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Abstract: We propose a test of hypothesis for the closeness of two distri-

butions whose test statistic is asymptotically normal. The divergent is based

on the estimation procedure developed in Dias (2000) using a proxy of sym-

metrized Kullback-Leibler distance. Simulation results show that for mixture

of normal distributions this test is more powerful than Kolmogorov-Smirnov

test. As an application we compare acoustic data from several languages in

order to identify rhythmic classes.
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1 Introduction

There are several situations where we have independent samples and wish to test
whether they come from the same distribution. If it is possible to conjecture a
parametric family for the distribution, life is much easier and parametric tests can
be used. However, most of the time we cannot fit a parametric model and a non-
parametric test is necessary. (See for example Fan, 1998, and Li, 1996). The same
duality appears in estimation problems. Dias (2000) proposed a nonparametric
estimator for densities based on a proxy of the symmetrized Kullback-Leibler dis-
tance which is consistent (Section 2). Based on this estimator, in Section 3 we
propose a test statistic (henceforth called SKL test) which is asymptotically nor-
mal. Simulation results show that for mixture of normal distributions SKL test is
more powerful than Kolmogorov-Smirnov (K-S) test (Section 4). Also, the normal
approximation is achieved even for small samples when the underlying distribution
is normal.

As an application, in Section 5, we present an example that comes from lin-
guistic and deals with clustering the natural languages into rhythmic classes. In
the linguistic literature it has been conjectured that natural languages are divided
into rhythmic classes (cf. Abercrombie, 1967; Pike, 1945, among others). During
half a century no reliable phonetic evidence was presented to support this claim.
Recently Ramus, Nespor and Mehler (1999), gave evidence that simple statisti-
cal properties of the speech signal could discriminate between different rhythmic
classes. They analyzed the acoustic signal of 20 sentences of each of the fol-
lowing languages: English, Polish, Dutch, Catalan, Spanish, Italian, French and
Japanese. They computed for each sentence the standard deviation of the conso-
nantal intervals (∆C) and the proportion of time spent in vocalic intervals (%V )
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and found that based on these statistics the languages appear to cluster into three
groups which correspond precisely to the intuitive notion of rhythmic classes: En-
glish, Polish and Dutch represent the accentual class, French, Spanish, Catalan
and Italian represent the syllabic class and Japanese represents the moraic class.
In their work there is no study for Portuguese. In Section 5, we apply the proposed
nonparametric test to some of these languages and find that there is no significant
evidence of difference between European and Brazilian Portuguese, English and
Dutch and English and European Portuguese, while there is significant difference
between Brazilian Portuguese and Catalan and English and Japanese.

2 Previous results

Suppose we have two independent random samples X = (X1, X2, . . . , Xn1
) with

distribution F and Y = (Y1, Y2, . . . , Yn2
) with distribution G and we would like to

test whether F = G. First assume that both F and G are absolutely continuous
cumulative distribution functions with F ≪ µ andG≪ µ for a Lebesgue dominant
measure µ. Moreover, assume that f = dF

dµ
and g = dG

dµ
, the respective densities

of F and G, have compact support X . Define Fµ be the class of density functions
such that,

Fµ = {h : R → [0,∞) : h(x) =
eS(x)

∫
X e

S(x)dµ(x)
and

∫

X

eS(x)dµ(x) <∞},

where the function S is of the class C2(R). It is easy to see that the elements in
Fµ are not identifiable since for any function S1 such that S1 = S + c, we have
eS1/(

∫
eS1) = eS/(

∫
eS). We are going to require, as Dias (1998a), that

∫
X
S = 0,

to ensure uniqueness of the elements in Fµ.
Let h be a density with respect to µ. Consider the problem of finding the

