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Abstract: In the bivariate continuous set up exponential, Lomax and FR

distributions have been characterized by Roy and Gupta (1996) using con-

stancy of the coefficient of variation of the residual lives. The present work

examines a related characterization result for the bivariate discrete set up. In

this process importance of the coefficient of factorial variation has been em-

phasized and bivariate generalization of Waring and negative hypergeometric

distributions have been obtained. Some other associated results using the

measure of memory have been studied. An application has also been added

at the end to demonstrate the strength of the characterization result.
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1 Introduction

While theoretical framework of multivariate reliability analysis shows its inclina-
tion towards continuous life distribution models (see DeMasi, 2000), in reality
product lives are often described in terms of a discrete random variable like the
number of strokes, number of shots or number of rotations. As a result, develop-
ment of a theoretical framework for reliability analysis in the discrete domain is
desirable to meet the needs of the users.

Some discussions on discrete life models had already taken place in the lit-
erature, as may be seen from the works of Barlow and Proschan (1965), Cox
(1972), Kalbfleisch and Prentice (1980), Cox and Oakes (1984), and Kaio and
Osaki (1988). Important characterization and classification results are also avail-
able in Xekalaki (1983), Hitha and Nair (1989), Roy (1993, 1997), Nair and Asha
(1997) and Roy and Gupta (1999).

It may be observed from the literature that many of the results obtained in
the continuous set up needs the attention of the researchers for the development
of their discrete counterparts. Keeping this objective in mind the present paper
makes an attempt to discretize the characterization results based on constancy
of coefficient of variations and study one related relationship. In Section 2 we
present the characterization results and in Section 3 we indicate an application of
one of those results.
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2 Main results

Let us restrict our discussion to nonnegative integer valued random variables and
let X and Y be two such variables jointly following a bivariate life distribution
with survival function S(x, y) and frequency function f(x, y), where,

S(x, y) = P [X ≥ x, Y ≥ y] =
∑

u≥x

∑

v≥y

f(u, v).

We denote the bivariate failure rate of X by λ1(x, y) and that of Y by λ2(x, y)
where

λ1(x, y) :=
∑

v≥y

f(x, v)/S(x, y); x, y = 0, 1, . . .

λ2(x, y) :=
∑

u≥x

f(u, y)/S(x, y); x, y = 0, 1, . . .

and the bivariate mean residual life of X by M1(x, y) and that of Y by M2(x, y)
in the extended domain where

M1(x, y) := E(X − x|X > x, Y > y); x, y = −1, 0, 1, . . .

M2(x, y) := E(Y − y|X > x, Y > y); x, y = −1, 0, 1, . . . .

Since, we propose to consider a discrete version of the constancy of the coefficient
of variation for unique determination of some bivariate discrete distributions of
importance, we introduce the concept of coefficient of factorial variation, which
will have a greater appeal in the discrete domain. For a univariate random variable
X, coefficient of factorial variation (CFV) will be defined by the ratio

CFV = E[(X)2]/(E(X))2

provided E(X) is neither 0 nor 1. This restriction may not have any effect on the
subsequent results because we will be concerned with constancy of CFV i.e. a
relationship of the following type:

E[(X)2] − K(E(X))2 = 0, (2.1)

where K is constant. It is easy to verify that (2.1) reduces to the following con-
dition that explains its conceptual similarity with the square of the coefficient of
variation:

V ar(X) = (K − 1)(E(X))2.

It is obvious that (2.1) itself cannot characterize a distribution. We propose to
consider the residual life in place of the original life to induce uniqueness in this
condition. Thus, for the univariate residual life we rewrite the condition (2.1) as

E[(X − x)2|X > x] − K(E(X − x|X > x))2 = 0,
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and for the bivariate residual lives let us generalize the condition (2.1), for all x
and y and for a constant K independent of x and y, as

E[(X − x)2|X > x, Y > y] − K(E(X − x|X > x, Y > y))2 = 0,

E[(Y − y)2|X > x, Y > y] − K(E(Y − y|X > x, Y > y))2 = 0. (2.2)

This is a general definition and may also cover continuous variables. The following
theorem presents an implicative relationship of the condition (2.2).

Theorem 2.1. If (2.2) holds in the extended domain then

M1(x, y) − M1(x + 1, y) = (2 − K)/K = M2(x, y) − M2(x, y + 1).

