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Abstract: In the last few years the properties of risk measures that

can be considered as suiting ”best practice” rules in insurance have been

studied extensively in the actuarial literature. In Artzner (1999) so-called

coherency axioms were proposed to be satisfied for risk measures that are

used for providing capital requirements. On the other hand Goovaerts et al.

(2003a), (2003b),(2003c) argue that the choice of appropriate set of axioms

should depend on the axiomatic ”situation at hand”. In this contribution, we

show that so-called concave distortion risk measures are not always consistent

with some well-known dependency measures such as Pearson’s r, Spearman’s

ρ and Kendall’s τ , i.e. higher dependency between random variables does

not necessary lead to higher risk measure of corresponding sums. We also

test numerically to what extend risk measures are consistent with certain

dependency measures and how stable the consistency level is for different

one-parametric families of distortion risk measures.
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1 Introduction

A risk measure is an instrument that summarize a distribution of for instance an
insurance risk in one single number. There is no commonly accepted classification
of insurance risks. ”The Report of the IAA’s Working Party on Solvency”, 2002,
suggests to categorize the insurance risks under six major headings: underwrit-
ing risk, credit risk, market risk, operational risk, liquidity risk and event risk.
This general map of different insurance risks confirms that determining capital re-
quirements for an insurance company (either for reserving or solvency purposes)
is a very complex and non-trivial task. By their nature, capital requirements are
numeric, based on quantifiable measures of risks.

In general a risk measure is defined as a mapping from the set of risks at
hand to the real numbers. It is difficult to specify desirable properties for risk
measures. Depending on where it is used for, a risk measure should take into
account basic probabilistic quantities such as central tendency, variability, tail
behavior or skewness. In many applications it is particularly important to apply
risk measures to sums of random variables. In Section 3 we show that the general
intuition ”the more dependent summands - the more risky sum” is not always the
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case for Tail Value-at-Risk and - more general - the class of so-called distortion
risk measures.

Different risk measures do not put the same emphasis on each of the probabilis-
tic quantities and thus the specification of appropriate risk measures must heavily
rely on the economic context. In insurance industry there are two main applica-
tions of risk measures: at the policy level - the premium, which is understood as
the monetary value of the risk associated with the policy, and at the company
level - determining the capital requirements for reserving and solvency purposes.
In the first case one usually deploys two-sided risk measures which aim to measure
the distance between the risky situation and the corresponding risk-free situation
when both favorable and unfavorable discrepancies are taken into account. The
capital requirements have to be determined much more conservatively and thus
so-called one-sided risk measures, to which only unfavorable discrepancies con-
tribute, have to be used. The Value-at-Risk at level p (which is equal to the p-th
quantile) is one-sided risk measure obtained by minimizing the cost of capital and
residual risk.

A lot of research in actuarial science was devoted to determine desired proper-
ties of risk measures. In the actuarial literature some axiomatic approaches to risk
measures (or insurance premium principles) have been proposed. Let us remind
some of them: the mean value principle (Hardy et al., 1982), the zero-utility pre-
mium principle (Bühlmann, 1970), the Swiss premium principle (Gerber, 1974),
the Orlicz premium principle (Haezendonck and Goovaerts, 1982), the Wang’s
(distortion) premium principle (Wang, 1996). All these risk measures can be
described in terms of a few axioms reflecting desirable properties - the related dis-
cussion can be found in Goovaerts et al. (1984) and Goovaerts et al. (2003b). Re-
cently also so-called coherent risk measures introduced in Artzner (1999) (axioms
of monotonicity, translation invariance, subadditivity and positive homogeneity)
has drawn a lot of attention in mathematical papers.

We discuss the topic of choosing appropriate axioms given the specific economic
purpose in Section 2 (see also Goovaerts et. al ., 2003a, 2003b, 2003c). Section
3 is devoted to the class of so-called concave distortion risk measures. In this
part we examine the behavior for sums of dependent random variables and its
relation with some well-known measures of dependencies. A summary concludes
the paper.

2 Risk measures and ”best practice” rules

2.1 Premium calculation

When one applies risk measures as premium principles, the coherent risk measures
become extremely dangerous, especially in the case of catastrophic risks when one
encounters very large claims and strongly dependent risks. In this case the most
important shortcoming of coherency is ignoring of available risk capital and as a
consequence - corresponding probability of ruin. In these cases one should be very
cautious with risk measures which are subadditive for comonotonic risks (in the
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extreme case - additive) and/or positively homogeneous.
Obviously there are cases when subadditivity for comonotonic risks reflects

the economical reality properly. The so-called subdecomposability may be for
example useful (see Goovaerts et al., 1984):

π(X) ≤ π(αX) + π((1 − α)X), where 0 ≤ α ≤ 1, (2.1)

(splitting the risk into two separate risks may be more expensive for the company
to manage). This problem can be however solved by the following decomposition
of the premium:

π(X) = π′(X) + c(X), (2.2)

where π′(·) denotes a pure risk measure and c(·) is the provision for the costs
of governing the policy. Then it is reasonable to require c(·) to be subadditive.
For some minor policies this subadditivity property may dominate the property
of superadditivity for comonotonic risks of pure premium π′(·). However for large
risks this additional cost premium will become negligible and in this case we can
assume that

π(X) ≃ π′(X). (2.3)

Obviously in the case of large claims it often happens that the risk X is much too
dangerous for the insurance company to bear as a whole and then splitting the
risk between n companies will be advantageous. In such a case the superdecom-

posability of the premium will be a desirable property:

π(X) ≥ π(p1X) + . . . + π(pnX), where pi ≥ 0 and

n
∑

i=1

pi = 1. (2.4)

Further in this section we will concentrate only on the properties of pure risk
premium π(·) = π′(·), without taking into account the provision c(·).

