this rectangular island, we turn it into Q(q, n), where

q ≤ diam(x) + 1 and n ≤ diam(x) + 1.

Then

lifetimeG(x) ≤ lifetimeG(Q(q, n)) = 2qn ≤ 2(diam(x) + 1)2.

Theorem 1 is proved.
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Theorem 2. The operator FrG is ergodic for all r > 0.

Proof. Let us denote µT = (FrD)T δ0 or, what is the same, the restriction of our
process to the time T . It is sufficient to prove that limT→∞ µT = δ2, which due
to uniformity follows from

lim
T→∞

µT (x0,0 = 2) = 1,

or, by definition of limit,

∀ ε > 0 ∃ t0 ∀ T ≥ t0 : P(xT
0,0 = 2) ≥ 1 − ε. (1.8)

Since both Fr and D are monotonic, the sequence (FrD)T δ0 is non-decreasing,
that is (FrD)T δ0 ≺ (FrD)T+1δ0 for all T . Therefore the sequence P(xT

0,0 = 2)
also is non-decreasing. Therefore, (1.8) follows from

∀ ε > 0 ∃ T : P(xT
0,0 = 2) ≥ 1 − ε. (1.9)

This is what we shall actually prove.
Proof of (1.9) uses the auxiliary variables γt

v defined above and generally
reminds proof of Theorem 0 and the idea of “metastability”. Namely, we wait for
a long time until a “critical droplet” appears due to a rare coincidence. In the
present case the role of droplet is played by a large enough rectangle filled with
twos like that in Figure 1. However, unlike Theorem 0, the size of our droplet
depends on ε and even when such a droplet appears, we have no guarantee that
it will never disappear.

Besides finite rectangles, we need their infinite analogs: For any integer imin,
jmin ≤ jmax we denote

[imin, ∞][jmin, jmax] = {(i, j) : imin ≤ i, jmin ≤ j ≤ jmax}

We denote by Q[imin, ∞][jmin, jmax] the configuration, which has twos in this set
and zeros outside it. Accordingly, δ[imin, ∞][jmin, jmax] means the measure concen-
trated in this configuration. In particular, Q[0, ∞][0, 0] means a configuration
having twos at the positive half-axis i (including the origin) and zeros everywhere
else and the measure δ[0, ∞][0, 0] is concentrated in this configuration. Our first
lemma gives a lower estimation of what we get after t applications of our operator
to this measure.

Lemma 1. For any natural t

(FrG)t δ[0, ∞][0, 0] ≻
t

∑

k=0

(

t

k

)

rk(1 − r)t−k δ[−k, ∞][0, 0], (1.10)

that is the measure (FrG)t δ[0, ∞][0, 0] is not less than a linear combination of
measures δ[−k,∞][0,0] for k = 0, . . . , t with coefficients equal to probabilities of values
of k, where the random variable k has a binomial distribution with parameters r
and t.
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Proof. By induction. For t = 0 this is trivial because the left and right side
coincide. In the case t = 1 formula (1.10) turns into

FrG δ[0, ∞][0, 0] ≻ (1 − r) δ[0, ∞][0, 0] + r δ[−1, ∞][0, 0]. (1.11)

To prove this, let us first notice that the measure δ[0,∞][0,0] is invariant for G due
to (1.6). Now, to see what happens to this measure when Fr is applied, let us
represent Fr using the auxiliary variables γi, j as we did before. Let us consider
two cases. In the case γ−1, 0 = 0, whose probability is 1−r, the resulting measure
is not less than δ[0, ∞][0, 0]. In the case γ−1, 0 = 1, whose probability is r, the
resulting measure is not less than δ[−1, ∞][0, 0]. Thus (1.11) is proved. Now the
general case can be proved by induction using our argument in the case t = 1 as
the induction step. Lemma 1 is proved.