maximum likelihood estimator of h. It is well known (see for example, Silverman,
1986; Pagan and Ullah, 1999, and Dias, 1994) that such optimization problem is
unbounded over the class of all smooth functions. In fact, the optimizer is a sum
of delta functions. To avoid the Dirac’s disaster one might want to apply penal-
ized likelihood procedure or one may assume that h can be well approximated
by a function belonging to a finite dimensional space HK which is spanned by
K (fixed) basis functions, such as Fourier expansion, wavelets, B-splines, natural
splines. See, for example, Silverman (1986), Kooperberg and Stone (1991), Vi-
dakovic (1999), Dias (1998) and Dias (2000). Although this fact might lead one to
think that the nonparametric problem becomes a parametric problem, one notices
that the number of coefficients can be as large as the number of observations, and
there may be difficulties in estimating the density. Moreover, if the number of
observations is large, the system of equations for exact solution is too expensive
to solve. This is an inheritance from the approximation theory of functions.
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In fact, an element of HK can be written as

h =
eSh

∫
eSh

with

Sh =

K∑

j=1

θjMj with

∫
eSh <∞

whereM1, . . . ,MK are normalized basis functions that span HK such that
∫
Mj =

1. In order to enforce one-to-one correspondence we restrict
∫
Sh = 0 and then∑K

j=1 θj = 0, since
∫
Mj = 1. For any K > 0, let Θ0 = {θ ∈ R

K :
∑K
j θj = 0}.

The vector of coefficients θ are unknown and need to be determined. One of
the most common standard statistical procedure in nonparametric estimation, is
to determine θ using maximum likelihood method.

Moreover, the vector of coefficients θ does not have a statistical meaning as
percentiles, moments, skewness. However, the set of coefficients (as a whole) is
extremely important to determining the shape of the density h. Observe that
changing the dimension, e.g. by 1, might change completely the estimation of the
coefficients for the new set of basis functions. However, for large K, it does not
change significantly the estimate of h. In fact, we use this as a stopping criteria
in adaptive procedures.

Assuming that the densities f and g belong to Fµ, we have that there exist
K1, K2 such that f and g are well approximated by functions in HK1

and HK2
re-

spectively. Consequently, there exist vectors θ = (θ1, . . . , θK1
), ψ = (ψ1, . . . , ψK2

)
such that the log-likelihood of X and Y are given by

LK1
(θ|X) =

1

n1

n1∑

i=1

〈θ,M(Xi)〉K1
− log

∫
e〈θ,M〉K1 (2.1)

and

LK2
(ψ|Y) =

1

n2

n2∑

i=1

〈ψ,M(Yi)〉K2
− log

∫
e〈ψ,M〉K2 . (2.2)

The next results (Lemma 1, Theorem 1, Lemma 2 and Proposition 1) were
proved by Dias (2000) in the case that functions M are the normalized B-splines.
We are going to enunciate the results for the (2.1) but obviously the results are
also valid for (2.2).

Lemma 1 For a fixed K1, LK1
(θ|X) is concave in θ. Moreover, LK1

(θ|X) is
strictly concave for θ ∈ Θ0. Hence there exists at most one maximizer on Θ0.

It is not difficult to show that LK1
(θ|X) is continuous and at least twice differen-

tiable in θ for a fixed K. Thus, restrict to Θ0 one may guarantee a unique density
estimate.

The next theorem shows the relationship between the maximizers θ̂ in Θ and
θ∗ in Θ0.
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Theorem 1 If the vector θ̂ maximizes LK1
(θ|X) then θ∗ = θ̂ − 1

K

∑K1

j=1 θ̂j max-

imizes LK1
(θ|X) subject to

∑K1

j=1 θj = 0. Moreover, θ∗ is unique.

For fixed K1, let θ̂
(K1)
n1

be defined as

θ̂(K1)
n1

= arg max
θ∈Θ0

LK1
(θ|X). (2.3)

Notice that, in fact,

LK1
(θ|X) = 〈θ, M̄〉K1

− log

∫
e〈θ,M〉K1 ,

then θ̂
(K1)
n1

is the unique solution of the equation

h(θ, M̄(X)) = 0, (2.4)

where M̄(X) is a K-dimensional vector with j-th components given by

1

n1

n1∑

i=1

Mj(Xi) = M̄j , j ∈ {1, . . . ,K1}. (2.5)

Since LK1
(θ|X) is at least twice differentiable we have θ̂

(K1)
n1

as the unique solution
of the equation,

∂LK1
(θ|X)

∂θ
:= h(θ,M∗(X)) = 0, (2.6)

where, M∗ = (1/K)
∑K

j=1 M̄j and h : Θ0 × [0,∞)K −→ R
K with j-th entry,

hj(θ,u) = uj −
∫

exp(〈θ,M(z)〉K1
)Mj(z)dz∫

exp(〈θ,M(z)〉K1
)dz

, (2.7)

for j ∈ {1, . . . ,K1}. Therefore, θ̂
(K1)
n1

is an M-estimator and since θ 7→ hθ is
continuous we have the following result.

