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Abstract: We consider a one-dimensional Burgers-type stochastic differ-

ential equation (SDE) with an α-Laplacian in its linear part, perturbed by a

white-noise term with non-Lipschitz coefficient, and with a random, bounded

initial value. We approximate the equation by finite systems of SDEs and

show they have strong solutions. For α > 3/2 we prove tightness of the ap-

proximating systems in appropriate Hilbert spaces, and obtain existence and

regularity properties of weak solutions to our equation.
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1 Introduction

The one-dimensional Burgers equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + u(t, x)

∂u

∂x
(1.1)

was proposed by Burgers (1948) in 1948 as a model for turbulent phenomena
of viscous fluids. Since then, Burgers equation has been investigated in many
fields of application, such as traffic flows and formation of large clusters in the
universe. In order to model solutions of Navier-Stokes equations, several authors
have studied Burgers equations with random initial conditions, including white
and stable noises (see e.g. Burgers (1974), Bertoin (2001), Woyczyński (1998),
and the references therein). Equation (1.1) can be solved in closed form (in terms
of the initial conditions) by using the Hopf-Cole substitution, which reduces it to
a heat equation.

Burgers equations involving in their linear parts fractional powers ∆α :=
−(−∆)α/2 of the Laplacian, α ∈ (0, 2], have been investigated in connection with
certain models of hydrodynamical phenomena; see Shlesinger et al. (1995), Funaki
at al. (1995) and Biler et al. (1998). In Biler et al. (1998), Biller, Funaki and
Woyczynski studied existence, uniqueness, regularity and asymptotic behavior of
solutions to the multidimensional fractal Burgers-type equation

∂

∂t
u(t, x) = ν∆αu(t, x) − a∇ur(t, x), (1.2)
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where x ∈ R
d, d ≥ 1, α ∈ (0, 2], r ≥ 1, and a ∈ R

d. For α > 3/2 and d = 1 they
prove existence of a unique regular weak solution to (1.2) for initial conditions in
H1(R).

Burgers equations in financial mathematics arise in connection with the behav-
ior of the risk premium of the market portfolio of risky assets under Black-Scholes
assumptions; see Bick (1990), He and Leland (1991), Hodges and Selby (1997)
and Hodges and Carverhill (1993). Other turbulent characteristics, such as semi-
heavy tails, volatility (intermittency in turbulence) or aggregational Gaussianity,
have been observed in time series of financial data such as values of stocks, log-
arithmic stocks returns and exchange rates; see Barndorff-Nielsen and Shephard
(2001) and the references therein. In Hodges and Carverhill (1993) and Hodges
and Selby (1997) the authors consider a model of an economy market with a single
asset price, St, satisfying the equation

dS

S
= [r + σΞ(·)]dt + σdBt,

where r is a constant risk-free interest rate, σ is the volatility (which is assumed
to be constant), {Bt, t ≥ 0} is a Brownian motion and Ξ is an adapted stochastic
process representing the risk price. The time horizon H is finite and no dividends
are paid. Under certain additional assumptions it is shown, using Girsanov’s
theorem, that the risk price Ξ satisfies the Burgers equation

∂Ξ

∂τ
=

1

2
σ2∆Ξ + σΞ

∂Ξ

∂x
,

where τ = H − t. See Hodges and Carverhill (1993) and Hodges and Selby (1997)
for a precise formulation of the assumptions, and for some financial implications
of this model in the time-homogeneous setting.

Burgers equations perturbed by space-time white noise have been studied by
several authors under Lipschitz conditions on the noise term coefficient, Bertini et
al. (1994), Da Prato and Gatarek (1995), Biler et al. (1998), Gyongy (1998). In
Kolkovska (2003) it is proved existence of a weak solution to the one-dimensional
stochastic Burgers equation

∂

∂t
u(t, x) = ∆u(t, x) + λ∇u2(t, x) + γ

√

u(t, x)(1 − u(t, x))
∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0,

u(0, x) = f(x), x ∈ [0, 1], (1.3)

where λ and γ are positive constants, ∂2

∂t∂xW (t, x) is a space-time white noise
and f : [0, 1] → [0, 1] is a continuous function. We refer to Walsh (1986) for the
definition and properties of white noise.