Proof. Under (2.2)

E[(X − x)2|X > x, Y > y] − K(E(X − x|X > x, Y > y))2 = 0

or
∞
∑

r=1

r(r − 1)[S(x + r, y + 1) − S(x + r + 1, y + 1)]

S(x + 1, y + 1)
= K(M1(x, y))2

or

∞
∑

r=1

r(r − 1)S(x + r, y + 1) −

∞
∑

r=1

r(r + 1)S(x + r + 1, y + 1)

+ 2
∞
∑

r=1

rS(x + r + 1, y + 1) = KS(x + 1, y + 1)(M1(x, y))2

or

2

∞
∑

r=1

rS(x + r + 1, y + 1) = KS(x + 1, y + 1)(M1(x, y))2. (2.3)

Since (2.3) is true for all choices of x we get

2

∞
∑

r=1

r[S(x + r + 1, y + 1) − S(x + 1 + r + 1, y + 1)]

= KS(x + 1, y + 1)(M1(x, y))2 − KS(x + 2, y + 1)(M1(x + 1, y))2

or

2

∞
∑

r=1

rf(x+r+1, y+1) = KS(x+1, y+1)(M1(x, y))2−KS(x+2, y+1)(M1(x+1, y))2
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or

2S(x + 2, y + 1)(M1(x + 1, y)) = KS(x + 1, y + 1)M1(x, y)(M1(x, y) − 1)

−KS(x + 2, y + 1)M1(x + 1, y)(M1(x + 1, y)− 1). (2.4)

But

S(x + 1, y + 1)M1(x, y) =

∞
∑

r=1

S(x + r, y + 1)

or

S(x + 1, y + 1)M1(x, y) = S(x + 1, y + 1) +

∞
∑

r=2

S(x + r, y + 1)

or

S(x + 1, y + 1)M1(x, y) = S(x + 1, y + 1) + S(x + 2, y + 1)M1(x + 1, y)

or
S(x + 2, y + 1)M1(x + 1, y) = S(x + 1, y + 1)[M1(x, y) − 1]. (2.5)

Using (2.5) in (2.4) we obtain

2S(x + 1, y + 1)[M1(x, y) − 1] = KS(x + 1, y + 1)M1(x, y)[M1(x, y) − 1]

− KS(x + 1, y + 1)[M1(x, y) − 1]

[M1(x + 1, y) − 1]

or
2 = KM1(x, y) − K[M1(x + 1, y) − 1]

or
M1(x, y) − M1(x + 1, y) = (2 − K)/K.

Similarly,
M2(x, y) − M2(x, y + 1) = (2 − K)/K.

Next theorem is an easy consequence of Theorem 2.1.

Theorem 2.2. If the condition (2.2) holds in the extended domain then h1(x, y)
is inversely and locally linear in x and h2(x, y) is inversely and locally linear in y.

Proof. In view of Theorem 2.1 we have

M1(0, y) = (2 − K)/K + M1(1, y) = 2(2 − K)/K + M1(2, y) = . . .

= x(2 − K)/K + M1(x, y)

or
M1(x, y) = M1(0, y) − x(2 − K)/K.

Similarly,
M2(x, y) = M2(x, 0) − y(2 − K)/K.
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Now, from the relationships between bivariate failure rates and mean residual lives
(see Roy, 1993) we get

h1(x, y) =
1 − M1(0, y − 1) + (x − 1)(2 − K)/K

M1(0, y − 1) − x(2 − K)/K
+ 1

=
1 − (2 − K)/K

M1(0, y − 1) − x(2 − K)/K
.

Thus, h1(x, y) is inversely and locally linear in x. Similarly,

h2(x, y) =
1 − (2 − K)/K

M2(x − 1, 0) − y(2 − K)/K

which is inversely and locally linear in y.
We are now in a position to present the main result characterizing discrete

bivariate life distributions based on constancy of the coefficient of factorial vari-
ation. In this process, we obtain the bivariate geometric distribution studied in
Roy (1993) (to be abbreviated as BVG), a bivariate Waring distribution and a
bivariate negative hypergeometric distribution.