Lemma 2 Let θ0 be the unique solution of

h(θ,

∫
f(x)M(x)dµ(x)) = 0

in Θ0, then for fixed K1, θ̂
(K1)
n1

−→ θ0 almost surely as n1 −→ ∞.

Thus, the density estimate is, for fixed K1

f̂K1
= eŜ−log

∫
eŜ

,

where Ŝ = 〈θ̂,M〉K1
with θ̂ = θ̂

(K1)
n1

.
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One may notice the density estimate f̂K1
strongly depends on the number of

basis functions K1 which regularizes the optimization problem (2.1). In order
to provide an appropriate K1, one may want to compute the Kullback-Leibler

distance between the true f and the random function f̂K1
.

d(f, f̂K1
) =

∫
(log f − log f̂K1

)f (2.8)

Of course, we cannot compute d(f, f̂K1
) from the data, since it requires the knowl-

edge of f . But theoretically we can investigate this distance for the choice of an

optimal K1 in the sense of minimizing d(f, f̂K1
). Then, one may define the best

K1 as
K̂1 = arg min

K∈{1,...,Kmax}
d(f, f̂K),

for Kmax < n1. Observe that, in order to obtain K̂1, it is sufficient to minimize

Dn1
(K) =

∫
f log f̂K .

Notice that Dn1
(K) is a random function of K and also can be approximate by

Zn1
(K) =

1

n1

n1∑

i=1

log f̂K(Xi).

Proposition 1 For any fixed K,

Dn1
(K)−Zn1

(K) =

K∑

j=1

θ̂
(K)
n1j

(∫
f(x)Mj(x)dµ(x)− 1

n1

n1∑

i=1

Mj(Xi)
)
−→ 0 (2.9)

n1 −→ ∞ almost surely.

Lemma 3 For K1, K2 fixed the density estimates f̂K1
(·) = fK1

(·|θ̂n1
) and ĝK2

(·)
= gK2

(·|ψ̂n2
) converge pointwise almost surely (a.s.) to fK1

(·|θ)and gK2
(·|ψ) re-

spectively as n1, n2 go to infinity.

Proof. It is enough to show one of the statements above. For fixed x, it is not
difficult to check that the map θ 7→ fm(x|θ) is a continuous map in θ ∈ Θ0, for any

m ∈ N. By Lemma 2 we have θ̂n1
−→ θ(∈ Θ0) a.s. and so fm(x|θ̂n1

) −→ fm(x|θ)
almost surely as n1 −→ ∞. Notice that the null sets of the a.s. convergence do

not depend on x then f(·|θ̂n1
) converges pointwise to f(·) a.s.

It is important to emphasize that in developing the theory and proving the the-
orems we followed the approach of non-stochastic K1 and K2. That is, we assume
that the dimensions of the approximant spaces are known in advance. However,
in practice, K1 and K2 are unknown and an adaptive procedure is suggested in
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page 5, by using K̂1 and K̂2 (which is obtained analogously). Alternative meth-
ods can be used, for example a Bayesian point of view can be used via Reversible
Jump MCMC, cf. Dias and Gamerman (2002). An stochastic dimension would
pose a more difficult problem to a nonparametric test of hypothesis and it is not
addressed in this manuscript and it will be left for future research.

3 Hypothesis testing - SKL test statistic

In this section we propose a statistic to test: H0 : f = g almost surely µ versus
the alternative hypothesis H1 : f 6= g over a set of positive µ-measure. Since this
test statistic is based on the symmetrized Kullback-Leibler distance we will call it
SKL test.

