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Abstract: We study continuous, nonnegative random variables with

a Schur-constant joint survival function. We show that these distributions

are characterized by having an Archimedean survival copula, determine the

distributions of certain functions of the random variables, and examine

dependence properties and correlation coefficients for random variables with

Schur-constant survival functions.
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1 Introduction

Let X = (X1, · · · , Xn) be a vector of n continuous, non-negative random variables
(which we call lifetimes) with a Schur-constant joint survival function, i.e., for any
x = (x1, · · · , xn) in [0,∞)n,

P (X > x) = P (X1 > x1, · · · , Xn > xn) = S(x1 + · · · + xn) (1.1)

for an appropriate function S (note that an inequality between vectors is compo-
nent-wise). Schur-constant survival models and some of their basic properties
were studied in Barlow and Mendel (1993), Caramellino and Spizzichino (1994,
1996), and Spizzichino (2001).

It is immediate that if X has a Schur-constant joint survival function, then the
components of X are exchangeable, and all the lower dimensional marginal joint
survival functions are also Schur-constant. Lifetimes with Schur-constant joint
survival functions are of interest in reliability theory because of their property
of indifference relative to aging, e.g. Barlow and Mendel (1993), or the no-aging
property, e.g. Caramellino and Spizzichino (1994). Note that for any i 6= j in
{1, 2, · · · , n}, any x in [0,∞)n, and any t ≥ 0,

P (Xi − xi > t|X > x) =
S(x1 + · · · + xn + t)

S(x1 + · · · + xn)
= P (Xj − xj > t|X > x),

that is, the residual lifetimes (Xi − xi) and (Xj − xj) of two components of
different ages xi and xj , respectively, have the same conditional distribution.
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Some basic properties of the function S in (1.1) are readily obtained. Setting
all but one component of x to 0 yields P (Xi > xi) = S(xi), thus S is a univariate
survival function, i.e., S is continuous and nonincreasing with S(0) = 1 and
S(∞) = 0. Furthermore, S(x1 + · · · + xn) must be a multivariate joint survival
function. To examine what this implies, let x and y be any two points in [0,∞)n

such that x ≤ y, and let [x,y] denote the n-box [x1, y1] × [x2, y2] × · · · × [xn, yn].
The vertices of the n-box [x,y] are the points z = (z1, · · · , zn) where each zk is
equal to either xk or yk. Since the probability mass assigned to an n-box [x,y]
by S must be non-negative, the inclusion-exclusion principle dictates that

∑

sgn(z)S(z1 + · · · + zn) ≥ 0, (1.2)

where the sum is over the vertices z of [x,y] and sgn(z) = 1 if zk = xk for an even
number of ks, and sgn(z) = −1 if zk = xk for an odd number of ks.

Many authors who have studied Schur-constant survival models have done so in
the context of absolutely continuous joint survival functions, see e.g. Barlow and
Mendel (1993), Caramellino and Spizzichino (1994, 1996) and Spizzichino (2001),
however, we will not make this assumption. We first consider the bivariate case in
the next section, in order to study relationships (aging, dependence, correlation,
etc.) for pairs of components of X in Section 3. In Section 4 we study the case
the case of arbitrary n. In each case we show that X has an Archimedean survival
copula whose generator is the inverse of S.

We conclude this section by examining independent random variables with a
Schur-constant survival function.

Theorem 1 Let X be a vector of n ≥ 2 lifetimes with a Schur-constant survival
function given by (1.1). Then the components of X are independent if and only if
they are exponentially distributed.

Proof. Assume the components of X are independent, and let x be any
element of [0,∞)n. Partition the components of x into two nonempty sets, say
{xi1 , · · · , xim

} and {xim+1
, · · · , xin

} for some m between 1 and n − 1, inclusive.
Then S(u + v) = S(u)S(v) where u = xi1 + · · · + xim

and v = xim+1
+ · · · + xin

.
Thus S satisfies Cauchy’s equation on [0,∞), and the solution is given by

S(t) = e−λt, with λ > 0 since S is nonincreasing. Hence each component of X is
exponentially distributed with parameter λ. The converse is trivial. �

As a consequence, the “no-aging” property of random vectors with a Schur-
constant survival function is a generalization of the “lack of memory” property
for exponential random variables.