Solutions to equation (1.3) are interpreted in the weak sense, which means
that for each ϕ ∈ C2([0, 1]),
∫

[0,1]

u(t, x)ϕ(x) dx
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=

∫

[0,1]

u(0, x)ϕ(x) dx +

∫

[0,1]

u(t, x)ϕ′′(x) dx − λ

∫ t

0

∫

[0,1]

u2(s, x)ϕ′(x) dx ds

+ γ

∫ t

0

∫

[0,1]

√

u(s, x)(1 − u(s, x))ϕ(x)W (ds, dx).

The method of proof in Kolkovska (2003) consists in approximating (1.3) by finite
systems of stochastic differential equations possessing a unique strong solution.
Using bounds for the fundamental solution of the discrete Laplacian, it is shown
tightness of the approximating systems, and, moreover, that each weak limit point
solves (1.3).

In this paper we investigate existence and regularity properties of solutions of
the fractal Burgers equation

∂

∂t
u(t, x) = ∆αu(t, x) + λ∇u2(t, x) + γ

√

u(t, x)(1 − u(t, x))
∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0, x ∈ [0, 1], (1.4)

with a random, positive, initial condition u(0, x), bounded by 1.
Recall that ∆α is the infinitesimal generator of the symmetric α-stable mo-

tion, which was proposed by Mandelbrot in 1963 to model the non-Gaussian time
evolution of log-prices of certain assets.

Notice that, due to the presence of non-Lipschitz coefficients, existence and
uniqueness of a weak solution to (1.4) cannot be proved by the classical approach.
Following the method of proof of Kolkovska (2003), we consider a discrete ver-
sion of (1.4) and obtain existence of a strong solution to the corresponding finite
system of stochastic differential equations. The principal difficulty we are dealing
with here, originated by the presence of fractional powers of the discrete Lapla-
cian, consists in proving tightness of the approximating systems and regularity
properties of the solution. We overcome this difficulty by using Fourier analysis
methods similar to those in Blount (1996) and Blount and Kouritzin (2001). We
prove that, for α > 3/2, each limit point is a weak L2([0, 1])-solution to our equa-
tion whose paths are a.s. continuous. We also prove that each such solution takes
values in a Sobolev space Hβ with norm | · |β (see (2.1)), and has a modification
which is Hölder-continuous with respect to | · |β . In the classical case α = 2, our
results yield solutions that are more regular than those obtained in Kolkovska
(2003). Uniqueness, as well as existence of strong solutions to (1.4), remain to be
investigated.

2 Existence and regularity of solutions

We introduce some notations we need. Let S = [0, 1), and let T denote the
quotient space obtained from [0, 1] by identifying 0 and 1. We define ϕ0(x) = 1
for x ∈ [0, 1], and

ϕn(x) =
√

2 cos(πnx), ψn(x) =
√

2 sin(πnx), x ∈ [0, 1], n = 2, 4, . . . .
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Let em be ϕm or ψm, m = 0, 2, 4, . . . . Notice that {em, m = 0, 2, . . .} is the usual
orthonormal basis in L2(S), and that for all m, ∆em = −π2m2em. For any β ∈ R

we define Hβ as the Hilbert space obtained from L2(S) by completion with respect
to the norm

|f |β =
(

∑

〈f, em〉2(1 + π2m2)β
)1/2

, (2.1)

where 〈·, ·〉 denotes the usual inner product in L2(S), and the sum is taken over
all distinct possibilities for em.

Notice that H0 = L2(S) and Hβ ⊂ Hβ′ for β′ < β.
For any integer N ≥ 1, let H(N) denote the set of functions f : [0, 1] → R

that are constant on [ k
N ,

k+1
N ) for k = 0, 1, 2, ..., N − 1. Clearly we have H(N) ⊂

L2([0, 1]).
Let PN : L2(T) → H(N) be the orthogonal projection of L2(T) onto H(N),

which is given by

PNf(r) = N

∫
k+1

N

k
N

f(s) ds, r =
k

N
, k = 0, 1, 2, ..., N − 1.

