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Abstract: In univariate nonlinear regression models, estimator and test
statistics based on (generalized) least squares and maximum likelihood meth-
ods are usually nonrobust; M-procedures are better in this respect. Our
proposed M-estimators, and M-tests are formulated along the lines of gener-
alized least squares procedures and their (asymptotic) properties are studied.
Computational algorithms are also considered along with.
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1 Introduction

We consider the (univariate) nonlinear regression model

}/izf(Xi, ,8)+aiei, 1=1,...n (1.1)
where Y; are the observable random variables (r.v.), x; = (%15, T2, .-, Tim;)t are
known regression constants, 8 = (81, 32, ..., Bp)" is a vector of unknown param-

eters; f(-,-) is a (nonlinear) function (of B3) of specified form, the errors e; are
assumed to be independent and identically distributed (i.i.d) r.v.’s with a distri-
bution function (d.f.) G, defined on R, and the a; (> 0) are known constants,
possibly dependent on the x;. We assume that the d.f. G(:) is continuous and
symmetric about 0 (though its functional form may be unknown). Nonlinear
regression models in the homoscedastic setup can be thought of direct general-
izations of linear and generalized linear models (Gallant, 1987; Seber and Wild,
1989; McCullagh and Nelder, 1989; Genning et al., 1989, and Vonesh and Chin-
chilli, 1997). In a more general heteroscedastic setup, they are also related to
transformation and weighing in regression (Carroll and Ruppert, 1982, 1988).
Unlike linear models, in nonlinear models, even when G is assumed to be nor-
mal, exact statistical inference could be a problem mainly due to the complexities
of the estimating equations, and (generalised or weighted) least squares proce-
dures are often used for asymptotic approximations (Hartley, 1961, and Hill and
Holland, 1977). Such procedures are generally not robust, and in addition, may
require iterative algorithms for their solution (Bates and Watts, 1987; Dutter,
1975; Hartley, 1961; Sen, 1998, and Marquardt, 1963). For linear models, robust
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procedures based on M-statistics have been extensively studied in the literature
(Huber, 1981; Klein and Yohai, 1981; Yohai and Maronna, 1979; Hampel et al.,
1986, and Jureckovd and Sen, 1996). Incorporating the classical generalized least
square (GLS) procedure, we formulate suitable M-estimators of 3 and study their
(asymptotic) properties, including consistency and asymptotic normality. M-tests
(Sen, 1982) are also considered for testing suitable hypothesis on 3. Two needed
computational algorithms for M-estimators based on Newton-Rapson and Fisher’s
scoring methods are presented.

In Section 2, preliminary notions and regularity conditions are presented. Sec-
tion 3 deals with the asymptotic distribution theory of M-estimators of 3, and in
this respect, a uniform asymptotic linearity result on M-statistics (with respect
to regression parameter) is presented in detail. Section 4 is devoted to related
M-tests. In Section 5, two iterative computational methods are considered.

2 Notation and regularity assumptions

2
We introduce the notation H yH = y'Wy (of a quadratic norm) with W
w

denoting a positive definite (p.d.) matrix. In the current context, we let W =

Dia/g(wnla ceey wnn)a a'nd h(Y_f(X7 ﬂ)) = (h(Yi_f(X17 /8)7 ceey h(Yn_f(XTH ﬂ))t7
where h is a suitable function which may downweight or omit extreme values. We
consider then the norm

Z wni [h(Y; = f(xi, B)))* = (Y — f(x, B)' W [h(Y — f(x, 8))]

and define ﬁn, an M-estimator of 3, as

2
B, = Arg min{Hh(Yff(x, ﬁ))HW:BGQ gérep}, (2.1)

We could let h(z) = z in (2.1) and have the WLS estimator of 3. However,
we are interested in more robust methods (Huber, 1981; Hampel et al., 1986;
Jureckovd and Sen, 1996, and others), so that we may use bounded and monotone
functions h(-); the so called Hampel score function is given by