First we notice that the parameter space Θ0 = {θ ∈ R
K :

∑K

j θj = 0} is not

an open set and it is a (K − 1)-dimensional manifold in R
K . Therefore, in order

to have any kind of asymptotic normality results we need to reparametrize the

problem to (θ1, . . . , θK−1) ∈ Θ̃0 such that (θ1, . . . , θK−1,−
∑K−1
i=1 θi) ∈ Θ0. We

will continue to call the parameter θ. In this case, the density will be written as

f(x | θ) =
e〈θ,M̃(x)〉

∫
X e

<θ,M̃(x)>
∈ Fµ (3.1)

where

M̃j(x) = Mj(x) −MK(x). (3.2)

For fixed K1 and K2, we have as a consequence of Cramér’s Theorem (see
for example, Ferguson, 1996, p.121) the asymptotic normality of the consistent
estimator which solves the likelihood equation. For simplicity we will continue to
denote

θ̂n1
= (θ̂1, . . . , θ̂K1−1) (3.3)

where θ̂
(K1)
n1

= (θ̂1, . . . , θ̂K1
) is given by (2.3). Define similarly ψ̂n2

.

Theorem 2 The estimators θ̂n1
and ψ̂n2

are asymptotically normal distributed.
More specifically, if θ0 and ψ0 are the true parameter values, there exists positive
definite matrices Σ1 and Σ2 such that

√
n1(θ̂n1

− θ0) → NK1−1(0,Σ1) (3.4)
√
n2(ψ̂n2

− ψ0) → NK2−1(0,Σ2) (3.5)

as n1, n2 → ∞.

Proof. We are going to prove (3.4), (3.5) is completely analogous. We need to

show that all f ∈ Fµ satisfy the regularity conditions. First it is obvious that Θ̃0

is an open set and the model is identifiable.
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Note that e〈θ,M̃(x)〉 is of the class C∞(Θ̃0). It is easy to verify that
∫
X
e〈θ,M̃(x)〉<

∞, since X is a compact set and f ∈ Fµ. In addition,

∂

∂θi
e〈θ,M̃(x)〉 = M̃i(x)e

〈θ,M̃(x)〉 (3.6)

∂2

∂θi∂θj
e〈θ,M̃(x)〉 = M̃i(x)M̃j(x)e

〈θ,M̃(x)〉 (3.7)

which exist and are continuous functions for each (θ, x) ∈ Θ̃0×X . Thus, f(x|θ) is

of the class C∞(Θ̃0) and the partial derivatives may be passed under the integral
sign. Let

C(θ) =

∫

X

e〈θ,M̃(x)〉 (3.8)

Ci(θ) =

∫

X

M̃i(x)e
〈θ,M̃(x)〉 (3.9)

Cij(θ) =

∫

X

M̃i(x)M̃j(x)e
〈θ,M̃(x)〉. (3.10)

It is easy to verify that

∂2 log f(x | θ)
∂θiθj

=
Cij(θ)C(θ) − Ci(θ)Cj(θ)

C(θ)2
(3.11)

Since C(θ), Ci(θ) and Cij(θ) are continuous functions of θ, then in a closed
neighborhood N (θ0) of the true parameter value θ0, we have

C∗ := min
θ∈N (θ0)

C(θ) > 0

Ci := max
θ∈N (θ0)

Ci(θ) <∞

Cij := max
θ∈N (θ0)

Cij(θ) <∞.

Thus, ∣∣∣∣
∂2 log f(x | θ)

∂θiθj

∣∣∣∣ ≤
|Cij |
C∗

+
|CiCj |
C2

∗

=: C(i, j) <∞. (3.12)

In a completely analogous way, the third partial derivatives can be bounded.
Let I(θ) the Hessian matrix of log f(x|θ) with entries

Ii,k(θ) = −E

[
∂2 log f(x|θ)

∂θkθi

]
.