2 Bivariate Schur-constant survival models

Throughout this section we let X and Y denote any two components of X, or
equivalently, we let n = 2 and set X = (X, Y ) and x = (x, y). As before, S
denotes the common survival function for X and Y . We first find a necessary
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and sufficient condition for S to satisfy (1.2) for n = 2, i.e., for S(x + y) to be a
bivariate survival function.

Lemma 1 Let S : [0,∞] → [0, 1] be a continuous survival function (i.e., S is
continuous, nonincreasing, S(0) = 1 and S(∞) = 0). Then S(x+y) is a bivariate
survival function if and only if S is convex.

Proof. A function K : [0,∞)2 → [0, 1] is a bivariate survival function if and
only if its margins K(x, 0) and K(0, y) are univariate survival functions and K is
2-increasing, i.e., for any x1, x2, y1, y2 in [0,∞] with x1 < x2, y1 < y2,

∆K (x1, x2; y1, y2) = K(x1, y1) − K(x1, y2) − K(x2, y1) + K(x2, y2) ≥ 0. (2.1)

Let K(x, y) = S(x + y) with S convex. Since K(x, 0) = S(x) and K(0, y) =
S(y), the margins of K are survival functions. To show that K is 2-increasing, we
need to show that

S(x1 + y2) + S(x2 + y1) ≤ S(x1 + y1) + S(x2 + y2),

i.e., that S satisfies (1.2). Since this inequality holds if either x2 or y2 is infinite,
we assume x2 < ∞ and y2 < ∞ and let

t =
x2 − x1

(x2 − x1) + (y2 − y1)
and 1 − t =

y2 − y1

(x2 − x1) + (y2 − y1)

so that x1 + y2 = t(x1 + y1) + (1 − t)(x2 + y2). The convexity of S implies
that S(x1 + y2) ≤ tS(x1 + y1) + (1 − t)S(x2 + y2). Similarly x2 + y1 =
(1− t)(x1 + y1)+ t(x2 + y2), so that S(x2 + y1) ≤ (1− t)S(x1 + y1) + tS(x2 + y2);
hence S (x1 + y2) + S (x2 + y1) ≤ S (x1 + y1) + S (x2 + y2), as required.

Now assume that K is a bivariate survival function, and let 0 ≤ a < b. Then

0 ≤ ∆K(a/2, b/2; a/2, b/2) = S(a) − 2S
(

(a + b)/2
)

+ S(b),

and hence S((a + b)/2) ≤ [S(a) + S(b)]/2, that is, S is midconvex. Since S is
continuous, it follows that S is convex. �

In order to describe the dependence structure for random variables with a
Schur-constant joint survival function, we need the notion of a copula. A (two-
dimensional) copula is a function C : [0, 1]2 → [0, 1] such that C(t, 0) = C(0, t) = 0
and C(t, 1) = C(t, 1) = t for all t in [0, 1], and which is 2-increasing in the sense
of (2.1), i.e., ∆C(u1, u2; v1, v2) ≥ 0 for all u1, u2, v1, v2 in [0, 1] with u1 < u2,
v1 < v2. Copulas are important in statistical modeling since they join or “couple”
joint distributions to their one-dimensional margins, and also couple joint survival
functions to their one-dimensional marginal survival functions (in this case, the
term “survival copula” is often employed). In our case P (X > x, Y > y) =
C(S(x), S(y)) for some copula C. See Nelsen (1999) for further details.

An important family of copulas are the Archimedean copulas, which have the
form C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)), where ϕ (the generator of C) is a continuous
strictly decreasing convex function from [0, 1] to [0,∞] such that ϕ(1) = 0,
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and where ϕ[−1] denotes the pseudo-inverse of ϕ given by ϕ[−1](t) = ϕ−1(t) for
t ∈ [0, ϕ(0)] and 0 for t > ϕ(0). Note that ϕ is the (ordinary) inverse of ϕ[−1] on
[0, ϕ(0)].