%z, . ?f |z| <a

h(z) = {a(l‘,z|‘jl§2a)} ; if-b<z<-a,a<z<b
{a%—%}lﬂ, if —c<z2<-bb<z<c
{a(b+c —a)}'/?, if |z] > ¢

for suitably chosen a,b, and ¢ (0 < a,b,¢c < o0). We may define fﬂ(xi,,ﬂ) =
(0/0B) f(xi, B), and ¥ (z) = (0/0z) h?(z), so that the estimating equation for the

minimization in (2.1) is given by
n

D Awni (Vi = f(xi, B,)) Eg(xi, B)} = 0. (2.2)

=1
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In this context, we let
wai = [B@Y~ 100 )] ) S [E@AY -~ f6x5.8)] L 1<i<n

We note that the equations in (2.2) need not be linear in Bn or Y;. We shall
impose the following sets of regularity assumptions concerning (A) the d.f. G, (B)
the score function ¢, and (C) the function f(-).

[A1]: G is absolutely continuous with an absolutely continuous probability density
function g(-) having a finite Fisher information

+o00
| Twerserice <.

— 00

[B1]: ¢ is nonconstant, absolutely continuous and differentiable with respect to

a.
[B2]: i) Ev¢?(2) < oo, and E(z) = 0.
i) E(¢(2))° < oo, and Ey/(z) =~ (#0).
[B3]: 1) lims—o E{supHAHQ \ (Y = f(x, B+ A) oY = f(x, ﬁ))‘} =0.
i) Tims g E{supHAHSd WY = fx, B+ A) (Y — f(x, B)]} =0,

[C1]: f(x, B) is continuous and twice differentiable with respect to 8 € @, where
©® is a compact subset of RP.

[C2]: i) mazlgign{ wni #5(xi, B) (Ta(B)) g0, 5)} 50, a5 11 — 00,
where

i=1
ii) limy— 00 I'n(B) = T'(B), where I'(8) is a positive definite matrix.
[C3]: i) lims—o SUP|| 5| <s ‘(a/aﬂj Jf(x, B+A) (0/0pr)f(x, B+A)
~(0/08;)1(x. B) (9/05)F(x. B)| =05 j. k=1, p.

ii) lims—o e NE ‘<02 /0B 0Bk) f(x, B+ A) — (82/08; 9Bk) f (%, B)
=0; 5,k=1,...,p.
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3 Asymptotics for M-estimators

In order to prove the asymptotic normality of the M-estimator ,@n in (2.2), first, in
Theorem 3.1, we consider the uniform asymptotic linearity result. The bounded-

ness in probability of nz H [3” -3 H is presented in Theorem 3.2. The asymptotic
distribution of the M-estimator is finally developed in Theorem 3.3.

Theorem 3.1. Under the conditions [Al], [B1]-[B3], and [C1]-[C3],

sup [|n? S AV B4 nE ) - Y B+ Ta(B) ] = 0p(1)  (3.1)

|| H<C i=1

as n — oo, where XYz, B) = w(Y; — f(x;, B)) fﬁ(xi, B).

Proof. We start the proof by denoting the j-th element of the vector A(Y;, B)

by )\j(}/ia 16) = w(}/z - f(Xivlg))fﬁj(Xialg)a ] = ]-a e Dy where fﬁj(xia ﬁ) =
(0/06;) f(xi, B). By the Taylor expansion we obtain

Ni(Yi, B+n77t) = M(V;, B) = Ztk (0/08:)7; (Y, B) +

Z (0/08)0, (V5. B+ Z2) = (/0B (Vi B),

where
019N (Yi, B) = (Yi— f(xi,8)) (9°/08x 0B;) [ (xi, B)
wl(Yz - f(XiH@)) fﬂ] (X’ia ﬂ)fﬂk (Xia 16)
It can be seen that for each j(=1,...,p)

sup |n? Z{wm (Y., B+ \h/t—) - N3, B)]} +

H ||<C i=1

n p
v Z >tk wni fa,(xi, B) fa, (xi, B)

< s | 303 s {0050\ Vi, B+ 2) = (0/8N (Y. B))
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In addition, we may have that

n

P
sup | 303 tewni {(0/050N (Vi B+ %

—2) = (0/9B)A,(Vi,
P3PS )~ (0100, B)Y

n p
<CY N wp sup ‘(3/35k)>\j(ymﬁ+ht

Sim e|<c Vi

) = (8/9Bk)A; (Yi, B)

