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Skewed distributions generated by the Cauchy kernel
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Abstract: Following the recent paper by A. K. Gupta et al. [Random
Operators and Stochastic Equations, 10, 2002, 133-140], we generate skew
pdfs of the form 2f(u)G(Au), where f is taken to be a Cauchy pdf while the cdf
G is taken to come from one of normal, Student’s ¢, Cauchy, Laplace, logistic
or uniform distribution. The properties of the resulting distributions are
studied. In particular, expressions for the characteristic functions are derived.
We also provide graphical illustrations and an application to exchange rate
data.
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1 Introduction

Univariate skew-symmetric models have been considered by several authors. A
classical example is the skew normal distribution with the probability density
function (pdf) f(z) = 2¢(x)®(A\x) (where ¢(-) and ®(-), respectively, denote the
pdf and the cumulative distribution function (cdf) of the standard normal distri-
bution). This distribution was introduced by Azzalini (1985). See Gupta et al.
(2002) for a most detailed discussion of skew-symmetric models based on the nor-
mal, Student’s ¢, Cauchy, Laplace, logistic and uniform distributions. The main
feature of these models is that a new parameter A is introduced to control skewness
and kurtosis. Thus, for example, the skew normal distribution allows for continu-
ous variation from normality to non-normality, which is useful in many practical
situations (Hill and Dixon, 1982; Arnold et al., 1993). Skew-symmetric models
have also been used in studying robustness and as priors in Bayesian estimation
(O’Hagan and Leonard, 1976; Mukhopadhyay and Vidakovic, 1995).

Lemma 1 Let U and V be two arbitrary absolutely continuous independent ran-
dom variables symmetric about 0, with pdfs f and g and cdfs F' and G, respectively.
Then for any A € R, the function

fx(@) = 2f(2)G(\z) (1.1)

is a valid pdf of a random variable, say X .
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The construction of univariate skew-symmetric models is based on the above
general result due to Azzalini (1985). For example, the skew normal distribution
is obtained by taking f = ¢ and G = ® in (1.1). The models in Gupta et
al. (2002) are obtained by taking both f and G to belong to one of normal,
Student’s ¢, Cauchy, Laplace, logistic or uniform family. See also Balakrishnan
and Ambagaspitiya (1994) and Arnold and Beaver (2000a, 2000b) for similar
constructions.

Mukhopadhyay and Vidakovic (1995) pointed out an extension of the above
approaches by suggesting that one takes f and G in (1.1) to belong to different
families. This idea was first followed up by Nadarajah (2003) and Nadarajah and
Kotz (2003, 2004), where f was taken to be a normal pdf while g was taken to
belong to one of normal, Student’s ¢, Cauchy, Laplace, logistic or uniform families.
In this paper, we carry out an analogous construction by taking f to be the pdf of a
Cauchy distribution with scale parameter . Consequently, we have the following
skewed models generated by a Cauchy kernel: the skew Cauchy-normal model
(Section 2), the skew Cauchy-t model (Section 3), the skew Cauchy-Cauchy model
(Section 4), the skew Cauchy-Laplace model (Section 5), the skew Cauchy-logistic
model (Section 6) and the skew Cauchy-uniform model (Section 7). We study the
characteristic function of each of these models and provide graphical illustrations.
We also provide an application to exchange rate data. We assume without loss
of generality that A > 0 in (1.1) since the corresponding properties for A < 0 can
be obtained by using the fact G(Az) = 1 — G(—Az). Note that just like for the
Cauchy distribution the moments of X do not exist. The characteristic function
for the six models to be considered involves that of the Cauchy distribution, which
we shall denote by ¢(t). Several closed form expressions for ¢(¢) have been derived
in the literature (see Johnson et al. (1995) for a good collection).

Besides the applications mentioned above, the model (1.1) can be motivated
stochastically by one of the following representations (due to Azzalini (1986)):

e X = SyU, where, conditionally on U = u, Sy = +1 with probability G(\u)
and Sy = —1 with probability 1 — G(A\u).

e X = Sy | U |, where, conditionally on | U |=| u |, Sy = +1 with probability
G\ |u|) and Sy = —1 with probability 1 — G(A | w ).

Both these representations have clear physical meanings. The model (1.1) can
also be interpreted as the conditional pdf of U given AU > V', where U and V
are two absolutely continuous independent random variables symmetric about 0,
with pdfs f and g.