Theorem 2 Let X and Y be lifetimes with a Schur-constant survival function
Pr(X > x, Y > y) = S(x + y) for all x, y ≥ 0. Then X and Y possess an
Archimedean survival copula whose generator is the inverse of S.

Proof. Let ϕ0 = inf {x |S(x) = 0} (if S(x) > 0 for all x ≥ 0, we set ϕ0 = ∞).
Since S is nonincreasing and convex on [0,∞] with S(0) = 1 and S(∞) = 0, it
must be decreasing on [0, ϕ0].

Hence there exists a function ϕ : [0, 1] → [0,∞], decreasing and convex
with ϕ(0) = ϕ0 and ϕ(1) = 0, such that S(ϕ(t)) = t for all t in [0, 1], and
ϕ(S(x)) = min(x, ϕ0) for all x ≥ 0. Thus ϕ is the inverse of S (on [0, ϕ0]) while
S is the pseudo-inverse of ϕ[−1] of ϕ. If either x or y is larger than ϕ0, then
S(x + y) = 0, so that

P
(

X > x, Y > y
)

= S(x + y) = S
(

min(x, ϕ0) + min(y, ϕ0)
)

= S
(

ϕ
(

S(x)
)

+ ϕ
(

S(y)
)

)

.

Hence P (X > x, Y > y) = C(S(x), S(y)) where C is the Archimedean copula
generated by ϕ, given by C(u, v) = S(ϕ(u) + ϕ(v)), u, v ∈ [0, 1]. �

A converse of Theorem 2 also holds.

Theorem 3 If U and V are uniform (0, 1) random variables whose joint
distribution function is an Archimedean copula with generator ϕ, then the random
variables X = ϕ(U) and Y = ϕ(V ) have a Schur-constant joint survival function.

Proof. Let ϕ be a decreasing convex function from [0, 1] to [0,∞] with ϕ(1) = 0,
and let U and V be uniform (0, 1) random variables whose joint distribution
function is the Archimedean copula C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) generated by ϕ.

Let X = ϕ(U) and Y = ϕ(V ). Since ϕ[−1](ϕ(t)) = t for all t in [0, 1], the
survival function of X (and similarly of Y ) is given by

P (X > x) = P
(

ϕ(U) > x
)

= P
(

U < ϕ[−1](x)
)

= ϕ[−1](x)

for all x ≥ 0. Hence ϕ[−1] is the survival function of X and of Y . So for all
x, y ≥ 0,

P (X > x, Y > y) = P (ϕ(U) > x, ϕ(V ) > y) = P
(

U < ϕ[−1](x), V < ϕ[−1](y)
)

,

= ϕ[−1]
(

ϕ
(

ϕ[−1](x)
)

+ ϕ
(

ϕ[−1](y)
)

)

,

= ϕ[−1]
(

min
(

x, ϕ(0)
)

+ min
(

y, ϕ(0)
)

)

= ϕ[−1](x + y),

thus X and Y have a Schur-constant joint survival function. �
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Remark: For any positive constant c, ϕ and cϕ generate the same Archimedean
copula, and hence there is a one-to-one correspondence between bivariate Schur-
constant models (modulo a scale parameter) and Archimedean copulas [note that
if ϕ(t) is the inverse of S(x), then cϕ(t) is the inverse of S(x/c)].

In the next theorem we present properties of the lifetime proportions X/(X+Y )
and Y/(X +Y ), the lifetime ratios Y/X and X/Y , the order statistics max(X, Y )
and min(X, Y ), the absolute difference |X − Y | of lifetimes, and the regression
functions E(Y |x) and E(X |y). The proof is straightforward and hence omitted
(except to note that the convexity of S guarantees the existence and continuity of
S′ almost everywhere in (0,∞)).