2.1.1 The properties of premium principles

It is reasonable to assume that the following properties should always hold for
premium principles:

• π(c) = c, i.e. when there is no uncertainty, there is no safety loading;

• P (X ≤ Y ) = 1 ⇒ π(X) ≤ π(Y ). This condition states that the price of the
larger risk must be higher;

• X ≤cx Y ⇒ π(X) ≤ π(Y ), where ≤cxdenotes inequality in the convex order
sense. It is the weakest possible condition for risk aversion following from
utility theory - the risks X and Y are ordered in the convex order sense
if all risk averse decision makers prefer risk X over Y . It is reasonable to
assume that in the case of insurance both insurers and insureds are risk
averse decisions makers, so the third condition for premiums arises very
naturally.
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Note that two risk measures widely used in practice:

πα(X) = E(X) + ασ(X) and (2.5)

πβ(X) = E(X) + βVar(X) (2.6)

do not preserve stochastic dominance, so generally, they should not be used as
premium principles.

Apart from these general conditions, reasonable premium principles should
also satisfy some additional properties for sums of random variables; however they
must heavily rely on the dependence structure between the summands. Below we
provide some examples in the two extreme cases, namely when random variables
are independent and comonotonic.

2.1.2 Additivity properties for independent risks

In most calculations in insurance the assumption of independence of risks rea-
sonably well corresponds to reality. In the case of a balanced risk, such as life
insurance or automobile third party liability, the claims may be assumed to be
independent or at least conditionally independent given some additional informa-
tion about the mortality (for example calendar year), interest rates, investment
opportunities, the skill and experience of the driver, etc. From the law of large
numbers it is known that accumulating such risks will be always beneficial for the
company. As a conclusion we state that insurance premium should satisfy the
condition of subadditivity for independent risks. Thus, for example, the group
insurance policy purchased by the employer for all employees should be always
relatively cheaper than policies purchased individually (in this case risks seem to
reveal even slight positive dependence).

In practical applications however it is often convenient to assume additivity for
independent risks. It is, for example, the case when so-called top-down calculation
of insurance premiums is required, i.e. when the premium is determined at the
level of whole portfolio (for example by considering the ruin probability model)
and then distributed to the policyholders (see Bühlmann, 1970, Gerber, 1979,
1985). From the characterization of Gerber it follows that any premium which is
additive for independent risks and preserves first and second stochastic dominance,
can be expressed as

π(X) =
1

R
log E(eRX). (2.7)

This risk measure is known in the literature as exponential premium principle and
can be derived also, for example, from utility theory (in this case R represents

”the risk aversion coefficient”) or ruin theory (then R = | log ε|
u

, where ε denotes
the imposed probability of ruin and u is the initial capital).

2.1.3 Additivity properties for comonotonic risks

The case of comonotonic risks corresponds to the extreme positive dependency.
Formally the vector (X, Y ) is said to be comonotonic if

(X, Y ) =D (F−1
X (U), F−1

Y (U)), where U ∼ U(0, 1). (2.8)
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In this definition we use the generalized inverse function, namely

F−1(p) = inf{t|F (t) ≥ p}. (2.9)

Clearly from this definition it follows that accumulating comonotonic risks may
not be advantageous for the insurer - in this case risks do not hedge against each
other and accumulating comonotonic risks substantially increases the probability
of ruin. Therefore risk measures which allow strict subadditivity for comonotonic
risks do not find any reasonable applications as premium principles. There are
some cases when it is convenient and advantageous to use risk measures which are
additive for comonotonic risks, but we will demonstrate that the additivity may
be also very dangerous. In general in the case of insurance premiums one should
impose the condition of superadditivity for all possible pairs of comonotonic
risks.

Example 1. Suppose that π(·) denotes an arbitrary comonotonic additive, and
thus also translation invariant, premium principle. Suppose for simplicity that
X1, . . . , Xn are binomial distributed with parameter q = 0.1 and represent como-
notonic risks. Suppose also that there is an initial capital u and that we want to
ensure that the probability of ruin is smaller than 5%. Obviously it is reasonable
to assume that π(X) < 1 because otherwise nobody would purchase the policy.
However then for n large enough we get

Pr({ruin will occur}) = Pr({u + nπ(X) −
n

∑

i=1

Xi < 0) = 0.1 > 0.05 (2.10)

for sufficiently large n. Thus in this example the strict superadditivity for comono-
tonic risks is essential.

Although the mathematics hidden behind this example is very simplified, sim-
ilar situations are well-known from insurance practice. Obviously there is no
insurance company which would insure all buildings on the same seismic area or
all floors in skyscraper at Manhattan (in both examples the considered risks are
close to comonotonicity), unless insureds would pay the premium close to the
maximal possible damage. It is not easy to find anybody who would agree to pay
such a premium. However after disaggregation such risks are successfully insured
and corresponding premiums remain at reasonable high levels. In this particular
case the premium principle used by companies satisfy the strict superadditivity
condition:

π(X1 + . . . + Xn) > π(X1) + . . . + π(Xn). (2.11)

Note that exponential premium principle introduced in Section 2.2.2 is super-
additive for comonotonic risks (in fact it is superadditive even for the sums of
positive quadrant dependent (PQD) couples - see Kaas et al., 2001).

2.1.4 Some comments on positive homogeneity of premium principles

In the actuarial literature it is often argued that premium principles should be
positively homogeneous because only such risk measures can be expressed in mon-
etary units and are independent of the actual currency. It is only partially true -
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indeed, when a risk measure is positive homogeneous then it satisfies these condi-
tions. The opposite implication however does not hold.

Example 2. Once again we consider the exponential premium principle:

π(X) =
1

R
log E exp(RX). (2.12)

It is straightforward to verify from Jensen’s inequality that

π(aX)

{

≤ aπ(X) for 0 < a ≤ 1
≥ aπ(X) for a ≥ 1.