)

and

sup|(0/95)0 (Y, B+ T2) = (0/05),(Vi B)
I¢fl<c
< s {[4/0 = B+ ) — 0V~ fxB))|

lefl<e

ht ht
I, (%, B+ ﬁ)fﬁk(xiaﬁ+ ﬁ)‘} +

ht ht
{ fa,(xi, B+ ﬁ)fﬁk(xu B+ ﬁ) — [, (%4, B) f3, (i, 5)‘ :

sup
lefl<c

(Y~ fxi,B)|} +

sup {Jot¥i — 78+ 2

N ) vl [ B))
t||<c

‘(82/3@ 9p;) f (xi, B+ _t)}} *

ht
sup 1 [(82/9Bx 0B3;) f(xi, B+ —
||tu<cH o Vi

(v - £xi.)|

) = (02/08,05)) (xi, B)] -
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Then, it can be seen that

B{ s [(0/0800,(%. B+ Z2) =~ (0/083,(v. B)|}
lell<c
< sup ’fﬁj(xi? B+ A)fﬁk(xiaﬂ—" A)‘
laf<o
E{Hsmp V(Y= Floxi B4+ A)) = /(Y = fxi. 8)| | +
All<s

sup |/, (xis B+ A)f, (xi, B+ A) = f,(xi, B) o (xi, B)]

la]l<s
B{|v'(vi - fx, 8)|} +
sup |92/ 08,)f (xi, B+ A)|

laf[<s
B{ sup [w(Yi - f(xi, 8+ A)) = 0(Y; — fxi. B)|} +
la]<s
i Sl\llp | (©%/06:08,)f (xi. B+ A) = (62/05,. 08, (xi, B)|
All<s

B{|u(v: - f(x:.8)|}.

Thus, applying conditions [B3] i)-ii) and [C3] i)-ii) yields

B{ sup [(0/080% (Y. B-+72) = (0/080% (Vi )|} — 0.%i <.
all<s K

and

n p
B{ suwp | 3D thwai (/080N (Y, B+ ht

|¢]|<c =1 k=1 \/ﬁ) (0/0Bk) N ( ﬁ)}‘}

— 0.
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Also,

Var{ sup ‘ Zztkwnz {(0/0Br)N; (Y3, B+ %) -

[l¢]|<c =1 k=1

(0/08)% (i, )} }
< C? zn:(wm‘/ar{z sup ‘8/aﬁk) (Yu,@‘f‘%)_

i=1 k=1 ’t <c

(0/080)7,(%:. B)]})

B < N . EW*(Y; — f(xi, B)) -
(5 [rtn s ) >l |
ht

Var{z sup ‘ (0/0Bk)N\;(Y:, B+ T (0/0Bk)A; (Y3, B) ‘})
k=1 [|t||<c

n

- 1\ 2 E(*(Y: — f(xi, B) - —0.
(ZLI[EWQ(E'*J?(X@B))} ) ;{ ( )} 0

<

Hence

sup ‘ Z Ztkwnz 6/aﬁk) (}/17/3 + h_\/1i (8/05@&(1@,[})}’ = 0p(1).
[l¢]|<c” =1 k=1
(3.2)
On the other hand,

sup ’ Zztkwnz (0/0B1k)A; (Ys, B) +

IE H<c i=1 k=1

Y Zztkwni fﬁj(xia ﬂ)fﬁk(xia B)

i=1 k=1

< i \ZZtkwme (i, 8)) (9%/9898) (xi, B)|+

<C i=1 k=1

sup ‘ Zztkwnzw Y f(xzmg))fﬁj (Xia ﬁ)fﬁk (Xia /6) -

H H<c i=1 k=1

Y Zztk Wi fﬁj(xi; ﬂ)fﬁk(x'w /6) 3

i=1 k=1
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where

SiP ‘ SO tewni (Vi — £(xi,8)) (9°/08k 08;) f (i, ﬁ)‘

|¢]|<c =1 k=1

<) sup ‘tk D wai (Yi = f(xi, ) (97/0Bi 95;) f (i, ﬂ)‘

k=1 |t]|<c’ =1

<O Y| S w0l = £xi,B) (01050 08;)f (x:, B)].