0 0 0 0 0
0 2 2 2 0
0 2 2 2 0
0 2 2 2 0
0 0 0 0 0

0 0 0 0 0
0 2 2 1 0
0 2 2 2 0
0 2 2 2 0
0 0 0 0 0

0 0 0 0 0
0 2 2 1 0
0 2 2 1 0
0 2 2 2 0
0 0 0 0 0

0 0 0 0 0
0 2 2 1 0
0 2 2 1 0
0 2 2 1 0
0 0 0 0 0

t = 0 t = 1 t = 2 t = 3

0 0 0 0 0
0 2 2 1 0
0 2 2 1 0
0 2 2 0 0
0 0 0 0 0

0 0 0 0 0
0 2 2 1 0
0 2 2 0 0
0 2 2 0 0
0 0 0 0 0

0 0 0 0 0
0 2 2 0 0
0 2 2 0 0
0 2 2 0 0
0 0 0 0 0

0 0 0 0 0
0 2 1 0 0
0 2 2 0 0
0 2 2 0 0
0 0 0 0 0

t = 4 t = 5 t = 6 t = 7

0 0 0 0 0
0 2 1 0 0
0 2 1 0 0
0 2 2 0 0
0 0 0 0 0

0 0 0 0 0
0 2 1 0 0
0 2 1 0 0
0 2 1 0 0
0 0 0 0 0

0 0 0 0 0
0 2 1 0 0
0 2 1 0 0
0 2 0 0 0
0 0 0 0 0

0 0 0 0 0
0 2 1 0 0
0 2 0 0 0
0 2 0 0 0
0 0 0 0 0

t = 8 t = 9 t = 10 t = 11

0 0 0 0 0
0 2 0 0 0
0 2 0 0 0
0 2 0 0 0
0 0 0 0 0

0 0 0 0 0
0 1 0 0 0
0 2 0 0 0
0 2 0 0 0
0 0 0 0 0

0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 2 0 0 0
0 0 0 0 0

0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0

t = 12 t = 13 t = 14 t = 15

0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

t = 16 t = 17 t = 18

Figure 1 Evolution of the island Q(3, 3) under the action of G.

Using uniformity, we can generalize Lemma 1 as follows:

Generalization of Lemma 1. For any integer i0, j0 and natural t

(FrG)t δ[i0, ∞][j0, j0] ≻
t

∑

k=0

(

t

k

)

rk(1 − r)t−k δ[i0−k, ∞][j0, j0]. (1.12)



A non-linear eroder in presence of one-sided noise 9

Lemma 2. For any integer i0 and natural n, t the result of t applications of FrG
to the δ-measure concentrated in [i0, ∞][0, n − 1] can be estimated as follows:

(FrG)tδ[i0, ∞][0,n−1] ≻
∑

k0,...,kn−1

Prob (k0, . . . , kn−1) δk0,...,kn−1
, (1.13)

where k0, . . . , kn−1 are independent random variables, each having the same bino-
mial distribution as in Lemma 1 and δk0,...,kn−1

is the δ-measure concentrated in
the configuration x defined as follows:

xi,j =

{

2 if 0 ≤ j ≤ n − 1 and i ≥ i0 − kj,
0 in all the other cases.

(1.14)

Proof. Lemma 2 directly follows from the generalization of Lemma 1 and unifor-
mity and monotonicity of our operators.

Lemma 3. For any integer i0 and natural n, t ≥ 1

(FrG)t δ[i0, ∞][0, n−1] ≻ (1 − p) δ[i0−2, ∞][0, n−1] + p δ[i0, ∞][0, n−1], (1.15)

where p = n(tr + 1 − r)(1 − r)t−1.

Proof. It is evident that the configuration (1.14) will only decrease if some kj

decreases. Accordingly, the δ-measure concentrated in this configuration will only
decrease and the total linear combination will only decrease. Thus the measure
in the right side of (1.13) will only decrease if every kj is substituted by kmin =
min(k0, . . . , kn−1). Then we can only further decrease our measure substituting
kmin by 2 if kmin ≥ 2 and by 0 otherwise. Thus we obtain estimation (1.15) with
any p ≥ Prob (kmin < 2). It remains only to estimate Prob (kmin < 2). So we do:

Prob (kmin < 2) =

Prob (min(k0, . . . , kn−1) < 2) = Prob (∃ j ∈ {0, . . . , n − 1} : kj < 2) ≤

n · Prob (k0 < 2) = n ·

(

Prob (k0 = 0) + Prob (k0 = 1)

)

=

n ·

(

(1 − r)t + tr(1 − r)t−1

)

= n(tr + 1 − r)(1 − r)t−1.

Lemma 3 is proved.

We shall use Lemma 3 only with t = 2n. In this case

Prob (kmin < 2) ≤ n(2nr + 1 − r)(1 − r)2n−1.