(2.13)

Does it mean that after exchanging Belgian Francs to Euro we will pay less for
the premium if the rules remain unchanged? Not necessarily. In Section 2.2.2 we
have recalled that the exponential premium principle may be derived from ruin
theory and then

1

R
=

u

log ε
, (2.14)

where u is the initial capital and ε denotes the imposed probability of ruin. Thus
in this example not only X is expressed in monetary units but also 1

R
, and thus

when one changes the currency and adjusts the coefficient R coefficient properly
- the premium principle turns up to be independent from the currency.

Obviously in other cases one has no such clear interpretation as ruin theory.
However in many cases coefficients in formulae for corresponding risk measures
cannot be interpreted as dimension-free. Let us consider another example.

Example 3. Recall the risk measure given by (2.6). In this case the parameter
β cannot be interpreted as dimension-free, because otherwise the first summand
will be expressed in Euro while the second - in Euro squared. Thus β must be
expressed in 1

Euro
to give the risk measure πβ(·) in monetary units. Therefore the

formula (2.6) can be rewritten for example as follows:

πβ(X) = E(X) + β′E
( (X − E(X))2

u

)

, (2.15)

where u denotes e.g. the initial capital and β′ is a dimension-free constant.

Summarizing, in many cases positive homogeneity may be a useful and conve-
nient property. However it has nothing to do with the independence of currency.
Moreover we are reluctant to require this property for all risk measures used in
practice, because it causes very similar problems to those illustrated in Section
2.2.3 for the property of additivity for comonotonic risks (in fact positive homo-
geneity and additivity for comonotonic risks are closely related to each other) -
multiplying the risk by a large constant a increases substantially the probability
of ruin. We think that the more general condition (2.13) reflects the desirable
properties of premium principles much better.
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2.2 Risk sharing schemes

In practice we encounter sharing of risks, for example, when an insurer cedes part
of his risk to a reinsurer. Suppose that an insurance company is facing the risk X .
Assume the reinsurer is obliged to cover a part equal to φ(X) while X−φ(X) will
be retained by the insurer. It is reasonable to assume that the function φ satisfies
the following conditions:
a) 0 ≤ φ(x) ≤ x
b) both φ(x) and x − φ(x) are nondecreasing functions of x.

One can easily verify that functions given bellow which define widely used in
practice risk sharing schemes, satisfy the conditions a) and b):

• A stop-loss coverage: for d > 0, φ(x) = (x − d)+;

• A quota-share coverage: for 0 ≤ α ≤ 1, φ(x) = αx;

• A coverage with a maximal limit : for d > 0, φ(x) = min(x, d);

Clearly under the conditions a) and b) both parts of the vector (φ(X), X −
φ(X)) are comonotonic. Thus if one has to distribute the premium between the
two parties involved, the property of additivity for comonotonic risks will be de-
sirable, i.e.

π(X(c) + Y (c)) = π(X) + π(Y ). (2.16)

It is also worth to mention that all risk measures which are additive for comono-
tonic risks and additionally satisfy the three conditions from Section 2.1.1 can be
represented as concave distortion risk measures (at least for bounded random
variables). A related discussion can be found e.g. Wang (1996) or Goovaerts &
Dhaene (1998).

2.3 The solvency margin

The calculation of a solvency margin is another typical application of risk mea-
sures. However it requires completely different properties of corresponding risk
measures than for example premium calculation (at the policy level) or determi-
nation of reserves (at the company level). The solvency margin is interpreted as
a provision for the adverse outcome and as a matter of fact it should be equal to
zero for all situations where there is no uncertainty involved. In particular it does
not make any sense to require the property of monotonicity for corresponding risk
measures.

Example 4. Consider a Bernoulli risk Bq with parameter q ∈ [0, 1]. Then obvi-
ously the premium principle π(Bq) should be increasing in q (monotonicity). On
the contrary, consider a risk measure ρ(·) to compute solvency margin. It is clear
that ρ(B0) = ρ(B1) = 0 because in both situations there is no uncertainty in-
volved. Moreover one can assume that ρ(Bq) = ρ(B1−q) because Bq =D 1−B1−q

and thus one can think that in these two cases uncertainties are ”equal” (note that
we put here the same weight to positive and negative discrepancies). Consider the



162 Grzegorz Darkiewicz, Jan Dhaene and Marc Goovaerts

function f(q) for q ∈ [0, 1
2 ] such that f(0) = 0, f ≥ 0 and f ′(1

2 ) = 0. Then the
risk measure ρ for determining the solvency margin can be defined as

ρ(Bq) =

{

f(q) for 0 ≤ q ≤ 1
2

f(1 − q) for 1
2 ≤ q ≤ 1.

(2.17)

and the corresponding premium principle as

π(Bq) = q + ρ(Bq). (2.18)

Recall that π(Bq) should be increasing in q, what leads to the following additional
condition for f :

−1 ≤ f ′(q) ≤ 1. (2.19)

Now consider two specific functions: f1(q) = α
√

q(1 − q) and f2(q) = βq(1 − q).
One can easily verify that for any α > 0 f ′

1(+)(0) = −∞ and that for any β ≤ 1

(2.19) is satisfied by f2. Thus in the situation ”at hand” f2 is an example of
consistent risk measure for calculating solvency margin while f1 not (because it
leads to a premium which is not monotonic).

2.4 Allocation of economic capital

There must be a substantial difference between risk measures applicable as pre-
mium principles and those used to allocate economic capital. The capital alloca-
tion problem is somehow dual - in this case the risk (at the level of company) is
given and one has to determine the required capital sufficiently large too make
the ruin unlikely. We will demonstrate that also in this case risk measures which
have to be used exhibit very complex behavior. In particular coherent distortion
risk measures do not always lead to optimal solutions.

Example 5. (Capital allocation based on the minimization of cost) Consider the
following problem. Suppose that an insurance company faces the risk X and that
the shareholders have to provide the capital u to let the business run. However
when at the end of the year the shortfall occurs, they are also obliged to cover
the deficit. On the other hand it is not allowed to withdraw the capital if the
shortfall does not occur. Suppose that the capital will be provided at the price
i per unit and that risk-free interest rate is equal to r. Under these assumptions
the shareholders will aim to solve the following minimization problem of their
expected cost:

min
u

(i − r)u + E(X − u)+, (2.20)

which has the unique solution equal to F−1
X (1− i−r

1+r
) (see Goovaerts et al., 2003a).