k=1 =1

Now, we may define

Un, = Zwm (Y; — f(xi,8)) (008 05;) f (i, B),

i=1

and have

and

1 n 3
VaT’(Un) = —— EwQ (}/; N f(X,L’ﬁ))
(S [Bo2v - 15,80 ) 2 }

2
(@ /05.08)1(x..8)] ) — 0.
Hence, we have that U, = 0p(1). Then

N 2SS s (¥ — £, 8)) (02054 08) fxir B)}| = 0,(1). (33
tl|l<c " i=1 k=1

Similarly,

sup | 30D {tewns 0/ (Vi = f(x0,8) fi, (xis B)fo (xis B)} —

[l¢]|<c i=1 k=1

0 ZZ{tk Wni fﬁj(xia ﬂ) fﬁk(xia ﬂ)}‘

i=1 k=1

s [t S G (50— 0 8) — ) £ (i 8) o, D))

k 1Ht”§c i=1

<

n

<O 30| S s (W0Y; £ B) ) 20 B) o s 1)
k=1 i

=1
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Vo= {was (v (Vi = £ B)) =) fi, (500 B) fs, (50, B} = 0,1,

because _
E(V,) =0,
and
1 n —2
Var(Vy,) = — EY2(Y; — f(xi, B))
(S [peri - s8] ) % |
Var(y!(¥; — £ (<0, 8)) [Jo, 051, 8) fo (x0.8)] ) — 0.
Then

sup ‘ Z Z{tk wnzw Y f(XZ7Ig)) fﬁj (Xi; ﬁ) fﬁk (Xia /g)} -

H |<c =1 k=1
gl Z Z{tk Wn; fa,(Xi, B)fp. (%i, B)}| = 0p(1). (3.4)
i=1 k=1

So, using (3.3) and (3.4) we have

i \ZZtkwm (9/0B:)N; (Vi B) +

<C i=1 k=1
gt Z Ztk wni f5,(%i, B) fp. (xi, B)| = 0p(1). (3.5)
i=1 k=1
Therefore, from (3.2) and (3.5) we may conclude that

n

1 ht
sup [n2 Y {wi [\(Yi, B+ —=) — N (Y, B) ]} +
e’ = v

n p
Y Zztk W; fﬁj(xi; ﬁ)fﬁk(xmﬁ)‘ = Op(]-)a j = ]-a P @

i=1 k=1

Theorem 3.2. Under the conditions [Al], [B1]-[B3], and [C1]-[C3], there ex-
ists a sequence B3,, of solutions of (2.2) such that

1
nz

anﬁH:Op(l) as n — 0o (3.6)
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and
anzm7 E:me — f(xi, B)) Eg(xi, B} +0p(n72). (3.7

Proof. From Theorem 3.1 and following the proof of Theorem 5.2.1 of Jureckova
and Sen (1996), we have that the system of equations

n

D _{wnith(Vi = f(xi, 8+ 072 6)) (0/00;) f(xi, B+n"* )} =0

i=1
has a root t,, that hes in Ht” < C with probability exceeding 1 — € for n > ny.
Then B, = B+ n" 7 t,, is a solution of the equations in (2.2) satisfying

P(Hn%(,én 7,6)” < C’) >1— ¢ for n > ny,

i.e., the expression (3.6) is proved. Now, inserting t — n2z (3, — @) in (3.1), we
have the expression in (3.7). e

Theorem 3.3. Under the conditions [Al], [B1]-[B3], and [C1]-[C3],

VB, - B8) —N, (o, . < @@)). 68
Ly B - . 8)]

Proof. From (3.7) we have that

% (Ta(B)~ Z{wm Y(Yi = f(xi, B)) fﬁ(xi, B)}+ op(n*%).
i=1
Considering the r.v. Z, = > {wn ¢(Y; — f(xs, 8)) f..,@(xiv B)}, in order

to prove that Z,, has asymptotically a multinormal distribution, we consider an
arbitrary linear compound Z* = A Z,,, A € RP, so that

— zn:{ ! — Vi A fg(xz‘, B) Zi(B)},
S B - s, 9)]

1

= — (Vi — f(xi, B)),
okt S B0, - 16, 8)
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with
E{Z;(B)} =0, and Var{Z;(B8)} = 1.