We shall not give details of the derivations in this paper. Our calculations
make use of several special functions. They are the exponential integral, the
integral cosine, the integral sine, the incomplete beta function ratio, the modified
Bessel functions of the first and third kind, and the Gauss hypergeometric function
defined by

Ei(z) = /a eXp(t)dt,

t

—0Q0
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e 4
ci(z) = f/ ﬁdt,

t
si(z) = —/:o¥dt,
I.(a,b) B(i,b) /Oxt“—l(lt)b—ldt,
I(z) = i(x/2)2k+ak!r(k+a+1),
k=0
o - Tt
and
2Py (o, Biyiw) = g%z—f

where (¢); = ¢(c+1)---(c+k—1) denotes the ascending factorial. The properties
of these special functions can be found in Prudnikov et al. (1986) and Gradshteyn
and Ryzhik (2000).

2 Skew Cauchy-normal model

Take g to be a normal pdf with zero mean and variance o2. Then (1.1) yields the

pdf: »
po-2fo @) o) e

for —oo < x < 0o. The characteristic function of X is

Elexp(itX)] = ~o(rt)+ 2L /0 = sin(tw) {2@ (%) - 1} du.

™ 1+ o2

3 Skew Cauchy-t model

Take g to be the pdf of the Student’s ¢ distribution, i.e.

. 22\ (/2
glx) = N IOERYD)] (1+7) , —00 <z <00, (3.1)
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Considering the properties of the incomplete beta function ratio:

I.(a,b) = i (1 —a) for integer b
YT L - DB ) &
and
11 2 =
11(5,]5) = ;arctan erl:Zlcl,
where

x1/2(1 _ Z)171/2

T IBQ/2,1+1/2)

it can be shown that the cdf corresponding to (3.1) is:

v/2 -1
11 11 W)

if v is even (Nadarajah and Kotz, 2003). Substituting (3.2) and (3.3) into (1.1), we
obtain the pdf of X for the skewed Cauchy-t model. The characteristic function
of X is

. dvi [ sin(vytu) Ayu
Elexp(itX)] = ~o(vyt) + ?/0 Warctan 7 du
2 (V_ZI:W )" B (k2 / = usin(ytu) (v + \29%u2) " du
Vv o '2))o  14W? K
if v is odd, and
B len(itx ) — 2iy L2 fplp 11
[exp(itX)] = o(vt) + ;(V) ~ 55
°° usin(ytu) 9 on1/2—k

if v is even.
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4 Skew Cauchy-Cauchy model

If g is taken to be the Cauchy pdf

-1
1 z\?

g(z) = y 1+(—,) , —o<r< oo
™y v

then from (1.1) we obtain the skew Cauchy-Cauchy model for X. The pdf of X

becomes
fx(z) = %{1+ (%)2}_1{1+%arc‘can<>jg>} (4.1)

for —oco < ¢ < oo. This distribution is the plarticular case of the skew Cauchy-t
distribution for v = 1 with A replaced by A/ . Hence, the characteristic function
of X becomes:

Ami [ s
Elexp(itX)] = fyqb(vt)—i—ﬂ/ %arctan()\f;y,u) du.

5 Skew Cauchy-Laplace model

If g is the pdf of a Laplace distribution given by

[ 1Y@¢)exp(a/e), ifx<0,
9@ = {1/<2¢>exp<:c/¢>, itz >0

then substituting into (1.1) we obtain the skew Cauchy-Laplace distribution for
X. The pdf of X is:

o = S ) e
R O S B

6.4)—(2.5.6.5) in volume 1 of Prudnikov et al.
= 7/ sin(wz), the characteristic function can be

if z <0, and

if x > 0. Using equations (2.5.
(1986) and the fact I'(1 — z)I'(2)
calculated as

Blep (X)) = 3/ 20K 1p(rt) + 2 {exp(~t)Bilrt) - exp(t)Bi(~7))

2vi [ sin(yt A
Al / sin(y z;)exp(ﬂ) du.
T Jo 1+u 1)
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6 Skew Cauchy-logistic model
If g denotes the pdf of a logistic distribution

g@) = = exp (2/P) —00 < T <0

{1+ exp (2/6)}"

then from (1.1) we obtain the skew Cauchy-logistic distribution for X. The pdf
of X is given by

o = 2L (@) (e () e

for —oco < # < 0o. Using the Taylor series expansion for (1+ 2)~!, one can obtain
the following series representations for (6.1):

for x > 0, and

o = 2 () Eoren(2)

k=0

for z < 0. Using equation (2.3.7.13) in volume 1 of Prudnikov et al. (1986), the
characteristic function of X can be calculated as:

(-DFQ (% - Z‘vt>
0

g (R,

Elexp (itX)] =

3|y
NE

k

+

3|y
NE

el
Il

C

where Q(u) = sin(u)ci(u) — cos(u)si(u).