Thus in this case a very natural optimization problem leads to the Value-at-Risk
which is a non-coherent risk measure.

Example 6. (Allocation of available economic capital between the subsidiaries)
Now consider the following problem. Suppose that the company faces the risk X
and that the capital u to cover this risk has been allocated already. Now suppose
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that the risk X has to be split into two risks X = X1 + X2. Then one faces the
problem of finding the optimal division of economical capital u into u = u1 + u2

where u1 is allocated to the risk X1 and u2 to the risk X2. The optimal solution
will be given by solving the following minimization problem:

min
u=u1+u2

{

ρ(X1 − u1) + ρ(X2 − u2)
}

, (2.21)

where ρ is a risk measure which has to be used in this situation. In this case also
non-coherent risk measure has to be used. Otherwise, because of the property of
translation invariance, (2.21) simplifies to

min
u=u1+u2

ρ(X1) + ρ(X2) − u, (2.22)

which does not lead to any solution.

Example 7. (Allocation of economic capital for sums of risks) In this example we
consider risk measure ρ(·) which has to be used as a rule of determining economic
capital, i.e. the amount u = ρ(X) to be allocated to the risk X . Now suppose
that two companies represented by risks X1 and X2 merge to X = X1 +X2. From
the regulatory’s point of view the merger should be efficient in the following sense:

π((X1 + X2 − u)+) ≤ π((X1 − u1)+ + (X2 − u2)+) (2.23)

(both sides of the inequality represent the cost to the society). Note that under
a mild and natural assumption that the risk measure π(·) has to preserve the
stochastic dominance, subadditive risk measure ρ may lead to problems for (2.23)
to be satisfied. On the other hand note that one has with probability one an
inequality:

(X1 + X2 − u1 − u2)+ ≤ (X1 − u1)+ + (X2 − u2)+ (2.24)

Thus the residual risk of the merged company is always smaller than the risk of
the split company. This fact will hold in general for risk measures ρ(·) which are
superadditive.

We are far from requiring superadditivity for risk measures used for economic
capital purposes. Example 7 aims only to illustrate that risk measures which are
subadditive for all possible dependence structures of the vector (X1, X2) do not
reflect properly the dependency between (X1 −u1)+ and (X2 −u2)+. Taking this
dependency into account, the risk measure providing capitals u, u1 and u2 will not
always be subadditive nor always superadditive, but may instead exhibit behavior
similar to Value-at-Risk (see Embrechts et al., 2002). From this perspective the
fact that the Value-at-Risk is neither sub- nor superadditive is a desirable property
rather than a pitfall!

2.5 Consistent risk measures

In this section we have provided several examples to demonstrate that ”best prac-
tice” rules in insurance require sometimes much more complex properties of risk
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measures than those following from coherency axioms. It does not seem to be
reasonable to require one particular set of axioms to hold in all risky situations,
without taking into consideration the available economic capital or dependency
structure between random variables. In Goovaerts et al. (2003b) and (2003c) it
has been argued that in any realistic situation at hand, a specific set of axioms S

”consistent” with the given situation has to be considered. More precisely, they
have considered the following definition.

Definition 1. Let S be a set of axioms for risk measures and α denotes an arbi-
trary number from the interval (0, 1). A risk measure π(·) = π(S,α)(·) = πα is called

(S, α)-consistent if π(·) satisfies the set of axioms S and inequality π(X) > F−1
X (α)

for any risk X, where F−1
X (α) denotes α-quantile.

The condition on the level α ensures that the risk measure is acceptable by
regulators who impose Value-at-Risk at level α. In Goovaerts et al. (2003b) some
universal procedures based on the Markov inequality were provided to generate
(S, α)-consistent risk measures.

3 Subadditive distortion risk measures and de-

pendency measures

3.1 Introduction

Distortion risk measures were introduced in Wang (1996). For a given nondecreas-
ing function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1 for every risk the
corresponding risk measure is defined as follows:

Hg(X) =

∫ ∞

0

g(1 − FX(t))dt =

∫ 1

0

F−1
X (1 − q)dg(q), (3.1)

where FX(t) denotes the distribution function of X . We will call g a distortion
function.

Distortion risk measures have many properties discussed in the previous sec-
tion: positive homogeneity, translation invariance, additivity for comonotonic
risks, preservation of first order stochastic dominance. Moreover if we additionally
assume concavity of the distortion function g than the corresponding risk measure
will be also subadditive, and thus is Artzner-coherent.

These properties of distortion risk measures have been comprehensively studied
in many works (see e.g. Wang, 1996, Wang et. al, 1997, Wang and Dhaene, 1998,
Wang and Young, 1998, Wirch and Hardy, 2000, Dhaene et. al, 2004). In this
section we investigate the relation between distortion risk measures applied to
sums of random variables and some well-known dependency measures between
summands (throughout this section we assume that marginal distributions are
fixed). The theorem we cite below says that when the dependency level differs
strongly (which is expressed in the terms of the so-called correlation order of pairs
of random variables) then all concave distortion risk measure behave intuitively,
i.e. the more dependent summands - the more risky sums.
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Definition 2. Let (X1, Y1) and (X2, Y2) be elements of R(FX , FY ) (i.e. have
the same marginal distributions equal to FX and FY ).Then we say that (X1, Y1)
precede (X2, Y2) in correlation order sense when either of the two equivalent con-
ditions holds:

(a) for all non-decreasing functions f , g one has that

Cov(f(X1), g(Y1)) ≤ Cov(f(X2), g(Y2)),

provided that respective covariance functions exist.

(b) for all non-negative pairs (x, y) F(X1,Y1)(x, y) ≤ F(X2,Y2)(x, y).