Thus, we may write
n
= Z cni Z;(B
i=1
1

. VS B, - s, 9)]

Now, we may use the Héjek-Sidak Central Limit Theorem (Sen and Singer, 1993,
p-119) to show that Z is asymptotically normally distributed; for this, we need
to verify the Noether condition on the c,;, namely, that

maxi<i<n €2; / Yoiy ¢2; — 0, as n — 0o, which is equivalent to showing that as
n — 00,

where

— \/Wni N fﬂ(xz-, B).

/\seugle)p L?%Xn A, flg(xi, 3) fb(xi, B)AN/ AT, (B) )\} — 0.

By using the Courant Theorem (Sen and Singer, 1993, p.28), we have that

ot ) t
sup {A Wi fg(xm B)i5(xi, B) A/ AT (B) A}

= Chl{wnz fﬂ(xza /6) ft (Xia ﬁ) (I‘n(lg))il}
zwmfb(xz, B) (Tn(B))” 1f,3(xi7 B).

Thus, the condition above is reduced to the Noether condition [C2] i). Hence,
we conclude that

1

Zcmi N(0,1), as n — oo.

In addition, by using the Cramér-Wold Theorem (Sen and Singer, 1993, p.106)
and condition [C2] ii) we may prove that

Zp = Z{wmw(yi — f(xi, ﬂ))fg(xm B)}
— Np<0, L
S [ B - £, 8)) ]

Finally, by using the Slutsky Theorem (Sen and Singer, 1993, p.127), the
asymptotic distribution of Z,,, and condition [C2] ii), we may conclude the result
n (3.8). e

— I‘(,@)), as n — 00.
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Corollary 3.4. Under the conditions [A1], [B1]-[B3], and [C1]-[C3],

52

[ ! ——— (Tu(B.) )]
S [BR0 - £ 8,)]

FB.-8—N, (0, 1,).

Corollary 3.5. Under the conditions [Al], [B1]-[B3], and [C1]-[C3],
Bo—B) [L[E@ Y, ~ £, B,))] 2Tu(B,)] (B~ B)

Jj=1

2
* Xp-

4 M-tests for linear and nonlinear hypotheses

The asymptotic distribution derived in Section 3.3 allows us to construct test of
hypotheses for the parameters in model in (1.1). We consider both linear and
nonlinear hypothesis for 3.

4.1 Scalar hypothesis testing

From Corollary 3.4 we can write:

(£)73 (8, -8) — N, (0, 1), (4.1)
where ) ) A
5= —— 72 Ta(B))
S [B Y - £, B,)]
and N
G= 30— T B)

We let i be the kth element of 8 (k =1, ..., p), and s.e.(Bk) be the square
root of the kth diagonal element of the estimated covariance matrix ¥ in (4.1).
Then, a 100(1 — a)% confidence interval for 3y is given by:

Bk + T% s.e.(ﬂAk),

where 7, is the upper 100a-quantile of the standard normal distribution.
We also may construct test statistics for hypothesis testing using the normal
distribution in (4.1).
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4.2 Wald-type M-tests for linear sub-hypotheses

We are interested in a confidence region for, or test statistic about a subset of

parameters; we partition 3 as (,8/1, ﬁ;)’ consisting of the first  and the last p — r
columns, ordering the elements of B such that those of interest are the first r

elements. We let )
> By
pu=( G
" ﬂ2n

be the M-estimator for 3. Then, from Corollary 3.4 we have that

[ [22 - 104, 8,0)] 7 Vil (Bi, -8 — N©.L)

Jj=1
where
5 V- Vi1 Vi
r, = .
e = (Vv
Then, by the Cochran theorem (Sen and Singer, 1993, p.137), we have

Bar — B0 (S [BG2; — 105 Bu)] 42 Vi) (Bus — B1) — 12

j=1

n
Jj=

where V7, is of rank 7. Therefore, for testing the hypothesis H, : 3; = 0, we use
the Wald-type M-test given by

n

W= B, (X2 [BEA; - £, Bu)))|

j=1

1 N
32 Vu) 3., (4.2)

which, under H,, has asymptotically the y? distribution. We can use the same
result in (4.3) to construct confidence regions in the usual way.

4.3 The likelihood ratio-type M-test
We consider a partition of 8 as in (4.2) and the hypothesis

H,:8,=0vs Hy: 3, #0.

We define L, (3) as
L.(B) = Z{wni h2(yi — f(xq, B))}.