7 Skew Cauchy-uniform model

Taking ¢ to be the pdf of a uniform distribution on [—h, h|, we obtain the skew
Cauchy-uniform model given by the pdf

1 2> - A+ h
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if —h<\x<h,
2 )2 -

fx(x) = 0 (7.3)

if Ax < —h. The characteristic function of X follows by the use of equations
(2.2.6.15), (2.5.6.3) and (2.5.6.4) in volume 1 of Prudnikov et al. (1986) and the
fact I'(1 — 2)I'(z) = m/sin(wz). One obtains the expression:

if Az > h, and

. 27t i . .
Blexp (itX)] = 7\ ==K 1/2(yt) + = {exp(—yt)Ei(1t) — exp(t)Ei( 1)}
2yi o= (=DF ()P (P
R kgo k)l Oy
where
1 n n h?
= F(l1+2,124 = ———
Up 2 n 2 1( +27 ; +27 )\272)
1 1+4n _ 3+n h?
- 211 21 )
l1+n 2 2 A242

8 Discussion

Figure 1 illustrates possible shapes of the six skew Cauchy distributions discussed
above. It is clear that each distribution exhibits a variety of shapes. If the model
(1.1) is extended to include a second location parameter — in the manner suggested
by Azzalini (1986) — then a greater variety of shapes could be realized.

We now illustrate an application of the skew distributions to exchange rate

(ER) data for Japanese Yen (as compared to the United States Dollar) from 1862
to 2003. The data — obtained from the web-site http://www.globalfindata.com/ —
are displayed in the table below.
To obtain reasonable fits we transformed the values in the table by computing
the relative change from one year to the next. We then fitted both the standard
Cauchy distribution and the skew Cauchy-Cauchy distribution to the transformed
data by the method of maximum likelihood. A quasi-Newton algorithm nlm in
the R software package (Dennis and Schnabel, 1983; Schnabel et al, 1985; Thaka
and Gentleman, 1996) was used to solve the likelihood equations. The algorithm
was executed several times with different starting values to make sure that the
parameter solutions corresponded to the global maximum of the likelihood (this is
important because local maximums can appear for skew symmetric models). The
parameter estimates which corresponded to the global maximum were:
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Figure 1
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Plots of the skew Cauchy pdfs. (a): the skew Cauchy-
normal pdf (2.1) for A=10.5,1,2,10, v =1 and 0 = 1; (b):
the skew Cauchy-t pdf for A =0.5,1,2,10,v =1 andv = 5;
(c): the skew Cauchy-Cauchy pdf (4.1) for A =0.5,1,2,10,
~v=1 and fy/ = 8; (d): the skew Cauchy-Laplace pdf (5.1)-
(5.2) for A\ =0.5,1,2,10, v = 1 and ¢ = 5; (e): the skew
Cauchy-logistic pdf (6.1) for A = 0.5,1,2,10, v = 1 and
B =0.2; and, (f): the skew Cauchy-uniform pdf (7.1)—(7.3)
for A=0.5,1,2,10,v=1 and h = 1.
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Table 1

Ezxchange rate data for Japanese Yen.