We denote the correlation order by ≤corr.

Theorem 1. Suppose that g is a concave distortion function. Assume

(X1, Y1), (X2, Y2) ∈ R(FX , FY )

are such that (X1, Y1) ≤corr (X2, Y2). Then Hg(X1 + Y1) ≤ Hg(X2 + Y2).

Proof. See Wang and Dhaene (1998).

However the correlation order is only a partial order and recognizes only very
strong differences. In this section we investigate how distortion risk measures are
related to some more elastic measures of dependency, namely:

• Pearson’s correlation coefficient

r(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
; (3.2)

• Spearman’s rank correlation coefficient

ρ(X, Y ) =
E[FX(X)FY (Y )] − E[FX(X)]E[FY (Y )]

σ
(

FX(X)
)

σ
(

FY (Y )
) ; (3.3)

• Kendall’s rank correlation coefficient

τ(X, Y ) = Pr
(

(X −X ′)(Y − Y ′) > 0
)

−Pr
(

(X −X ′)(Y − Y ′) < 0
)

, (3.4)

where (X, Y ) and (X ′, Y ′) are two independent copies from the considered
bivariate distribution.

We show that in general there is no strict relation between concave distortion
risk measures and those measures of dependencies. In the following subsection
we show that for Tail Value-at-Risk it is possible to find random pairs with fixed
marginals (X1, Y1) and (X2, Y2) such that

TV aRp(X1 + Y1) > TV aRp(X2 + Y2) (3.5)
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despite the ordering of all corresponding correlation coefficients is the opposite,
i.e.:

r(X1, Y1) < r(X2, Y2), ρ(X1, Y1) < ρ(X2, Y2) and τ(X1, Y1) < τ(X2, Y2). (3.6)

Next we propose an experimental test which aims to indicate how strong is the rela-
tionship between the riskiness of sums of random variables generated by distortion
risk measures and the measures of dependency between appropriate summands.

3.2 A counterexample for Tail Value-at-Risk

Tail Value-at-Risk (further we will call it TV aR) was recognized as a very impor-
tant risk measure which can be used for solvency purposes. Artzner (1999) recom-
mended this risk measure to determine solvency capital requirements; in Panjer
(2002) it was used to allocate solvency economic capital between subsidiaries for
normally distributed risks. The practical importance of TV aR is intuitively clear -
for continuous distributions it can be interpreted as expected loss when the speci-
fied threshold (defined here as an appropriate quantile) is exceeded. The TV aR at
level p is also the smallest concave distortion risk measure exceeding VaR at level
p (which is the risk measure usually imposed by regulators) and thus is acceptable
by regulators, see Dhaene et al. (2004).

Formally TV aR at level p is defined as follows:

TV aRp(X) =
1

1 − p

∫ 1

p

Qq(X)dq, (3.7)

and it is straightforward to prove that TV aRp is determined by the concave dis-
tortion function:

gp(x) =

{ 1
p
x for 0 ≤ t ≤ p

1 for p < t ≤ 1
where 0 ≤ p ≤ 1. (3.8)

Remark 1. In the actuarial literature the TV aR is often confused with so-called
Conditional Tail Expectation (CTE) defined below:

CTEp(X) = E[X |X > Qp(X)], (3.9)

where Qp(X) denotes p-th quantile of X. Indeed, in the case of continuous random
variables TV aR and CTE do coincide; however they are not necessarily the same
in the discrete case and in general CTEp cannot be expressed as a distortion risk
measure. The subtle differences between those two risk measures are investigated
in Dhaene et. al (2004).

The following example shows that for sums of random variables with fixed
marginal distributions, TV aR does not preserve in general neither of the three
well-known dependency measures: Pearson’s r, Spearman’s ρ and Kendall’s τ .
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Example 8. Let X and Y be two random variables with probabilities Pr(X =
i) = pi and Pr(Y = i) = qi given by:

p0 = p1 =
1 −√

p

2
, p2 =

√
p (3.10)

and
q0 = 1 −√

p, q1 =
√

p. (3.11)

Let (X1, Y1) and (X2, Y2) be two elements of R(FX , FY ). Concerning the depen-
dency structure of the couples, we assume that X1 and Y1 are mutually indepen-
dent, while the distribution of (X2, Y2) is given in the following table:

X2

Y2 0 1 2

0 p0q0 + xε p1q0 − ε p2q0 + (1 − x)ε
1 p0q1 − xε p1q1 + ε p2q1 − (1 − x)ε

In this definition x denotes a positive number satisfying the following inequal-
ities

1 ≥ x ≥ max
(1

2
,

2
√

p

1 +
√

p
,
1 +

√
p

3 −√
p

)

(3.12)

and ε is an arbitrary positive number such that:

ε ≤ min
(p0q1

x
, p1q0,

p2q1

1 − x

)

. (3.13)

One can immediately verify that (X2, Y2) ∈ R(FX , FY ). Note also that for the
first independent pair one has r(X1, Y1) = ρ(X1, Y1) = τ(X1, Y1) = 0.

All correlation coefficients for the second pair are positive, which can be verified
as follows:

• Cov(X2, Y2) = (2x − 1)ε > 0 because x > 1
2 and thus also r(X2, Y2) > 0.

• From (3.3) we have that

ρ(X2, Y2) =
ε(1 − q0)

(

(1 − x)p0 + p1 − (1 − x)
)

σ
(

FX(X)
)

σ
(

FY (Y )
) , (3.14)

which is positive when x > 1−p0−p1

1+p0

. Combining this with (3.10) we get that

x >
2
√

p

1+
√

p
which is always true in view of (3.12).