Theorem 2.3. Let the bivariate factorial moments satisfy the condition (2.2) in
the extended domain. Then, with symbols having their usual meanings, (i) K=2
if and only (X, Y) follows the BVG distribution with survival function given by

S(x, y) = θ1
xθ2

yθ3
xy, 0 < θ1, θ2 < 1, (

θ1 + θ2 − 1)

(θ1θ2)
≤ θ3 ≤ 1; (2.6)

(ii) K > 2 if and only (X, Y) follows a bivariate Waring distribution with survival
function given by

S(x, y) =

(

M2(0,0)−1−e

e

)

(y)

(

M1(0,0)+βy−1−e

e

)

(x)
(

M2(0,0)
e

)

(y)

(

M1(0,0)+βy

e

)

(x)

; (2.7)

(iii) K < 2 if and only if (X, Y) follows a bivariate negative hypergeometric
distribution with survival function given by

S(x, y) =

(

M2(0,0)−1+d

d

)

y

(

M1(0,0)+βy−1+d

d

)

x
(

M2(0,0)
d

)

y

(

M1(0,0)+βy

d

)

x

. (2.8)

Proof. We have already observed in Theorem 2.2 that if (2.2) holds then

M1(x, y) = M1(0, y) − dx, M2(x, y) = M2(x, 0) − dy (2.9)

where d = (2 - K) / K.
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Case (i) Let K = 2. Then from (2.9) we observe that

M1(x, y) = M1(0, y)

M2(x, y) = M2(x, 0).

In other words, M1(x, y) is a constant in respect of x and M2(x, y) is a constant
in respect of y. These imply that the bivariate failure rates are locally constants.
Thus, from the relationships

S(0, y) =
∑

v≥y

[1 − λ2(0, 0)]...[1 − λ2(0, v − 1)]λ2(0, v)]

and

S(x, y) = S(0, y)[1 − λ1(0, y)]...[1 − λ1(x − 1, y)], x, y = 0, 1, 2, . . . (2.10)

we get
S(x, y) = S(0, y)[1 − λ1(0, y)]x. (2.11)

Similarly,
S(x, y) = S(x, 0)[1 − λ2(x, 0)]y . (2.12)

Using (2.12) we get S(0, y), and can simplify (2.11) as

S(x, y) = [1 − λ2(0, 0)]y[1 − λ1(0, y)]x. (2.13)

Similarly, we observe that

S(x, y) = [1 − λ2(x, 0)]y[1 − λ1(0, 0)]x. (2.14)

Comparing (2.13) with (2.14) we ensure that

log[1 − λ1(0, y)] = α + βy. (2.15)

Simplifying (2.13) with (2.15) we get

S(x, y) = θ1
xθ2

yθ3
xy

which is the survival function of the BVG distribution. The converse is easy to
prove.

Case (ii) Let K > 2. Then d < 0. Hence from (2.9) we can write

M1(x, y) = M1(0, y) + ex , M2(x, y) = M2(x, 0) + ey, (2.16)

where e = −d is a positive quantity. Thus,

λ1(x, y) =
1 + e

M1(0, y) + ex
, λ2(x, y) =

1 + e

M2(x, 0) + ey
. (2.17)



Characterization of bivariate discrete distributions 59

Hence from Theorem 2.2 we get via (2.10) that

S(x, y) = S(0, y)Πx
s=1

M1(0, y) − 1 − e + e(s − 1)

M1(0, y) + e(s − 1)
. (2.18)

Similarly, we obtain

S(x, y) = S(x, 0)Πy
r=1

M2(x, 0) − 1 − e + e(r − 1)

M2(x, 0) + e(r − 1)
. (2.19)

Obtaining an expression of S(0, y) from (2.19) and substituting the same in (2.18)
we get

S(x, y) = Πy
r=1

M2(0, 0) − 1 − e + e(r − 1)

M2(0, 0) + e(r − 1)
Πx

s=1

M1(0, y) − 1 − e + e(s − 1)

M1(0, y) + e(s − 1)
(2.20)

or

S(x + 1, y + 1)S(x, y)

S(x + 1, y)S(x, y + 1)
=

[

1 −
1 + e

M1(0, y + 1) + ex

] [

1 +
1 + e

M1(0, y) − 1 − e + ex

]

.