Theorem 4 Let X and Y be lifetimes with a Schur-constant survival function
P (X > x, Y > y) = S(x + y) for all x, y ≥ 0. Then

(a) the survival function of the total lifetime X + Y is P (X + Y > t) =
S(t) − tS′(t);

(b) the proportion X/(X + Y ) is uniformly distributed on (0, 1) and is
independent of the total lifetime X + Y (and similarly for Y/(X + Y ));

(c) the ratio Y/X has a Pareto distribution with shape parameter 1 (i.e., P (Y/X
> t) = (1+t)−1) and is independent of the total lifetime X+Y (and similarly
for X/Y );

(d) for 0 ≤ s ≤ t, P (min(X, Y ) > s, max(X, Y ) > t) = 2S(s + t) − S(2t),
hence the probability that at least one of X and Y survives beyond time t is
P (max(X, Y ) > t = 2S(t) − S(2t), and the probability that both X and Y
survive beyond time t is P (min(X, Y ) > t) = S(2t);

(e) the absolute difference |X −Y | has the same distribution as X (and Y ), i.e.,
P (|X − Y | > t) = S(t);

(f) the regression functions are E(Y |x) = −S(x)/S′(x) and
E(X |y) = −S(y)/S′(y).

Note that the regression function E(Y |x) = −S(x)/S′(x) is the reciprocal of
the hazard function (or failure rate) of X , given by h(x) = −S′(x)/S(x), and
similarly for E(X |y).

Example 1 Uniform distributions. Let X and Y be uniformly distributed on the
interval [0, c] for some c > 0. Then S(x) = max(1 − x/c, 0), which is convex, and
hence S(x+ y) = max(1− (x+ y)/c, 0) is a Schur-constant joint survival function.
But since S′′(x+y) = 0 a.e. on [0,∞)2, the joint distribution is singular, with the
probability mass uniformly distributed on the line segment joining (0, c) and (c, 0)
in [0,∞)2. The (Archimedean) copula of X and Y , generated by ϕ(t) = c(1 − t),
is W (u, v) = max(u + v − 1, 0). W is the minimum copula, i.e., for any copula C,
C(u, v) ≥ W (u, v) for u, v in [0, 1].
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Example 2 Pareto and Weibull distributions.
(a) Suppose X and Y have a common Pareto distribution on [0,∞) with shape

parameter θ, i.e., S(x) = (1 + x)−θ , θ ∈ (0,∞). Then S(x + y) = (1 + x + y)−θ, a
bivariate Pareto distribution first studied by Mardia (1962). The copula of X and

Y , generated by ϕ(t) = t−1/θ − 1, is C(u, v) =
(

u−1/θ + v−1/θ − 1
)−θ

, member of
the Clayton (1978) or Cook and Johnson (1981) family of Archimedean copulas.

(b) Suppose X and Y have a common Weibull distribution on [0,∞) with shape
parameter θ, i.e., S(x) = exp(−xθ), θ ∈ (0, 1]; and thus S(x+y) = exp[−(x+y)θ].
The copula of X and Y , generated by ϕ(t) = (− ln t)1/θ, is C(u, v) =
exp(−[(− lnu)1/θ + (− ln v)1/θ]θ), a member of the Gumbel (1960) or Hougaard
(1986) family of Archimedean copulas.

3 Correlation, aging and dependence properties

Let X and Y satisfy the hypotheses of Theorem 2. Since the joint distribution
of (X, Y ) depends only on the univariate survival function S, one might suspect
that correlation coefficients and dependence properties for (X, Y ) are related to
parameters and aging properties of X (or Y ) alone. This is indeed the case.

Since P (X > x + y) = S(x + y) = P (X > x, Y > y), certain univariate aging
properties of X (and Y ) translate into dependence properties for the pair (X, Y ).
For example [Caramellino and Spizzichino (1994)], if X and Y satisfy the new
worse than used (NWU) aging property, then P (X > x) ≤ P (X > x + y|X > y)
for all x, y ≥ 0 (and similarly for Y ), or equivalently S(x+y) ≥ S(x)S(y). But this
means that P (X > x, Y > y) ≥ P (X > x)P (Y > y), i.e., X and Y are positively
quadrant dependent (PQD), so that the probability that X and Y simultaneously
have “long lives” is greater than it would be were X and Y independent. Similarly
the new better than used (NBU) aging property is equivalent to the negatively
quadrant dependent (NQD) dependence property.