• A straightforward manipulation of (3.4) leads to the formula:

τ(X2, Y2) = 2
(

(p0q0 + xε)(p2q1 − (1− x)ε) + (p0q0 + xε)(p1q1 + ε)+ (3.15)

+(p1q0 − ε)(p2q1 − (1 − x)ε)
)

− 2
(

(p0q0 + xε)(p2q1 − (1 − x)ε)+ (3.16)
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+(p0q0 + xε)(p1q1 + ε) + (p1q0 − ε)(p2q1 − (1 − x)ε)
)

. (3.17)

Note that all expressions without ε sum up to 0 as well as all expressions
with ε2 and thus (after some calculations) the condition for τ(X2, Y2) to be
positive is equivalent to the inequality

xp0 + (2x − 1)p1 + xp1 − (1 − x)p2 > 0, (3.18)

what - after taking into account (3.10) - gives x >
1+

√
p

3−√
p
, which holds because

of (3.12).

Now let us return to TV aR. For the decumulative distribution functions of
the sums Si = Xi + Yi we find:

FS1
(t) =























1 for t < 0,

p + υ + ϑ for 0 ≤ t < 1,

p + υ for 1 ≤ t < 2,

p for 2 ≤ t < 3,

0 for t ≥ 3.

(3.19)

and

FS2
(t) =























1 for t < 0,

p + υ + ϑ − xε for 0 ≤ t < 1,

p + υ + ε for 1 ≤ t < 2,

p − (1 − x)ε for 2 ≤ t < 3,

0 for t ≥ 3.

(3.20)

(for simplicity of notation we denote Pr(S1 = 2) by υ and Pr(S1 = 1) by ϑ).
The computation of the first integral in formula (3.1) is now straightforward:

Hgp
(S1) = gp(p + υ + ϑ) + gp(p + υ) + gp(p) = 1 + 1 + 1 = 3, (3.21)

Hgp
(S2) = gp(p + υ + ϑ − xε) + gp(p + υ + ε) + gp(p − (1 − x)ε) =

= 1 + 1 +
p − (1 − x)ε

p
< 3 = Hgp

(S1).

Thus TV aRp(X1 + Y1) > TV aRp(X2 + Y2) despite r(X1, Y1) < r(X2, Y2),
ρ(X1, Y1) < ρ(X2, Y2) and τ(X1, Y1) < τ(X2, Y2).

This example shows that the intuition ”the more dependent summands - the
more risky sum” in some cases may be misleading for TV aR (more general - for
concave distortion risk measures). In the next subsection we test the dependency-
behavior of many other well-known distortion risk measures which should give
intuitive feeling of efficiency in detecting dependencies understood in terms of
correlation coefficients r, ρ and τ .
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3.3 The consistency between distortion risk measures and

dependency measures

In this subsection we provide a simple methodology to test the consistency of
distortion risk measures of sums of random variables with the order induced by
different dependency measures between the summands (in all cases we keep the
marginal distributions fixed). We want to emphasize that the test presented here
is just a first attempt to test this form of consistency. Our conclusions cannot
be interpreted formally because there are no accepted procedures of generating
samples from the population of all random distributions. Our methodology is
rather subjective and takes into account computational convenience. However it
seems to provide quite realistic intuition of the problem.

3.3.1 Description of the methodology

First, we will select 100,000 pairs (X1,k, Y1,k) in the class of bivariate random
variables with support {(i, j) | i, j = 0, . . . , 9}. For each of the selected couples,
we will also consider a random couple (X2,k, Y2,k) with the same marginals as
(X1,k, Y1,k), but of which X2,k and Y2,k are mutually independent. Finally, we will
check how many of these couples (X1,k, Y1,k) and (X2,k, Y2,k) satisfy the following
relations:

sign
(

r(X1,k, Y1,k) − r(X2,k, Y2,k)
)

= sign
(

Hg(X1,k + Y1,k) − Hg(X2,k + Y2,k)
)

,
(3.22)

sign
(

ρ(X1,k, Y1,k) − ρ(X2,k, Y2,k)
)

= sign
(

Hg(X1,k + Y1,k) − Hg(X2,k + Y2,k)
)

,
(3.23)

sign
(

τ(X1,k, Y1,k) − τ(X2,k, Y2,k)
)

= sign
(

Hg(X1,k + Y1,k) − Hg(X2,k + Y2,k)
)

.
(3.24)

In order to select (the distribution function of) the couple (X1,k, Y1,k), we start
by generating 99 random numbers Ui,k in the interval (0, 1). Let

V0,k = 0, (3.25)

Vi,k = U ′
i,k for i = 1, . . . , 99, (3.26)

V100,k = 1, (3.27)

where U ′
i,k denotes i-th order statistic of the sequence {Ui,k}. We consider the

differences
ai,k = Vi,k − Vi−1,k (3.28)

for i = 1, . . . , 100. In this way, we get 100 identically distributed random numbers
such that

a1,k + . . . + a100,k = 1. (3.29)

Now we define the probability distribution of (X1,k, Y1,k) as follows:

Pr(X1,k = i, Y1,k = j) = ai+1+10j,k. (3.30)
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Then the marginal distributions of X1,k and Y1,k are given by Pr(X1,k = i) =
∑9

j=0 ai+1+10j,k and Pr(Y1,k = j) =
∑9

i=0 ai+1+10j,k.

The related random couple (X2,k, Y2,k) is defined as the independent counterpart
of (X1,k, Y1,k), hence

Pr(X2,k = i, Y2,k = j) = Pr(X1,k = i) Pr(Y1,k = j). (3.31)

Next, we compute Pearson’s r(X1,k, Y1,k), Spearman’s ρ(X1,k, Y1,k), Kendall’s
τ(X1,k, Y1,k) and the considered risk measure of appropriate sums

(

Hg(X1,k+Y1,k)

, Hg(X2,k + Y2,k)
)

. Finally we verify whether the equations (3.22), (3.23) and
(3.24) are satisfied (note that appropriate correlation coefficients for the second
independent pair are always 0).