(2.21)
Similarly, obtaining an expression of S(x, 0) from (2.18) and substituting the

same in (2.19) we get

S(x, y) = Πy
r=1

M2(x, 0) − 1 − e + e(r − 1)

M2(x, 0) + e(r − 1)
Πx

s=1

M1(0, 0) − 1 − e + e(s − 1)

M1(0, 0) + e(s − 1)
(2.22)

or

S(x + 1, y + 1)S(x, y)

S(x + 1, y)S(x, y + 1)
=

[

1 −
1 + e

M2(x + 1, 0) + ey

] [

1 +
1 + e

M2(x, 0) − 1 − e + ey

]

.

(2.23)
Thus, comparing (2.21) with (2.23) we note that M1(0, y) must be linear in y and
M2(x, 0) must be linear in x. Also,

M1(0, y) + ex = M2(x, 0) + ey.

Writing, M1(0, y) = α + βy we note that α = M1(0, 0), and hence

M1(0, y) = M1(0, 0) + βy. (2.24)

Simplifying (2.20) with (2.24) we obtain the survival function of (X, Y ) as

S(x, y) =

y
∏

r=1

M2(0, 0) − 1 − e + e(r − 1)

M2(0, 0) + e(r − 1)

x
∏

s=1

M1(0, 0) + βy − 1 − e + e(s − 1)

M1(0, 0) + βy + e(s − 1)

(2.25)
or

S(x, y) =

y
∏

r=1

M2(0,0)−1−e

e
+ (r − 1)

M2(0,0)
e

+ (r − 1)

x
∏

s=1

M1(0,0)+βy−1−e

e
+ (s − 1)

M1(0,0)+βy

e
+ (s − 1)
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or

S(x, y) =

(

M2(0,0)−1−e

e

)

(y)
(

M2(0,0)
e

)

(y)

(

M1(0,0)+βy−1−e

e

)

(x)
(

M1(0,0)+βy

e

)

(x)

,

where (a)(x) = Γ(a + x)/Γ(a) is the Pochhammer’s symbol. Alternatively,

S(x, y) =

(

M1(0,0)−1−e

e

)

(x)
(

M1(0,0)
e

)

(x)

(

M2(0,0)+δy−1−e

e

)

(y)
(

M2(0,0)+δy

e

)

(y)

,

where δ is a constant such that

M2(x, 0) = M2(0, 0) + δx . (2.26)

The converse is easy to prove.
Case (iii) The line of approach is similar to that of case (ii). However for

K < 2 the value of d is positive. Then from (2.25) we have after necessary
modifications (i.e. by replacing e by -d)

S(x, y) =

y
∏

r=1

M2(0, 0) − 1 + d − d(r − 1)

M2(0, 0) − d(r − 1)

x
∏

s=1

M1(0, 0) + βy − 1 + d − d(s − 1)

M1(0, 0) + βy − d(s − 1)

or

S(x, y) =

y
∏

r=1

M2(0,0)−1+d

d
− (r − 1)

M2(0,0)
d

− (r − 1)

x
∏

s=1

M1(0,0)+βy−1+d

d
− (s − 1)

M1(0,0)+βy

d
− (s − 1)

or

S(x, y) =

(

M2(0,0)−1+d

d

)

y
(

M2(0,0)
d

)

y

(

M1(0,0)+βy−1+d

d

)

x
(

M1(0,0)+βy

d

)

x

,

where (a)r stands for the standard notation for permutation.
Remark 2.1. The concept of quadrant dependence was introduced in Lehmann

(1966) and studied by Shaked (1982) through unidirectional ordering between the
joint survival function and the product of the marginal survival functions. Follow-
ing Lehmann (1966), quadrant dependence is positive if the former is greater than
the latter and negative if the former is less than the latter. Under the BVG distri-
bution, S(x1, x2) ≤ S1(x1)S2(x2), and hence the BVG distribution has negative
quadrant dependence. The corresponding correlation coefficient is negative.

Theorem 2.4. For discrete bivariate setup let λ1(x, y)M1(x, y−1) = c = λ2(x, y)
M2(x − 1, y) for all x, y = 0, 1, 2, . . . . Then (i) c = 1 if and only if (X, Y ) follows
BVG with survival function given by (2.6), (ii) c > 1 if and only if (X, Y ) follows
a bivariate Waring distribution with survival given by (2.7), (iii) c < 1 if and only
if (X, Y ) follows a bivariate negative hypergeometric distribution with survival
function given by (2.8).
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Proof. From the relationships between bivariate failure rates and mean residual
lives we have

M1(x, y − 1)λ1(x, y) = 1 − M1(x − 1, y − 1) + M1(x, y − 1)

or,
M1(x, y − 1)λ1(x, y) = 1 + ∆M1(x − 1, y − 1)

or,
∆M1(x − 1, y − 1) = 1 − c, for x, y = 0, 1, 2, . . . .