We define êm = PN em

|PN em|0
for 0 ≤ m ≤ N − 1 and N odd. Then {êm} is an

orthonormal basis of H(N) as a subspace of L2([0, 1]), and ∆N êm = −β̂mêm,

where β̂m ∈ [4m2, π2m2]. Writing |.|0 for the usual norm in L2([0, 1]), it follows
that limN→∞ |em − êm|0 = 0.

For f ∈ H(N) and any β we define

|f |β,N =
(

∑

〈f, êm〉2(1 + β̂m)β
)−1/2

.

From Blount (1996) (Lemma 3.1) it follows that |f |0,N = |f |0 and

2−1/2|f |−β ≤ |f |−β,N ≤ (π/2)β+1|f |−β (2.2)

for f ∈ H(N) and β > 0. We define Pn : Hβ → ⋂

γ Hγ as the projection

Pn(f) =
∑

m≤n

〈f, em〉em,

and put P⊥
n := I −Pn, where I is the identity operator. Similarly, for f ∈ H(N),

let
Pn,N (f) =

∑

m≤n

〈f, êm〉êm,

and P⊥
n,N := I − Pn,N .

Without loss of generality we assume that λ = γ = 1. Let N be a fixed positive
integer. Similarly as in Kolkovska (2003), let us consider the discretized version
of (1.4), namely

∂

∂t
XN (t, r) = ∆N,αX

N(t, r)+∇NX
N (t, r)2+

√

XN(t, r)(1−XN(t, r)) dBN (t, r),

XN(0, r) = X(0, r), r = 0,
1

N
, ...,

N − 1

N
, t ≥ 0, (2.3)
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where ∆N,α is the fractional power of the discrete Laplacian, and {N−1/2BN (t, r)}r

is a sequence of independent Brownian motions. Now we state our results.

Theorem 2.1 For any positive initial random condition XN (0) bounded by 1,
there exists a unique strong solution XN(t) of (2.3) in C([0,∞), L2([0, 1]).

Theorem 2.2 a) The distributions of {XN} are relatively compact on C((0,∞), Hβ)
if β ≤ 0, α > β + 3/2, and on C([0,∞), Hβ) for α > β + 3/2, β < −1/2.
b) For any α > 3/2, equation (1.4) has a weak solution in C((0,∞), L2([0, 1])).

Remark 2.1 Theorems 2.1 and 2.2 are consistent with results obtained in Biler
et al. (1998) for the case γ = 0. In our case, we were not able to prove uniqueness
of weak solutions of (1.4); this remains to be investigated.

Theorem 2.3 The solution X(t) has a modification which is Holder continuous
in time: it satisfies

P

(

sup
0<s0≤s<t≤T

|X(t) −X(s)|β
|t− s|δ <∞

)

= 1

for each 0 < δ < [(2α− 2β − 3)/(2α)] ∧ 1/2, 3/2 < α ≤ 2, and β < (2α− 3)/2.

Remark 2.2 In particular, when α = 2 and 0 ≤ β < 1/2, we can take 0 < δ <
1−2β

4 , and obtain

P (X ∈ C((0,∞) : Hβ)) = 1,

thus X(t) is smoother than an L2([0, 1]) function for t > 0.