This procedure is repeated for every k = 1, . . . , 100, 000.
Then, for any particular choice of the distortion risk measure g we determine

the frequencies

rg,r =
Ng,r

100, 000
, rg,ρ =

Ng,ρ

100, 000
, rg,τ =

Ng,τ

100, 000
, (3.32)

with Ng,r, Ng,τ and Ng,τ defined as

Ng,r = #
{

(

(X1k, Y1k), (X2k, Y2k)
)

| (3.22) holds
)

, (3.33)

Ng,ρ = #
{

(

(X1k, Y1k), (X2k, Y2k)
)

| (3.23) holds
)

, (3.34)

Ng,τ = #
{

(

(X1k, Y1k), (X2k, Y2k)
)

| (3.24) holds
)

. (3.35)

We will call rg,· the (Pearson’s, Spearman’s, Kendall’s) correlation consistency
coefficient of the risk measure Hg for the particular set of constructed bivariate
distributions.

3.3.2 The risk measures under consideration

We have performed the procedure described above for the following one-parameter
families of distortion functions. Note that although Value-at-Risk is a non-concave
distortion risk measure (and thus is not coherent), we have included it because of
its importance in practical applications. Most of these distortion risk measures
were introduced in Wang (1996). For each family the parameter p comes from the
interval (0, 1).

• Value at Risk:

gp(x) = 1(p,1](x) (3.36)

• Tail Value at Risk:

gp(x) = min
(x

p
, 1

)

(3.37)
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• Proportional hazard transform:

gp(x) = xp (3.38)

• Dual-power transform:

gp(x) = 1 − (1 − x)
1

p (3.39)

• Dennensberg’s absolute deviation principle:

gp(x) =

{

(1 + p)x for 0 ≤ x ≤ 1
2

p + (1 − p)x for 1
2 ≤ x ≤ 1

(3.40)

• Gini’s principle:

gp(x) = (1 + p)x − px2 (3.41)

• Square-root transform:

gp(x) =

√

1 − ln(p)x − 1
√

1 − ln(p) − 1
(3.42)

• Exponential transform:

gp(x) =
1 − px

1 − p
(3.43)

• Logarithmic transform:

gp(x) =
ln(1 − ln(p)x)

ln(1 − ln(p))
(3.44)

3.3.3 Results and conclusions

In Table 1, Table 2 and Table 3 we present the results respectively for the Pear-
son’s, Spearman’s and Kendall’s correlation consistency coefficient for different
distortion functions g.

From Table 1 we can draw the overall conclusion, that the correlation coeffi-
cient is preserved in the majority of cases, for many tested distortion risk mea-
sures more frequently than nine times out of ten, for some of them even more
than nineteen times out of twenty. Favorite risk measures, such as Value-at-Risk,
Tail Value-at-Risk and Proportional Hazard do not perform very well. We also
observe that correlation consistency differs not only between different families of
distortion risk measures, but also between different parameters within the same
family. In this respect, the dispersion of the correlation consistency seems to be
the worst for the Dual-power transform.
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Table 1 The results for Pearson’s correlation consistency r·,r

Parameter p

Risk measure 0.01 0.1 0.25 0.5 0.75 0.9 0.99

Value at Risk 84.25% 93.01% 94.26% 89.00% 75.31% 69.01% 74.45%
Tail Value at Risk 66.98% 71.33% 82.35% 89.58% 82.06% 70.99% 59.02%

PH transform 70.09% 71.69% 74.80% 80.51% 85.56% 88.04% 89.40%
Dual-power 60.05% 77.85% 89.22% 96.86% 93.59% 91.04% 89.72%
Dennenberg 89.58% 89.58% 89.58% 89.58% 89.58% 89.58% 89.58%

Gini 96.86% 96.86% 96.86% 96.86% 96.86% 96.86% 96.86%
Square-root 92.02% 93.98% 95.12% 96.16% 96.73% 96.84% 96.86%
Exponential 86.96% 92.49% 94.80% 96.28% 96.78% 96.84% 96.86%

Logarithmical 89.49% 92.24% 94.01% 95.63% 96.57% 96.84% 96.86%

Table 2 The results for Spearman’s correlation consistency r·,ρ

Parameter p

Risk measure 0.01 0.1 0.25 0.5 0.75 0.9 0.99

Value at Risk 85.80% 89.63% 91.64% 89.01% 77.94% 72.40% 72.77%
Tail Value at Risk 73.74% 67.15% 71.77% 73.75% 71.79% 67.19% 65.82%

PH transform 70.62% 71.41% 72.90% 74.91% 75.87% 76.13% 76.26%
Dual-power 63.84% 71.15% 74.81% 75.78% 76.23% 76.32% 76.31%
Dennenberg 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 73.75%

Gini 75.78% 75.78% 75.78% 75.78% 75.78% 75.78% 75.78%
Square-root 75.74% 75.82% 75.87% 75.84% 75.79% 75.82% 75.79%
Exponential 74.50% 75.56% 75.78% 75.80% 75.83% 75.81% 75.79%

Logarithmical 75.48% 75.66% 75.80% 75.87% 75.79% 75.82% 75.78%

Table 3 The results for Kendall’s correlation consistency r·,τ

Parameter p

Risk measure 0.01 0.1 0.25 0.5 0.75 0.9 0.99

Value at Risk 84.17% 92.98% 94.23% 88.98% 75.31% 69.07% 74.52%
Tail Value at Risk 66.89% 71.14% 82.08% 89.31% 81.86% 70.73% 58.83%

PH transform 69.88% 71.45% 74.53% 80.15% 85.12% 87.54% 88.87%
Dual-power 59.92% 77.56% 88.83% 95.69% 92.77% 90.41% 89.13%
Dennenberg 89.31% 89.31% 89.31% 89.31% 89.31% 89.31% 89.31%

Gini 95.69% 95.69% 95.69% 95.69% 95.69% 95.69% 95.69%
Square-root 91.43% 93.21% 94.23% 95.08% 95.51% 95.63% 95.68%
Exponential 86.59% 91.91% 93.99% 95.21% 95.56% 95.65% 95.68%

Logarithmical 89.02% 91.66% 93.26% 94.64% 95.40% 95.64% 95.68%
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Risk measures such as the square root transform, the exponential transform,
the logarithmic transform and Gini’s principle perform very well. For these dis-
tortion risk measures, the Pearson’s correlation consistency coefficient does not
seem to be very dispersed and tends to increase monotonically together with the
parameter p.