For another example, suppose that X and Y possess an decreasing failure rate
(DFR), that is, P (X > x+y|X > y) is nondecreasing in y for each x. This implies
that S(x + y)/S(y) = P (X > x|Y > y) is nondecreasing in y for each x, which
is the right tail increasing (RTI) dependence property. Similarly, the increasing
failure rate (IFR) aging property corresponds to the right tail decreasing (RTD)
dependence property. For related results on aging properties of Schur-constant
survival models, see Spizzichino (2001).

To evaluate Pearson’s product-moment correlation coefficient ρ, assume that
Var(X), Var(Y ), and E(XY ) exist and set E(X) = E(Y ) = µ and Var(X) =
Var(Y ) = σ2. A result of Hoeffding, e.g. Lehmann (1966), implies

E(XY ) =

∫ ∞

0

∫ ∞

0

S(x + y) dydx =

∫ ∞

0

tS(t) dt =
1

2
E

(

X2
)

=
1

2
(σ2 + µ2),

and hence ρ =
[

E(XY ) − µ2
]/

σ2 = (1/2)
(

1 − µ2
/

σ2
)

. Note that ρ is function of
the coefficient of variation σ/µ for X , which measures the variability of X relative
to its magnitude, and that ρ > 0 whenever σ/µ > 1.
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Since ρ fails to exist whenever Var(X) fails to exist, we also find a
nonparametric measure of association between X and Y , the population version
τ of Kendall’s tau. Since the survival copula of X and Y is Archimedean with
generator ϕ, e.g. Genest and MacKay (1986) and Joe (1997), we have,

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt = 1 − 4

∫ ∞

0

x
[

S′(x)
]2

dx.

In Table 1 we present several one-parameter families of lifetime distributions
which possess convex survival functions (Pareto and Weibull from Example 2, as
well as Gompertz, power, Beta, and Burr type XII) and consequently satisfy the
properties in the preceding two sections. The table gives the univariate survival
function Sθ(x) (the bivariate survival function is Sθ(x + y)), the values of the
parameter θ for which S(θ) is convex, and the generator ϕθ of the Archimedean
copula Cθ(u, v) = Sθ (ϕθ(u) + ϕθ(v)).

Since X and Y are independent if and only if they are exponentially
distributed, the table also gives values of Pearson’s product-moment correlation
coefficient and the population version of Kendall’s tau.

Table 1 Examples of lifetime distributions with convex survival functions.

Sθ(x) θ ∈ ϕθ(t) Pearson’s ρ Kendall’s τ

Pareto (1 + x)−θ (0,∞) t−1/θ
− 1

{

d.n.e. θ ≤ 2

1/θ θ > 2

1

1 + 2θ

Weibull exp(−xθ) (0, 1] (− ln t)1/θ (∗) 1 − θ

Gompertz exp(θ(1 − ex)) [1,∞) ln
(

1 −
ln t
θ

)

no closed form e2θEi(−2θ)†

power max(1 − xθ, 0) (0, 1] (1 − t)1/θ 1 −
1

2
(1 + θ)2 1 − 2θ

Beta (1, θ)
[

max(1 − x, 0)
]θ

[1,∞) 1 − t1/θ
−

1

θ

1

1 − 2θ

Burr type XII (1 + x1/θ)−θ [1,∞)
(

t−1/θ
− 1

)θ
d.n.e.

2θ − 1

2θ + 1

with

∗ρ = 1− (1/2)
[

1−
(

1 + (2/θ)
)

B
(

1 + (1/θ), 1 + (1/θ)
)

]−1

, †Ei(x) =

∫ x

−∞

et/t dt.