3 Proofs

Let us recall the discrete approximations of the first and second derivative with
respect to the variable x, namely

∆Nh

(

t,
k

N

)

=
h

(

t, k+1
N

)

− 2h
(

t, k
N

)

+ h
(

t, k−1
N

)

1
N2

,

∇N h

(

s,
k

N

)

h
(

s, k+1
N

)

− h
(

s, k
N

)

1
N

, 1 ≤ k ≤ N,

where h is a given function. Let us write xN
r (t) = XN (t, r). Then (2.3) can be

written in the more compact form

dxN
i (t) =





N
∑

j=1

aN
ijx

N
j (t) + bNijx

N
j (t)2



 dt+
√

NxN
i (t)

(

1 − xN
i (t)

)

dBi(t)

xN
i (0) = f(i/N), 1 ≤ i, j ≤ N, (3.1)
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where

bNij =







N if j = i+ 1,
−N if j = i,
0 otherwise,

and aN
ij are the coefficients of ∆N,α. In the case α = 2,

aN
ij =







N2 if j = i+ 1, i− 1,
−2N2 if j = i,
0 otherwise.

Lemma 3.1 For any initial random condition XN(0) = (xN
1 , ..., x

N
N ) ∈ [0, 1]N ,

the system

dxN
i (t) =





∑

j

aN
ijx

N
j (t) +

∑

j

bNijx
N
j (t)2



 dt+
√

NxN
i (t)(1 − xN

i (t)) dBi(t)

xN
i (0) = xi, i = 1, ..., N, (3.2)

admits a unique strong solution XN(t) = (xN
1 (t), . . . , xN

N (t)) ∈ C([0,∞), [0, 1]N).

Proof. Let us consider the re-scaled system

dxN
i (t) =





∑

j

aN
ijx

N
j (t) +

∑

j

bNijx
N
j (t)2



 dt+
√

g(xN
i (t)) dBi(t) (3.3)

xN
i (0) = xi, i = 1, ..., N,

where g : R → R is defined by g(x) = Nx(1 − x) for 0 ≤ x ≤ 1, and g(x) = 0
otherwise. Since the coefficients of (3.3) are continuous, by Skorohod’s existence
theorem (see e.g. Skorohod (1995), Ikeda and Watanabe (1989)), we conclude
that on some probability space there exists a weak solution XN(t) of (3.3). We
will prove that each weak solution XN (t) = (xN

1 (t), . . . , xN
N (t)) of this system, is

bounded: xN
i (t) ∈ [0, 1] for all i = 1, . . . , N and t ≥ 0, thus showing that XN(t)

is a solution also of (3.2).
First we show that xN

i (t) ≥ 0 for each i = 1 . . . , N . Since the system has
non-Lipschitz coefficients, the solution may explode in finite time. Let τ1 ≤ ∞
denote the explosion time of the solution. If some of the solution coordinates are
negative, then there exists a random time 0 < τ2 ≤ ∞ such that for 0 < t ≤ τ2
all such coordinates are between −1 and 0. This is so because there is only finite
number of coordinates, and they are continuous.

In order to obtain pathwise uniqueness of weak solutions we shall use the
local time techniques of Le Gall combined by the classical method of Ikeda and
Watanabe (see e.g. Rogers and Williams, 2000, Chapter V, §43).

We state the following result of Le Gall (1983).
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Lemma 3.2 Let Z ≡ {Z(t), t ≥ 0} be a real-valued semimartingale. Suppose
that there exists a function ρ : [0,∞) → [0,∞) such that

∫ ε

0
du

ρ(u) = +∞ for all

ε > 0, and
∫ t

0

1{Zs>0}

ρ(Zs) d〈Z〉s < ∞ for all t > 0 a.s. Then the local time at zero of

Z, L0
t (Z), is identically zero for all t a.s.

Applying Lemma 3.2 to xN
i (t) with ρ(u) = u and using Tanaka’s formula

(see e.g. Revuz and Yor, 1994), after summation we obtain for xN
i (t)− :=

max{0,−xN
i (t)},

N
∑

i=1

xN
i (t)− = −

∫ t

0

N
∑

i=1

1xN
i (s)<0

N
∑

j=1

(aN
ijxj(s) + bNijxj(s)

2) ds

≤
∫ t

0

N
∑

i,j=1

1xN
i (s)<0a

N
ijxj(s)− ds+N

∫ t

0

N
∑

i=1

1xN
i (s)<0xi(s)

2 ds

≤
∫ t

0

N
∑

i,j=1

aN
ijxj(s)− ds+N

∫ t

0

N
∑

i=1

xN
i (s)− ds

= N

∫ t

0

N
∑

i=1

xN
i (s)− ds

since
∑

i a
N
ij = 0, which follows from self-adjointness of ∆N,α. Applying Gronwall’s

lemma we obtain that
∑N

i=1 x
N
i (t)− = 0, and, hence, the solution is non-negative

for each t ≥ 0. By a similar argument applied to (1 − xN
i (t))− it follows that

xN
i (t) ≤ 1 for each 1 ≤ i ≤ N.