The results for Spearman’s coefficient differ significantly from the ones ob-
tained for Pearson’s coefficient. The values are much smaller but also much more
stable - all but only few coefficients fall between 70% and 77%. Surprisingly the
largest consistency seems to be obtained by the Value at Risk for low values of
parameter p - however these risk measures are useless in practical applications.
Once again the most stable and relatively large values were obtained for the square
root transform, the exponential transform, the logarithmic transform and Gini’s
principle.

The coefficients for Kendall’s τ in Table 3 are very close to those obtained for
Pearson’s correlation, so the conclusions are analogical.

From the tables it seems that the Dennenberg’s principle and the Gini’s prin-
ciple have very stable correlation consistency coefficients (Pearson’s, Spearman’s
and Kendall’s). In our test these coefficients are even identical for all parameters
p. This is not accidental, because both risk measures can be expressed as the
sum of the expectation and a summand proportional to some dispersion measures
independent from the parameter p. We discuss it more comprehensively in Section
3.4.

Interested readers are also referred to Dennenberg (1990).

3.4 Dennenberg’s and Gini’s principles

In this section we briefly discuss Dennenberg’s and Gini’s risk measures. They
were recommended as premium principles in Dennenberg (1990).

Firstly we take a closer view at Dennenberg’s principle. Substituting (3.40)
into (3.1) we get:

Hgp
(X) =

∫ F
−1

X ( 1

2
)

0

(

p + (1 − p)FX(t)
)

dt +

∫ ∞

F
−1

X ( 1

2
)

(1 + p)FX(t)dt

=

∫ 1

2

0

(1 + p)F
−1

X (q)dq +

∫ 1

1

2

(1 − p)F
−1

X (q)dq = Me(X)

+(1+p)

∫ 1

2

0

(

F
−1

X (q)−Me(X)
)

dq−(1−p)

∫ 1

1

2

(

Me(X)−F
−1

X (q)
)

dq

= Me(X) +

∫ 1

0

(

F
−1

X (q) − Me(X)
)

dq + p

∫ 1

0

∣

∣F
−1

X (q) − Me(X)
∣

∣dq

= E(X) + pE|X − Me(X)|, (3.45)

where Me(X) denotes the median of random variable X .
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Analogous calculations can be done for Gini’s principle. Thus, starting from
(3.41) and (3.1), we get:

Hgp
(X) =

∫ ∞

0

(

(1 + p)FX(t) − p
(

FX(t)
)2

)

dt

= E(X) + p

∫ ∞

0

FX(t)
(

1 − FX(t)
)

dt

= E(X) + p

∫ ∞

0

E(X − t)+dFX(t) = E(X) + pE(X − Y )+,

where X and Y are independent copies from the same distribution FX

Notice that for the special case when p = 1, one can write the insurance
premium as:

Hg1
(X) = E(max(X, Y )), (3.46)

thus the premium can be understood as the expectation of the greater of first two
claims (assuming independence).

Therefore, both Dennenberg’s and Gini’s principles can be written as a sum
of an expectation and a summand proportional to a specific dispersion measure.
It explains why correlation consistencies given in Table 1, Table 2 and Table 3 do
not depend on the parameter p for these risk measures.

This representation can be seen as an analogous to the well-known premium
principle:

Hα[X ] = E(X) + ασ(X), (3.47)

however the property of preserving stochastic dominance make them much more
attractive. Dennenberg’s and Gini’s risk measures are also computable for a larger
class of random variables - one does not need the existence of moments of order
higher than one. In some cases also the property of additivity for comonotonic
risks which holds for these risk measures may be useful - for premium principles
this topic has been discussed in Section 2.2.

These risk measures however should not be applied to very heavy tailed dis-
tributions. This limitation results from the fact that their respective values are
restricted by 2E(X) + Me(X) and 2E(X), and hence the resulting safety loading
may turn out to be too small (sometimes it is even impossible to find a premium
which would compensate risk for random variables with very heavy tails). It is
however a typical problem for most distortion risk measures. For this reason
Wang (1995, 1996) postulated to consider one more condition for distortion func-
tions, namely g′+(0) = ∞. Among all analyzed distortion risk functions, only the
Proportional Hazard transform (3.38) satisfies this additional property.

For risk measures (3.45) and (3.46) this problem may be partially solved by
extending the range of the parameter p to all positive values. Then Dennenberg’s
and Gini’s premiums will not satisfy the distortion conditions any more (the cor-
responding function will not be non-decreasing), however all desirable properties
will be preserved.
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4 Summary

In this paper we investigated how risk measures of the sums of risks are related
to the level of dependency between the corresponding summands.

In the first part we demonstrated by means of a number of practical examples
that it is impossible to find the combination of axioms for risk measures which
would hold in all risky situations, no matter what the dependency structure be-
tween the risks is. We analyzed different contexts in which risk measures are
typically used, such as calculation of premiums, risk sharing schemes, calculation
of the solvency margin and the allocation of economic capital, and related our
observations to the coherency axioms.

In the second part we investigated how dependency measures of couples of risks
such as Pearson’s r, Spearman’s ρ and Kendall’s τ are related to the ordering gen-
erated by distortion risk measures applied to corresponding sums. We found that
for Tail Value-at-Risk one can construct random couples for which the order is
not preserved by neither of the three dependency measures. We also tested the
consistency between risk measures generated by some one-parameter families of
distortion functions and the coefficients r, ρ and τ . We found that the consis-
tency varies significantly between different risk measures. For Gini’s principle for
example the level of consistency could be seen as very high and stable.
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