For any positive r the last expression tends to zero when n → ∞. Therefore we
can choose n > 0 such that it will be less than 1/3. With these values of n and t,
(1.15) turns into

(FrG)2n δ[i0, ∞][0, n−1] ≻
2

3
δ[i0−2, ∞][0, n−1] +

1

3
δ[i0, ∞][0, n−1]. (1.16)
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Now we go back to finite rectangles.

Lemma 4. If q ≥ 3, then for any integer i0 and n chosen above,

(FrG)2n δ[i0, i0+q−1][0, n−1] ≻
2

3
δ[i0−2, i0+q−2][0, n−1] +

1

3
δ[i0, i0+q−2][0, n−1].

(1.17)

Proof. What happens on the east side of our rectangular area we see from Figure
1. Even if we ignore action of Fr (which can only increase a measure), in 2n steps
the rectangular area filled with twos shrinks only by one column. We have taken
care of this by placing i0 + q − 2 on the right side of (1.17), where there was
i0 + q−1 on the left side. Due to our condition q ≥ 3 and property (1.6), this loss
on the right side does not undermine that random growth on the left side, which
was described by our Lemmas 2 and 3. Thus, on the left side the rectangular
area filled by twos advances at least by two columns with probability at least 2/3
and remains at least intact otherwise as was described by Lemma 3. Lemma 4 is
proved.

Lemma 5. Let us consider our process with initial measure concentrated in the
island

Q[i0 − q + 1, i0][0, n − 1]

with that value of n which we have chosen and q such that (1/2)q−2 ≤ ε/2. Then
the event

∀ v = 0, 1, 2, 3, . . . , ∀ j ∈ [0, n − 1] : x2nv
i0−v, j = 2 (1.18)

has probability at least 1 − ε/2.

Proof. Lemma 4 provides a lower estimation of the measure obtained from
δ[i0−q+1, i0][0, n−1] after iterative applications of (FrG)2n: namely, twos fill at
least a rectangular area [L, R][0, n− 1] where R initially equals i0 and determin-
istically decreases by one at every application of (FrG)2n and L initially equals
i0 − q + 1 and then performs a random walk: at every application of (FrG)2n it
remains where it was with probability 1/3 and decreases by two with probability
2/3. So R − L performs a random walk in which it starts with q − 1 and then at
every step (i.e. every application of (FrG)2n) decreases by 1 with probability 1/3
and increases by 1 with probability 2/3. In the spirit of the historical problem of
“gambler’s ruin”, we call it a ruin if R−L ever becomes less than 2. In our case the
probability of ruin is (1/2)q−2. But we have chosen q such that (1/2)q−2 ≤ ε/2.
Now notice that absence of ruin assures the event (1.18). Lemma 5 is proved.

Now let us prove (1.9). Remember that n and q are already chosen. We take
T = 2n · U , where natural U is so large that

(

1 − rnq

)U

≤
ε

2
. (1.19)

For every u = 1, . . . , U we define an event Eu as follows:

Eu = {γ : ∀ i ∈ [U − u − q + 1, U − u], ∀ j ∈ [0, n − 1] : γ2nu
i, j = 1}.
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For the same values of u we denote also events

E′
u = Eu ∩

u−1
⋂

w=1

( not Ew).

If u = 1, this means E′
1 = E1. Generally E′

u means that Eu is the first of
E1, . . . , EU that comes true. Also let us denote

Ebad =
U
⋂

u=1

( not Eu),

which means bad luck: none of Eu happens. Notice that P (Eu) = rqn, therefore
P ( not Eu) = 1 − rqn and the probability that none of Eu occurs is (1 − rqn)U

Thus, due to (1.19), P(Ebad) ≤ ε/2.
It is evident that the events E′

1, . . . , E
′
U and Ebad are pairwise incompatible

and together cover all Γ. Suppose that E′
u takes place. Then, applying Lemma

5, we conclude that the event

∀ v = 0, 1, 2, 3, . . . , ∀ j ∈ [0, n − 1] : x2nu+2nv
U−u−v = 2 (1.20)

has probability at least 1− ε/2. Substituting v = U −u and j = 0 into (1.20), we
get the event

x2nU
0,0 = 2, (1.21)

whose conditional probability also is not less than 1 − ε/2.
Thus the probability of (1.21) is not less than

1 −

(

1 −
ε

2

) (

1 −
ε

2

)

≥ 1 − ε.

Formula (1.9) is proved, so Theorem 2 is proved also.
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