Then I(θ) is positive definite matrix. To see this, observe that

Ii,k(θ) = Cov(M̃i(X), M̃j(X)) = Cov(Mi(X) −MK(X),Mj(X) −MK(X)),
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which is nonnegative definite. But the collection of functions {M1, . . . ,MK} is
a basis for the finite dimensional approximant space (e.g., natural cubic spline
space) and so the columns of I(θ) are linear independent. Consequently, I(θ) is
a positive definite matrix. �

To measure the distance between the two distributions F and G we can use
the divergent given by:

IS(F,G) :=

∫
(log f(x) − log g(x))f(x)dµ(x) +

∫
(log g(y) − log f(y))g(y)dµ(y).

(3.13)

Define the following estimator for IS(F,G),

IS(f̂ , ĝ) =

∫
(log f̂K1

(x)−log ĝK2
(x))dFn1

(x)+

∫
(log ĝK2

(y)−log f̂K1
(y))dGn2

(y)

(3.14)
where Fn1

and Gn2
are the empirical distribution of F and G respectively. In fact,

if we have the random samples X = (X1, X2, . . . , Xn1
) with distribution F and

Y = (Y1, Y2, . . . , Yn2
) with distribution G, this estimator is of the form

IS(f̂ , ĝ) =
1

n1

( n1∑

i=1

log f̂K1
(Xi) −

n1∑

i=1

log ĝK2
(Xi)

)
(3.15)

+
1

n2

( n2∑

i=1

log ĝK2
(Yi) −

n2∑

i=1

log f̂K1
(Yi)

)

= Î1,n1
(X) + Î2,n2

(Y)

Lemma 4 For fixed K1 and K2, (Î1,n1
(X)+ Î2,n2

(Y)) −→ IS almost surely when
n1, n2 −→ ∞.

Proof. Call

I1 =

∫
(log f(x) − log g(x))f(x)dµ(x) (3.16)

and

I2 =

∫
(log g(y) − log f(y))g(y)dµ(y). (3.17)

It is enough to show that Î1,n1
(X) −→ I1 almost surely as n1, n2 −→ ∞, the



A spline approach to nonparametric test of hypothesis 61

result for Î2,n2
(Y) is done similarly. Let

D1
n1

(K1) =

∫
f(x) log f̂K1

(x)dµ(x), (3.18)

D2
n1,n2

(K2) =

∫
f(x) log ĝK2

(x)dµ(x), (3.19)

Z1
n1

(K1) = n−1
1

n1∑

i=1

log f̂K1
(Xi), (3.20)

Z2
n1,n2

(K2) = n−1
1

n1∑

i=1

log ĝK2
(Xi). (3.21)

Note that, Î1,n1
(X) = Z1

n1
(K1) − Z2

n1,n2
(K2). Therefore, by adding and sub-

tracting D1
n1

(K1) and D2
n1,n2

(K2), it is sufficient to show

(D1
n1

(K1) − Z1
n1

(K1)) + (D2
n1,n2

(K2) − Z2
n1,n2

(K2)) −→ 0, (3.22)

almost surely as n1, n2 −→ ∞. For this, observe that,

(D1
n1

(K1) − Z1
n1

(K1)) =

K1−1∑

j=1

θ̂n1,j

(∫
f(x)M̃j,1(x)dµ(x) − n−1

1

n1∑

i=1

M̃j,1(Xi)
)

and

(D2
n1,n2

(K2)−Z2
n1,n2

(K2))=

K2−1∑

l=1

ψ̂n2,l

(∫
f(x)M̃l,2(x)dµ(x) − n−1

1

n1∑

i=1

M̃l,2(Xi)
)

Following Dias (2000), we have that θ̂n1
and ψ̂n2

are the maximum likelihood

estimators and θ̂n1
−→ θ0 and ψ̂n2

−→ ψ0 almost surely as n1, n2 −→ 0, where
θ0 and ψ0 are the true parameter values. Moreover, by the strong law of large
numbers,

n−1
1

n1∑

i=1

M̃j,1(Xi) −→
∫
f(x)M̃j,1(x)dµ(x)

and

n−1
1

n1∑

i=1

M̃l,2(Xi) −→
∫
f(x)M̃l,2(x)dµ(x)

almost surely as n1 −→ ∞, for j = 1, . . . ,K1 − 1 and l = 1, . . . ,K2 − 1.