Let X1,N = (x1,N
1 , . . . , x1,N

N ) and X2,N = (x2,N
1 , . . . , x2,N

N ) be two weak so-
lutions of (3.2) defined with the same initial conditions and the same Brownian
motions.

Then

x1,N
i (t) − x2,N

i (t)

=

∫ t

0





∑

j

aN
ij

(

x1,N
j (s) − x2,N

j (s)
)

+ bNij

(

x1,N
j (s)2 − x2,N

j (s)2
)



 ds

+

∫ t

0

[
√

Nx1,N
i (s)(1 − x1,N

i (s)) −
√

Nx2,N
i (s)(1 − x2,N

i )(s)

]

dBi(s),

i = 1, . . . , N.

Since

〈X〉t =

∫ t

0

[
√

Nx1,N
i (s)(1 − x1,N

i (s)) −
√

Nx2,N
i (s)(1 − x2,N

i )(s)

]2

ds
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and

∫ t

0

[

√

Nx1,N
i (s)(1 − x1,N

i (s))−
√

Nx2,N
i (s)(1 − x2,N

i )(s)

]2

x1,N
i (s) − x2,N

i (s)
1x1,N

i (s)−x2,N
i (s)>0 ds

≤
∫ t

0

2N1x1,N
i (s)−x2,N

i (s)>0 ds < 2Nt

(where we used that (
√

x(1 − x) −
√

y(1 − y) )/(x − y) < 2 for x, y ∈ [0, 1],
x > y, which follows from L’Hospital rule), we can apply Lemma 3.2 to Z(t) =

x1,N
i (t) − x2,N

i (t) with ρ(x) = x. Therefore, L0
t

(

x1,N
i (s) − x2,N

i (s)
)

= 0 for all

i ∈ {1, . . . , N}.
Applying Tanaka’s formula again,

∣

∣

∣x
1,N
i (t) − x2,N

i (t)
∣

∣

∣ =

∫ t

0

sgn
(

x1,N
i (s) − x2,N

i (s)
)

·





∑

j

aN
ij

(

x1,N
j (s) − x2,N

j (s)
)

+ bNij

(

x1,N
j (s)2 − x2,N

j (s)2
)



 ds

+

∫ t

0

sgn
(

x1,N
i (s) − x2,N

i (s)
)

·
[

√

Nx1,N
i (s)

(

1 − x1,N
i (s)

)

−
√

Nx2,N
i (s)

(

1 − x2,N
i (s)

)

]

· dBi(s), i = 1, . . . , N.

Since aN
ij and bNij are bounded by 1, it follows that

E

N
∑

i=1

∣

∣

∣x
1,N
i (t) − x2,N

i (t)
∣

∣

∣

≤
∫ t

0

E
N

∑

i=1

∣

∣

∣

∣

∣

∣

∑

j

aN
ij

(

x1,N
j (s) − x2,N

j (s)
)

+ bNij

(

x1,N
j (s)2 − x2,N

j (s)2
)

∣

∣

∣

∣

∣

∣

ds

≤
∫ t

0

K(N)E

N
∑

i=1

∣

∣

∣x
1,N
i (s) − x2,N

i (s)
∣

∣

∣ ds,

where K(N) is a constant depending on N. From Gronwall’s inequality we con-
clude that

E

d
∑

i=1

∣

∣

∣x
1,N
i (t) − x2,N

i (t)
∣

∣

∣ = 0
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for all t ≥ 0, thus proving pathwise uniqueness. By a classical theorem of Yamada
and Watanabe (1971), this is sufficient for existence of a unique strong solution
of (3.2). 2