The ”unrestricted” M-estimator for 3 is given by

B, = Arg min{L,(B): B € O}.
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Also, the "restricted” M-estimator for 3 is given by

B, - ( 5 ) — Arg min{L,(8): B, = 0, B, € ©s),

where @, = {,@2 : ( ,Igl ) €0, 8, = 0}.
2
We define

Q = 2{L.(B,)— La(B)}

and using a Taylor approximation and Theorem 3.2 we may write

Q= 2{Ln(Bn)*Ln(ﬁ)}

= (B,-B8) (\T(B) (B, -B)
M(8) % (T(8) Mo(B) + 0p(n"}),

where

M., (8) = > {wns v (Y; — f(xi, B)) E5(xi, B)}-

i=1

Similarly, we may have

@ = 2(Lu(B,) ~ Lu(B)
= MO (0 (pay ) Mal®) oy,
where,
T2 (B,) = lim. zn;wn B, (xi. B2) £y (xi, 8,).
Then,
Q=B [B) = (7 (ppayt ) M) o)

Note that the asymptotic normality result in (4.1) involves the estimator 3

which in turn involves the estimators 4 and 3, both being consistent for their re-
spective population counterparts. As such, by using expression (4.1), the Cochran
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Theorem (on the distribution of quadratic forms in normal vectors), and the Slut-
sky Theorem, it can be readily verified that

zn: [E(¢2(§9 — [, B))] o= (4.3)
M(B) Y [E 0 - 10c8)] {Tee) - < 0 (Tm(By) >} :

Mn(/g) + Op(nié) — X?, as n — 0.
In order to prove this we note that AX A = A, and ¢r(X A) = r, where

A= Z[ 2= 16 )] {CE = () (piyr )}

and
1

S [E@r - £ 8)]

Finally, we consider the Likelihood Ratio type M-test given by:

> =

Far =250 YO[B~ £, B)] 1La(B) ~ LaB)) (4)

j=1

From expression (4.3) and the Slutsky Theorem, we may conclude that the
asymptotic distribution of Fj in (4.4) is a x?2 distribution.

4.4 Testing nonlinear hypotheses
We consider nonlinear hypotheses of the form
H,:a(B)=0 vs Hy:a(B)#0

where a is a real valued (nonlinear) function (of 3).
From expression (4.1) and the Delta Method, we have that

{a3(8,) £ ag(B,)} 2 n? (a(B,) - a(B)) — N(0, 1),
where éﬂ( = (0/9B)a(B)

In adition, by using the Cochran Theorem we have:

(a(B,) — (@)’ {a3(8,) = ag(B,)} " (a(B,) - a(B)) — xi.

Hence in order to test the null hypothesis, we may use the Wald-type M-test
difined by

W = (a(B,) {8l3(8,) £ ag(B.)} " (a(B,)),

which under H, follows a x? distribution.
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5 Computational algorithm

In general, we must rely on an iterative method for solving the equations in (2.1).
We propose two iterative methods based upon a Taylor expansion around some

~ (0
initial guess ,6( ). First, we define the following matrices:

Z{wm D(Yi — f(xi,8)) 9*f(x:,8)/0B' 98},

W = D'La/g(wnla ceey wnn)7
Wl(ﬂ) = Diag(wn1w'(Y1 — f(X17,3))7 e wnnw/(yl - f(xlw@)))’

X(ﬁ) = (fﬂ(xlv 16)’ f:@(x% 16)’ L) f]@(xna /g))ta
‘II(Y - f(X ﬁ)) = (1/)(}/1 - f(X17lg))’ ) w(Yn - f(xnvlg)))tv and
UB) = AB,) - X8, ) Wi(B, ) X'(B,).

- (0
If we choose ,@fl ) based on some consistent estimator (e.g. the GLS estimator)
we may use the following algorithm
RO
Bn =Bars
(+1)

Al O uEDy T xe @B WE) e Y - f(x,BY))),

which is similar to the Newton-Raphson method. We can also replace U(3) by
its expected value:

O] O]

E{U(B)} = —T(B),
and propose the following algorithm:
NOBES

Bn =BaLs
B =B+ I B ) X B WB) B (Y - fx B,
where .
A(l)il ()
" fn;w i B,)).
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