Theorem 3 For all f, g ∈ Fµ there exists a positive constant σI such that

√
n1(Î1,n1

(X) − I1) +
√
n2(Î2,n2

(Y) − I2) −→ N(0, σI)

when (n1/n2) → 1 as n1, n2 −→ ∞. Note that under H0 we have I1 = I2 = 0 and
the result turns to be

√
n1 Î1,n1

(X) +
√
n2 Î2,n2

(Y) −→ N(0, σI).
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Proof. Using the notation (3.18)–(3.21) introduced in Lemma 4, it is easy to see
that

√
n1(Î1,n1

(X) − I1) (3.23)

=
√
n1

(
D1
n1

(K1) −
∫
f(x) log f(x) dµ(x)

)

−√
n1

(
D2
n1,n2

(K2) −
∫
f(x) log g(x) dµ(x)

)

+
√
n1

(
Z1
n1

(K1) −D1
n1

(K1)
)
−√

n1

(
Z1
n1,n2

(K2) −D1
n1,n2

(K2)
)

=
√
n1





∫
f(x)[

K1−1∑

j=1

(θ̂j − θj)M̃j,1(x)] dµ(x)





−√
n1

{∫
f(x)[

K2−1∑

l=1

(ψ̂l − ψl)M̃l,1(x)] dµ(x)

}
(3.24)

−√
n1

{
log

∫
e〈θ̂,M̃1(x)〉dµ(x) − log

∫
e〈θ,M̃1(x)〉dµ(x)

}

+
√
n1

{
log

∫
e〈ψ̂,M̃2(x)〉dµ(x) − log

∫
e〈ψ,M̃2(x)〉dµ(x)

}
(3.25)

+
√
n1





1

n1
[

n1∑

i=1

K1−1∑

j=1

θ̂jM̃j,1(Xi) −
∫ K1−1∑

j=1

θ̂jM̃j,1(x)f(x) dµ(x)]





−√
n1

{
1

n1
[

n1∑

i=1

K2−1∑

l=1

ψ̂lM̃l,2(Xi) −
∫ K2−1∑

l=1

ψ̂lM̃l,2(x)f(x) dµ(x)]

}
.

By applying Theorem 2, the Delta Method and the Central Limit Theorem
for i.i.d. random variables we get the desired result.

Note that the assumption n1/n2 → 1 can be relaxed to n1/n2 → c, as n1, n2 →
∞. This change would just affect (3.24) and (3.25). In fact, applying the Central
Limit Theorem, we get

√
n2(ψ̂l − ψl) → N(0, σ2)

where σ2 is the asymptotic variance. However, what we need is the asymptotic

distribution of
√
n1(ψ̂l−ψl) and

√
n1(log

∫
e〈ψ̂,M̃2(x)〉dµ(x)−log

∫
e〈ψ,M̃2(x)〉dµ(x)).

It is immediate to see that

√
n1(ψ̂l − ψl) → N(0, cσ2)

and applying the Delta Method we obtain the asymptotic distribution for (3.25).
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Extensions. This procedure can be extended to test closeness of multivariate
distribution functions by using tensor product among the B-spline basis. Also,
one might consider the dimension of the approximant spaces (K1 and K2) to be
unknown and estimated from the data using either an adaptive procedure similar
to H-splines (Dias, 1998) or a Bayesian approach similar to the one proposed by
Dias and Gamerman (2002) for nonparametric regression.

4 Simulation results

Simulations were run in Athlon machine with double 2 GHz processors and used
software R (www.r-project.org). All the asymptotic variances given in Theorem
3 were computed using nonparametric bootstrap method.

In the simulations we used as basis functions the well-known B-splines which
have bounded support. Although the procedure supposes that the density is
continuous and positive on a compact set X our simulations include test functions
which do not have a compact support, e.g., mixture of normal distributions and
gamma distributions. Nevertheless, for practical purposes a density with a infinite
domain can be approximate by a density with an appropriate compact support.
For example, a normal density φµ,σ2 with mean µ and variance σ2 do not differ
significantly from a density on [µ − 5σ, µ + 5σ] proportional to φµ,σ2 . Similarly,
for densities in the gamma family. Estimation of the support of a density is a very
difficult problem (Hall, Nussbaum and Stern, 1997) which has not been answered
appropriately and it will not be addressed in this work.