Since XN(t, ·) is defined on a discrete system of points {r = k/N, k = 0, 1, ...,
N − 1}, by assigning to XN (t, ·) the constant value XN(t, k/N) in the interval
[k/N, (k+1)/N), k = 0, 1, ..., N−1, we can view the function XN(t) as an element
of the space H(N). By variation of constants, we can write (2.3) in the equivalent
form

XN(t) = TN,α(t)XN (0) +

∫ t

0

TN,α(t− s)[∇NX
N(s)2] ds

+

∫ t

0

TN,α(t− s)
√

XN(t)(1 −XN(t)) dBN (s, r)

:= TN,α(t)XN (0) + VN (t) +MN (t), (3.4)

where TN,α(t) is the semigroup on H(N) generated by ∆N,α.

Let YN (t) =
∫ t

0

√

XN(s)(1 −XN(s) dBN (s).

Lemma 3.3 (i) For β < −1/2, {YN} is relatively compact in C([0,∞) : Hβ).
(ii) For any fixed n, and any β, {PnX

N} is relatively compact in C([0,∞) : Hβ).

Proof. (i) For β < −1/2 and 0 ≤ t ≤ t+ s ≤ T, we have

E[|YN (t+ s) − YN (t)|2β |σ(Xr), r ≤ t]

= E[

∞
∑

m=0

∫ t+s

t

〈XN (r)(1 −XN (r)), (PN em)2〉dr(1 + π2m2)β |σ(Xr), r ≤ t],

hence from a well-known criterion (see e.g. Ethier and Kurtz, 1986), {YN} is
relatively compact in C([0,∞ : Hβ), which proves (i).

Let consider the equality

PnX
N(t) = PnX

N(0) +

∫ t

0

Pn∆N,αX
N(s) ds+

∫ t

0

Pn∇NX
N(s)2 ds

+

∫ t

0

Pn

√

XN(s)(1 −XN(s)) dWN (s).

For fixed n, using the fact that ∆N is self-adjoint onHN andXN(t) is bounded, we
obtain from Ascoli’s theorem and (i) that the distributions of Pn[XN (t) − YN (t)]
are relatively compact. 2

Lemma 3.4 For any ε > 0 and T > 0,
(i) limn→∞ supN P (sup0≤t≤T |P⊥

n,NM
N(t)|β,N ≥ ε) = 0 for any β < 1/2.

(ii)limn→∞ supN P (sups≤t≤T |P⊥
n,NX

N(t)|β,N ≥ ε) = 0 for s > 0 and α > β+3/2,

or s = 0 and α > β + 3/2, β < −1/2.
(iii)limn→∞ supN P (sups≤t≤T |P⊥

n,NX
N (t)|β ≥ ε) = 0 for s > 0 and α > β +

3/2, β ≤ 0, or s = 0 and α > β + 3/2, β < −1/2.



148 Ekaterina. T. Kolkovska

Proof. From the equality

〈MN (t), êm〉 =

∫ t

0

exp[−β̂m(t− s)]〈XN (t)(1 −XN(t)), (êm)2〉dB(s)

and Blount (1996) (Lemma 1.1), we obtain

P

(

sup
t≤T

〈MN (t), êm〉2 ≥ a2

)

≤ π2m2T [exp(Cm2a2) − 1]−1, (3.5)

where C > 0 is a constant. For β < 1/2, let δ be such that 0 < δ < 1, β−δ < −1/2.
Then, for given ε > 0, there exists n0 > 0 such that for all n ≥ n0 there holds
∑

m≥nm
2(β−δ) < ε and

P

(

sup
0≤t≤T

|P⊥
n,NM

N (t)|β,N ≥ ε

)

≤ P



sup
t≤T

∑

m≥n

〈MN (t), êm
2〉m2β ≥

∑

m≥n

m2(β−δ)