4 Multivariate Schur-constant survival models

We now turn to the problem of characterizing multivariate Schur-constant survival
models, that is, finding appropriate conditions on a univariate survival function
S so that S(x1 + · · · + xn) is a multivariate survival function for all n ≥ 2.
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Note that S(x1 + · · · + xn) is an n-dimensional survival function if and only if
S (ϕ (u1) + · · · + ϕ (un)) is an n-dimensional survival copula. In Section 2 we saw
that for n = 2, ϕ generates a copula when S is decreasing on [0, ϕ(0)] and convex.
Further conditions on S are required for n > 2, conditions which require the notion
of a completely monotonic function.

Definition 1 [Widder (1941)]. A function g(t) is completely monotonic on an
interval I if it is continuous there and has derivatives of all orders which alternate
in sign, i.e., if it satisfies

(−1)k dk

dtk
g(t) ≥ 0 (4.1)

for all t in the interior of I and k = 0, 1, 2, · · · .

If g is completely monotonic on [0,∞) and g(c) = 0 for some c > 0, then g must
be identically zero on [0,∞) [Widder (1941)], hence if g is completely monotonic
on [0,∞), then g is positive on [0,∞).

In the next theorem we show that completely monotonic survival functions can
be used to construct n-dimensional Schur-constant survival models for any n.

Theorem 5 Let S be a continuous strictly decreasing univariate survival function
such that S(0) = 1. Then S(x1 + · · · + xn) is an n-dimensional survival function
for all n ≥ 2 if and only if S is completely monotonic on [0,∞).

Proof. Since S(x1 + · · · + xn) can be written as S(ϕ(S(x1)) + · · · + ϕ(S(xn)))
where ϕ is the inverse of S, the result follows from survival function versions of
Theorems 1 and 2 in [Kimberling, 1974]. �

If the joint survival function of the random vector (X1, · · · , Xn) is S(x1 + · · ·+
xn), then S(ϕ(u1) + · · · + ϕ(un)) is an n-dimensional Archimedean copula with
generator ϕ. Furthermore, if S is completely monotonic, then S(x1 + · · ·+ xn) is
absolutely continuous for any n ≥ 2.

The following theorem is a generalization to the multivariate case of several of
the results in Theorem 4.

Theorem 6 Let X = (X1, · · · , Xn) be a vector of n lifetimes with a common
completely monotonic survival function S and a Schur-constant joint survival
function P (X > x) = S(x1 + · · · + xn) for all x = (x1 + · · · + xn) in [0,∞)n.
Then

(a) the survival function of the total lifetime (or “total time on test”) T =
X1 + · · · + Xn is given by

P (T > t) =

n−1
∑

k=1

(−1)k tk

k!
S(k)(t) = (−1)n−1 tn

(n − 1)!

dn−1

dtn−1

S(t)

t
;

(b) for 0 ≤ s ≤ t,

P (min(X) > s, max(X) > t) =

n
∑

k=1

(−1)k+1

(

n

k

)

S(kt + (n − k)s),
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and hence the probability that at least one Xi survives beyond time t is
P (max(X) > t) =

∑n
k=1 (−1)k+1

(

n
k

)

S(kt),and the probability that all Xi

survive beyond time t is P (min(X) > t) = S(nt);

(c) if {xi1 , · · · , xim
} is a non-empty proper subset of the components of x, and

j /∈ {i1, · · · , im}, then

E(Xj |xi1 , · · · , xim
) = −S(m−1)(xi1 + · · · + xim

)/S(m)(xi1 + · · · + xim
).

Proof. (a) Let C denote the Archimedean survival copula of X and ϕ its
generator, and set Ui = S(Xi) for i = 1, · · · , n. Then

P (T > t) = P
(

S(T ) < S(t)
)

,

= P
(

C
(

S(X1), · · · , S(Xn)
)

< S(t)
)

,

= P
(

C(U1, · · · , Un) < S(t)
)

,

= KC

(

S(t)
)

,

where KC denotes the distribution function of the random variable C(U1, · · · , Un).
But

KC(t) = t +

n−1
∑

k=1

(−1)k ϕk(t)

k!

dk

dsk
S(s)

∣

∣

∣

s=ϕ(t)
,

e.g. Barbe et al. (1996), and thus

KC(S(t)) =

n−1
∑

k=0

(−1)k tk

k!
S(k)(t).