Year | ER Year | ER Year | ER Year | ER
1862 | 0.5982 || 1897 | 2.0566 || 1933 | 3.244 || 1968 | 360
1863 | 0.5415 || 1898 | 2.0253 || 1934 | 3.481 || 1969 | 360
1864 | 0.8996 || 1899 | 2.0228 || 1935 | 3.476 || 1970 | 360
1865 | 0.9205 || 1900 | 2.0305 || 1936 | 3.545 || 1971 | 315.01
1866 | 0.9184 || 1901 | 2.0253 || 1937 | 3.441 || 1972 | 301.66
1867 | 0.9064 || 1902 | 2 1938 | 3.7 1973 | 280.27
1868 | 0.9403 || 1903 | 2.0382 | 1939 | 4.264 || 1974 | 301.02
1869 | 0.9189 || 1904 | 2.0356 | 1940 | 4.309 || 1975 | 305.16
1870 | 0.9027 || 1905 | 2.0126 | 1941 | 4.305 || 1976 | 293.08
1871 | 0.9116 || 1906 | 2.0305 || 1942 | 4.3 1977 | 239.98
1872 | 0.9084 || 1907 | 2.0305 || 1943 | 4.29 1978 | 194.3
1873 | 0.9709 || 1908 | 2.0202 || 1944 | 4.29 1979 | 240.3
1874 | 0.9709 || 1909 | 2.0202 || 1945 | 15 1980 | 203.1
1875 | 1 1910 | 2.0279 || 1946 | 15 1981 | 219.8
1876 | 0.9804 || 1911 | 2.0279 | 1947 | 50 1982 | 234.7
1877 | 1.0417 || 1912 | 2.0177 || 1948 | 270 1983 | 231.7
1878 | 1.0811 || 1913 | 2.0279 || 1949 | 360 1984 | 251.6
1879 | 1.0929 || 1914 | 2.04 1950 | 360 1985 | 200.25
1880 | 1.105 1915 | 2.01 1951 | 360 1986 | 157.473
1881 | 1.1081 || 1916 | 1.985 1952 | 360 1987 | 121.012
1882 | 1.1332 || 1917 | 1.965 1953 | 360 1988 | 124.931
1883 | 1.0959 || 1918 | 1.918 1954 | 360 1989 | 143.85
1884 | 1.1364 || 1919 | 2.005 1955 | 360 1990 | 135.4
1885 | 1.2085 || 1920 | 1.99 1956 | 360 1991 | 124.8
1886 | 1.2659 || 1921 | 2.073 1957 | 360 1992 | 124.8
1887 | 1.303 1922 | 2.046 1958 | 360 1993 | 111.8
1888 | 1.3158 || 1923 | 2.162 1959 | 360 1994 | 99.7
1889 | 1.2699 || 1924 | 2.581 1960 | 360 1995 | 103.35
1890 | 1.1976 || 1925 | 2.299 1961 | 360 1996 | 115.9
1891 | 1.2987 || 1926 | 2.0408 || 1962 | 360 1997 | 130.61
1892 | 1.4493 || 1927 | 2.1468 || 1963 | 360 1998 | 113.2
1893 | 1.8018 || 1928 | 2.1825 || 1964 | 360 1999 | 102.21
1894 | 2.0833 || 1929 | 2.0367 || 1965 | 360 2000 | 114.27
1895 | 1.9277 || 1930 | 2.0182 || 1966 | 360 2001 | 131.63
1896 | 1.937 1931 | 2.852 1967 | 360 2002 | 118.74
1932 | 4.878 2003 | 107.31
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v = 0.022 with log L = 139.6915
and
v =0.022,\ = 0.037 with log L = 142.4059

for the two models (log L denotes the logarithm of the maximized likelihood).
Thus, it follows by the standard likelihood ratio test that the skew Cauchy-Cauchy
distribution is a much better model for the exchange rate data. The fitted densities
for the two models are shown in Figure 2 (plotted in log scale) along with a ker-
nel estimate of the empirical density (Silverman, 1986). Similar observations were

1 e+00 1 e+01

PDF
1 e-01

1 e-02

— Empirical PDF
- - - Fitted Cauchy PDF
Fitted Skew Cauchy PDF

I I I I I
-0.4 -0.2 0.0 0.2 04

1 e-03

Percentage Change in Exchange Rate/100

Figure 2 Fits of the Cauchy and skew Cauchy distributions for the
Japanese exchange rate data.
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noted when this exercise was repeated for exchange rate data for the United
Kingdom Pound, Euro, Canadian Dollar, Australian Dollar and the Swiss Franc.

There are several ways that the work of this paper could be extended or applied
to other areas of statistics. Some of these are:

e study the use of the six distributions for robustness and Bayesian estimation,
along the lines suggested by Liseo and Loperfido (2003), Sahu et al (2003),
and Kim and Mallick (2004).

e construct multivariate generalizations of the six distributions; see also Az-
zalini and Capitanio (2003), Capitanio et al (2003), Fang (2003), Gupta
(2003), Gupta and Chang (2003), Liseo and Loperfido (2003), Sahu et al
(2003) and Genton (2004).

e study the effects of alteration to the skewness of the Cauchy distribution;
see Kozubowski and Panorska (2004).

We hope to address these issues in a subsequent paper.
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