≤
∑

m≥n

P

(

sup
t≤T

〈MN (t), êm
2〉 ≥ m−2δ

)

≤
∑

m≥n

π2m2T [exp(Cm2(1−δ)) − 1]−1,

where we used (3.5) to obtain the last inequality. Letting n→ ∞ yields (i).
Let denote by TN (t) the semigroup generated by ∆N . By definition we have

TN,α(t)(x) =

∫ ∞

0

ft,α(s)TN (s)xds,

where ft,α(s) := 1
2πi

∫ σ+i∞

σ−i∞ ezs−tzα/2

dz for s ≥ 0. Since for m = 0, 2, ..., N − 1,

we have TN(s)êm = e−sβ̂m êm, by Proposition 1, p.260 in Yosida (1980),

TN,α(t)(êm) =

∫ ∞

0

ft,α(s)e−sβ̂m ds êm

= e−tβ̂m
α/2

êm.

Hence |〈TN,α(t)XN (0), êm〉| < exp(−β̂mt) and for all natural N and β < −1/2,
we have

sup
0≤t≤T

|TN,α(t)XN (0)|2β,N ≤ C1

N−1
∑

m=0

m2β <∞, (3.6)



Existence and regularity of solutions to a stochastic Burgers-type equation 149

and for s > 0 and α > β + 1/2, we obtain

sup
s≤t≤T

|TN,α(t)XN (0)|2β,N ≤
N−1
∑

m=0

m2β−2α <∞. (3.7)

Using the selfadjointness of the operators TN,α(t) and ∇N on H(N), it follows
that

〈VN (t), êm〉 = 〈
∫ t

0

TN,α(t− s)[∇NX
N(s)2] ds, êm〉

= 〈
∫ t

0

TN,α(t− s)êm,∇NX
N (s)2〉 ds

=

∫ t

0

−e−(t−s)β̂m
α/2

〈∇N êm, X
2
N(s)〉 ds. (3.8)

Since 4m2 ≤ β̂m ≤ π2m2 and supx |∇N êm(x)| ≤ cm for some constant c >
0 independent of N (see Blount (1996)), we obtain from (3.8), for all natural
N, s ≥ 0 and α > 3/2 + β,

sup
s≤t≤T

|VN (t)|2β,N = sup
s≤t≤T

N−1
∑

m=0

〈VN (t), êm〉2(1 + π2m2)β ≤ C1

N−1
∑

m=0

m2(1−α)m2β<∞,

(3.9)
where C1 = C1(T ) is a constant non depending on N .

Part (ii) of the result then follows from (3.6), (3.7), (3.8) and (3.9).
Finally, (iii) follows from (ii) and (2.2). 2

Proof of Theorem 2.2a). Let consider Pn,NX
N = PnX

N + (Pn,N − Pn)XN .
Since for fixed n, we have supt≤T |(Pn,N − Pn)XN(t)|0 → 0 in probability as

N → ∞, by Lemma 3.3 (ii) we obtain relative compactness for Pn,NX
N . Now from

XN = Pn,NX
N +P⊥

n,NX
N and Lemma 3.4(iii) we obtain relative compactness for

XN . 2

Proof of Theorem 2.2b).
From Theorem 2.2a) we know that there exist a process X and a subsequence

XNk of XN such that XNk ⇒ X in C([0,∞), L2([0, 1]). We will denote XNk by
XN .

Applying Skorohod’s representation theorem, we can construct a sequenceXN ′

and a random element X ′ on some probability space (Ω,F , {Ft}, P ) such that

{XN} D
= {X ′} and XN → X in C([0,∞), L2([0, 1])) with probability 1 (hence

with probability 1 XN(t) → X(t)). Let us denote

KN(t) := XN (t) −XN(0) −
∫ t

0

∆N,αX
N(s) ds−

∫ t

0

∇NX
N (s)2 ds.
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Then by (2.3), KN(t) is an H(N)-valued martingale with 〈KN 〉t =
∫ t

0 X
N(t)(1 −

XN(t)) ds and it is straightforward to see that KN → K in L2([0, 1]), where

K(t) := X(t) −X(0) −
∫ t

0

∆αX(s) ds−
∫ t

0

∇X(s)2 ds.