In order to assess the range of applicability we performed some simulation
for small samples using several known distributions. Figure 1 shows that the
normal distribution for the test statistic holds even for samples of size 30 when
the underlying true distribution is normal. This result was verified using 1000
nonparametric bootstrap resampling of the original data and 1000 independent
replications of the sampling distribution. For non-symmetric distributions such
as gamma distributions we have a small skewness to the right.

Moreover, we compare SKL test with Kolmogorov-Smirnov (K-S) test which
is the most used nonparametric test for comparing continuous distributions. It
is well-known that K-S test presents problems in heavy-tailed distributions (see,
Mason and Schuenemeyer, 1983, and Mason and Schuenemeyer, 1992). Therefore,
we chose to make this comparison in terms of power using 2000 nonparametric
bootstrap samples of mixture of normal distributions. Several mixtures of distri-
butions were used. In this work we present a typical example using as a sampling
distribution

f(x) = .8φ((x+ .5)/.6) + .2φ((x − µ)/.6) (4.1)

where φ is the standard normal density and µ is the mean of the contaminating
distribution. Table 1 and Figure 2 show that SKL is consistently more powerful
than K-S in this case.
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Samples of size 30 from N(0,.3)

Symmetrized Kullback−Leibler distance
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Figure 1 Parametric and kernel estimate for the distribution of SKL

Table 1 Power function for SKL and K-S for mixture of normal
distributions

µ -.5 0 .5 .7 .9 1.0 1.1 1.2 1.5
SKL .045 .099 .161 .256 .384 .541 .663 .782 .991
K-S .045 .098 .124 .233 .356 .444 .500 .616 .885

5 Numerical example

In this section we use data from two sources. One of them is the data from Ramus
et al. (1999). The other consists of 20 sentences from Portuguese read by two
speakers of Modern European Portuguese and Brazilian Portuguese ( EP and BP
respectively). These sentences were designed by Sonia Frota and Charlotte Galves
to study several characteristics of Portuguese, not only consonantal and vocalic
intervals, but also stressed syllables, secondary stressed syllables among others.
These sentences were recorded at 16 kHz and 11kHz and then segmented by hand
by two persons. They used both audio and visual clues to identify consonantal
and vocalic intervals and used Multi Speech 3700 software to analyze the acoustic
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Figure 2 Power function for SKL and K-S for mixture of normal
distributions

signal. The same procedure was used by Ramus et al. (1999) to record and
segment the other acoustic data as well.

For each sentence the duration of the consonantal intervals were computed,
call this variable C. This variable is important in view of the work of Ramus et
al. (1999) which could cluster 8 languages into into three groups which correspond
precisely to the intuitive notion of rhythmic classes: English, Polish and Dutch
represent the accentual class, French, Spanish, Catalan and Italian represent the
syllabic class and Japanese represents the moraic class. The same variable was
used by Duarte, Galves, Garcia and Maronna (2001) using a parametric approach
adjusting a gamma model to fit the data from all languages. Maximum likelihood
ratio tests seems to confirm Ramus et al. classification and placed European
Portuguese among the accentual languages and Brazilian Portuguese among the
syllabic ones. Using SKL and K-S to compare the distribution of C for some
of the languages we obtained somehow different results. First of all, we cannot
distinguish between Brazilian and European Portuguese (p-values: SKL=.69 and
K-S=.66). Also, at a 5% significance level there is evidence of difference between
Brazilian Portuguese and Catalan (p-values: SKL=.02 and K-S=.02). Figure 3
presents density estimates by kernel and by SKL (Dias, 2000) suggesting that
Catalan is bimodal, maybe a mixture of two gammas and this causes the tests to
reject the equality of the distributions.

As conjectured there is significant evidence for difference between English and
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Japanese (p-values: SKL=.01 and K-S < 10−3) and no evidence of difference
between English and Dutch (p-values: SKL=.59 and K-S=.18) and English and
European Portuguese (p-values: SKL=.15 and K-S=.05).
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Figure 3 Density estimates for consonantal intervals of Catalan
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