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1 Introduction

For given random variables X and Y , the distribution of the product | XY |
is of interest in problems in biological and physical sciences, econometrics, and
classification. As an example in Physics, Sornette (1998) mentions:

“. . . To mimic system size limitation, Takayasu, Sato, and Takayasu
introduced a threshold xc . . . and found a stretched exponential trun-
cating the power-law pdf beyond xc. Frisch and Sornette recently
developed a theory of extreme deviations generalizing the central limit
theorem which, when applied to multiplication of random variables,
predicts the generic presence of stretched exponential pdfs. The prob-
lem thus boils down to determining the tail of the pdf for a product
of random variables . . .”

The distribution of | XY | has been studied by several authors especially when
X and Y are independent random variables and come from the same family. For
instance, see Sakamoto (1943) for uniform family, Harter (1951) and Wallgren
(1980) for Student’s t family, Springer and Thompson (1970) for normal family,
Stuart (1962) and Podolski (1972) for gamma family, Steece (1976), Bhargava
and Khatri (1981) and Tang and Gupta (1984) for beta family, Abu-Salih (1983)
for power function family, and Malik and Trudel (1986) for exponential family
(see also Rathie and Rohrer (1987) for a comprehensive review of known results).
However, there is relatively little work of this kind when X and Y belong to
different families. In the applications mentioned above, it is quite possible that X
and Y could arise from different but similar distributions.
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In this note, we study the distribution of | XY | when X and Y are independent
random variables having the normal and Laplace distributions with pdfs

f(x) =
1√
2πσ

exp

{

− x2

2σ2

}

(1.1)

and

f(y) =
λ

2
exp (−λ | y |) , (1.2)

respectively, for −∞ < x < ∞, −∞ < y < ∞, σ > 0 and λ > 0. Note that these
two distributions – proposed by Laplace in 1774 and 1778, respectively – are the
oldest known continuous distributions in statistics.

The aim of this note is to calculate the distribution of the product | XY | when
X and Y are distributed according to (1.1) and (1.2), respectively. A MAPLE
program for computing the associated percentage points is also provided. The
calculations of this note involve the complementary error function defined by

erfc(x) =
2√
π
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and the hypergeometric function defined by
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xk

k!
,

where (e)k = e(e +1) · · · (e + k− 1) denotes the ascending factorial. We also need
the following important lemma.

Lemma 1 (Equation (2.8.5.14), Prudnikov et al., 1986, volume 2) For p > 0,
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Further properties of the complementary error function and the hypergeomet-
ric function can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik
(2000).
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2 CDF

Theorem 2 derives an explicit expression for the cdf of | XY | in terms of the
hypergeometric function.

Theorem 2 Suppose X and Y are distributed according to (1.1) and (1.2), re-
spectively. Then, the cdf of Z =| XY | can be expressed as

F (z) =
λz√
2σ

{

3C√
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,

(2.1)
where C denotes Euler’s constant.

Proof. The cdf F (z) = Pr(| XY |≤ z) can be expressed as

F (z) =
λ

2

∫ ∞

−∞

{

Φ

(

z

σ | y |

)

− Φ

(

− z

σ | y |

)}

exp (−λ | y |) dy, (2.2)

where Φ(·) denotes the cdf of the standard normal distribution. Using the rela-
tionship

Φ(−x) =
1

2
erfc

(

x√
2

)

,

(2.2) can be rewritten as

F (z) =
λ

2

∫ ∞

−∞

exp (−λy) erfc
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)

dy − 1

= λ
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0
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(

− z√
2σy

)

dy − 1

= λ

∫ ∞

0

y−2 exp (−λ/y) erfc

(

− yz√
2σ

)

dy − 1. (2.3)

The integral in (2.3) can be calculated by direct application of Lemma 1. The
result follows. �

Note that the parameters in (2.1) are functions of λ/σ (ratio of scale parame-
ters). Figure 1 illustrates possible shapes of the pdf of | XY | for a range of values
of λ/σ. Note that the shapes are unimodal and that the value of λ/σ largely
dictates the behavior of the pdf near z = 0.
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Figure 1 Plots of the pdf of (2.1) for λ/σ = 0.1, 1, 2, 20 and σ = 1.

Appendix

The program in MAPLE appended below can be used to generate percentage
points zp associated with the cdf (2.1). The values zp are obtained by numerically
solving the equation
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Evidently, this involves computation of the hypergeometric function and routines
for this are widely available. We used the function hypergeom (·) in MAPLE.
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lambdaoversigma:=lambda/sigma:
f1:=(3*gamma/(sqrt(2*Pi))*(u*lambdaoversigma):
f1:=f1*hypergeom([1],[3/2,1,1/2],-(1/8)*(u*lambdaoversigma)**2):
f2:=(1/2)*(u*lambdaoversigma)**2:
f2:=f2*hypergeom([1],[2,3/2,3/2],-(1/8)*(u*lambdaoversigma)**2):
ff:=f1+f2:
p1:=fsolve(ff=0.01,u=0..10000):
p2:=fsolve(ff=0.05,u=0..10000):
p3:=fsolve(ff=0.1,u=0..10000):
p4:=fsolve(ff=0.90,u=0..10000):
p5:=fsolve(ff=0.95,u=0..10000):
p6:=fsolve(ff=0.99,u=0..10000):
print(lambdaoversigma,p1,p2,p3,p4,p5,p6);

We hope that this program will be of use to the practitioners mentioned in Section
1.
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