Moreover, since KN(t) is uniformly integrable (supN E(|KN (t)|0) <∞ uniformly

for t ≤ T ), K(t) is a L2([0, 1])-martingale with 〈K〉t =
∫ t

0 X(s)(1−X(s)) ds. Now
as in Konno and Shiga (1998) we can construct on a extended probability space a

space-time white noiseW (ds, dx) such thatK(t)=
∫ 1

0

∫ t

0

√

X(t)(1−X(t)W (ds, dx)
and hence X(t) is a weak solution of (1.4). 2

Proof of Theorem 2.3. Let consider the equality

X(t) = Tα(t)X(0) +

∫ t

0

Tα(t− s)[∇X(s)2] ds

+

∫ t

0

Tα(t− s)
√

X(t)(1 −X(t)) dB(s)

:= Tα(t)X(0) + V (t) +M(t). (3.10)

As in the proof of Theorem 1.2 and Corollary 1.1 in Blount and Kouritzin
(2001), we obtain

P

(

sup
0<≤s<t≤T

|M(t) −M(s)|β
|t− s|δ <∞

)

= 1

for each 0 < δ < [(α − 2β − 1)/(2α)] ∧ 1/2, 3/2 < α ≤ 2, and β < α−1
2 . The

condition that must hold in order to give the result is

∞
∑

m=1

mα(δ−1)(1 +m2)β <∞.

Now consider the second term in (3.10) and define Vm(t) = 〈V (t), em〉. From (3.8)
we have

Vm(t) = m

∫ t

0

e−mα(t−s)hm(s) ds

for some bounded hm. From

Vm(t) − Vm(s) = (e−mα(t−s) − 1)gVm(s) +m

∫ t

s

(e−mα(t−u)h(u) du,

we obtain for 0 ≤ s < t and a constant c,

|Vm(t) − Vm(s)| ≤ cm
1 − e−mα(t−s)

mα
≤ cmα(δ−1)+1|t− s|δ, (3.11)
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where in (3.11) we used

(1 − e−a|t−s|)/a ≤ min{|t− s|, aδ−1|t− s|δ}

for a > 0 and 0 < δ ≤ 1.
Hence,

|Vm(t) − Vm(s)|2β =
∑

m

([Vm(t) − Vm(s)]2(1 +m2)β

≤ c

∞
∑

m=1

m2α(δ−1)+2+2β |t− s|2δ.

Thus for 0 < δ < [(2α− 2β − 3)/(2α)] ∧ 1/2, 3/2 < α ≤ 2 and β < (2α− 3)/2 we
obtain

P

(

sup
0<≤s<t≤∞

|V (t) − V (s)|β
|t− s|δ <∞

)

= 1

(note that the equality holds also without the probability sign since the estimates
are deterministic).

Finally, for the first term in (3.10) we have

|(T (t) − T (s))X(0)|2β ≤ C(s0, β, α)|t− s|2

in the same way as in the proof of Corollary 1.1 in Blount and Kouritzin (2001).
The proof is complete. 2

4 Conclusions

We have proved existence and regularity properties of solutions to a fractal Burgers
equation with a stochastic perturbation given by white noise term. Since the
equation has non-Lipschitz coefficients, the analysis of existence and properties
of weak solutions has been rather complicated, and uniqueness of weak solutions
remains to be proved.

Financial applications similar to those in Hodges and Carverhill (1993) , Hodges
and Selby (1997), such as numerical methods and simulations, and implications
regarding the behavior of the related asset stock price, have not been considered
here and remain to be investigated. The presence of a fractional power of the
Laplacian in our equation is related to an option-pricing model where the asset
log-prices follow a Lévy stable motion. For more realistic financial applications it is
important also to consider fractal Burgers equations with less restrictive stochastic
perturbations, that would allow to consider other behaviors of risky asset prices.
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