Similarly,
∆M2(x − 1, y − 1) = 1 − c, for x, y = 0, 1, 2, ...

Thus,

M1(x, y − 1) = (1 − c) + M1(x − 1, y − 1)

= (1 − c) + (1 − c) + M1(x − 2, y − 1) = . . .

= (1 − c)x + M1(0, y − 1).

Similarly,
M2(x − 1, y) = (1 − c)y + M2(x − 1, 0).

Rest of the proof follows from that of Theorem 2.3 with d = (2 − K)/K replaced
by (1 − c).

3 An application in stochastic modeling

Let us consider a set of sperm viability data observed over 20 weeks for twins
belonging to a lower fertility group studied under recovery of testicular function.
The sperm viability is measured in terms of percentage of living normal cells in the
sperm specimen. We may consider sperm viability as a discrete variable as it gets
generated under a counting process. Other biomarkers like sperm concentration
measured in terms of sperm count per milliliter ejaculate have not been taken into
consideration for this modeling problem to restrict our analysis to a bivariate set
up. The sperm viability for the first twin be represented by X and that of the
second twin be represented by Y . The bivariate information on (X, Y ) is given
by (48, 47), (53, 58), (63, 55), (61, 58), (52, 50), (50, 54), (50, 47), (48, 45), (44,
41), (45, 50), (42, 46), (45, 47), (43, 45), (44, 49), (43, 44), (46, 45), (43, 43), (41,
47), (42, 40) and (40, 44).

It is easy to note that there will be at the most 400 combinations each to be
studied for residual life analysis of X and Y . Our objective is to calculate the
coefficient of factorial variation for each of X and Y based on each set of residual
data. The meaning of the term residual should be treated as a conditional one
and CFV should be treated as a conditional measure of the bivariate distribution.
For the purpose of demonstration of the calculation of CFV, we may consider the
residual observations under the condition {X > 45, Y > 41}. Following is the set
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of residual observations satisfying this condition: (48, 47), (53, 58), (63, 55), (61,
58), (52, 50), (50, 54), (50, 47), (48, 45) and (46, 45).

Then (X − 45) will have 9 values as 3, 8, 18, 16, 7, 5, 5, 3 and 1. The
corresponding value of (E(X−45|X > 45, Y > 41))2 will be equal to (7.333)(7.333-
1)=46.440 and that of E[(X−45)2|X > 45, Y > 41] will be equal to 77.333. Thus,
CFV works out as

CFV = E[(X − 45)2|X > 45, Y > 41]/(E(X − 45|X > 45, Y > 41))2 = 1.665.

But we need to examine CFV values for X for all choices of x and y of X and Y
respectively. To be more specific, we need to examine the constancy of those CFV
values. For doing so, we have calculated the variance of such CFV values using a
computer program. There are all total 358 effective combinations with variance
of CFV values of X as 0.176. This being a very small value we may arrive at the
conclusion that CFV values for X are nearly constant. We shall treat the mean
CFV value as that constant value. It comes out as 1.648. Similar such studies for
Y reveals that there are all total 360 effective combinations with variance of CFV
values as 0.169. This is again a very small value and hence we may conclude that
CFV values for Y are almost constant. We shall treat the mean CFV value as
that constant value. It comes out as 1.762. Since these two constants are quite
close we may consider K value of the condition (2.2) as (1.648+1.762)/2 = 1.705,
the average of these two values. Now, making appeal to Theorem 2.1 we conclude
that the underlying distribution can be uniquely determined by the corresponding
characterization result of bivariate negative hypergeometric distribution of The-
orem 2.3. However, we have to shift the point of origin to the point (40, 40)
to match with the starting point of the bivariate model at (0,0). Parameters of
the fitted model can be obtained by the standard moment method. In case one
considers K values, 1.648 and 1.762, as markedly different we cannot apply the
Theorem 2.3. In case there were negative results that the conditions of constancy
of both the CFV values do not hold true we would have concluded that neither
bivariate geometric distribution nor bivariate Waring distribution nor bivariate
hypergeometric distribution could describe the variations in the data set.
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