The second form for P (T > t) is easily established by induction.

(b) Since min(X) > s and max(X) > t when all Xi are greater than s and
at least one Xi is greater than t, the result is readily established by an inclusion-
exclusion argument.

(c) This expression readily follows from the conditional probability

P (Xj > xj |Xi1 = xi1 , · · · , Xim
= xim

)

= −S(m)(xi1 + · · · + xim
+ xj)/S(m)(xi1 + · · · + xim

).

�

With the hypotheses of Theorem 6, we conjecture that the lifetime proportion
Xk / (X1+· · ·+Xn), for k in {1, 2, · · · , n}, has a Beta distribution with parameters
1 and n − 1, and is independent of T = X1 + · · · + Xn.

Note added in proof: C. Genest (personal communication) has proven the
above conjecture. Genest also notes that proofs of parts (a) and (b) of Theorem
6 appear in Genest and Rivest (1993).
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There is an intermediate case between the situations discussed in Section 2
(S decreasing and concave) and in this section (S completely monotonic). When
(4.1) holds on (0, ϕ(0)) for k = 0, 1, · · · , m, we say that S is m-monontonic. The
arguments in Kimberling (1974) can be used to show that the m-monotonicity
of S is sufficient for S(x1 + · · · + xn) to be a n-dimensional survival function for
2 ≤ n ≤ m.

Example 3 Beta (1, θ) distributions. Let S be the survival function for a

Beta(1,θ) random variable, i.e., S(x) = [max(1 − x, 0)]θ, for θ ≥ 1 (see Table
1). Then S is m-monotonic for m = ⌊θ⌋ + 1, and hence S(x1 + · · · + xn) =
[

max(1− x1 − · · · − xn, 0)
]θ

is an n-dimensional Schur-constant survival function
for 2 ≤ n ≤ ⌊θ⌋ + 1. This is the Schur-constant subfamily of the multivariate
Dirichlet distribution in Kotz et al. (2000).

5 Concluding remarks

Closely related to Schur-constant functions are Schur-convex and Schur-concave
functions. If (x1, y1) and (x2, y2) are two points in R2, then (x1, y1) is majorized
by (x2, y2) , written (x1, y1) ≺ (x2, y2), if x1 + y1 = x2 + y2 and max{x1, y1} ≤
max{x2, y2} (majorization is defined in higher dimensions as well, see Marshall
and Olkin (1979), Spizzichino (2001) for details). A function f : A ⊆ R2 → R

is Schur-convex (-concave) on A if (x1, y1) ≺ (x2, y2) implies f(x1, y1) ≤ (≥)
f(x2, y2) for any (x1, y1), (x2, y2) in A. Functions which are both Schur-convex
and -concave are Schur-constant.

Recently, Durante and Sempi (2003) showed that all Archimedean copulas
(and many non-Archimedean copulas as well) are Schur-concave, but only
the minimum copula W (see Example 1) is Schur-convex (and since W is
Archimedean, it is thus the only Schur-constant copula). However, when endowed
with marginal survival functions, Schur-concave Archimedean copulas may yield
Schur-concave, -convex, or -constant joint survival functions. For example, if
the Gumbel-Hougaard copula exp(−[(− lnu)1/θ + (− ln v)1/θ]θ) is endowed with
Weibull marginal survival functions S(x) = exp(−xα) and S(y) = exp(−yα), then
the resulting joint survival function is F (x, y) = exp(−[xα/θ + yα/θ]θ). Since the
level curves of F are given by xα/θ + yα/θ = constant, F is Schur-concave for
α ≥ θ and Schur-convex for α ≤ θ.

Since, as noted in the remark preceding Example 1, there is a one-to-one
correspondence between Archimedean copulas and scale-parameter families of
Schur-constant survival models, Schur properties may play a role in answering
the survival copula version of the following open problem, e.g. Alsina et al.
(2003): “There are numerous statistical arguments that are used to justify the
assumption of normality. Are there similar arguments that can be used to justify
the assumption that the copula of two random variables is Archimedean?”

(Received January, 2004. Accepted March, 2004.)
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