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Abstract

The purpose of this paper is to elucidate, by means of concepts and
theorems drawn from mathematical logic, the conditions under which the
existence of a multiverse is a logical necessity in mathematical physics,
and the implications of Gödel’s incompleteness theorem for theories of
everything.

1 Introduction

In modern cosmology, a multiverse is defined to be a collection of possible
physical universes.1 Such multiverses may be considered to be possible or actual,
and may or may not be postulated to be the result of physical processes.

The logical existence of these multiverses is a consequence of the fact that
modern mathematical physics represents the physical world by means of mathe-
matical structures, i.e., structured sets. These are sets equipped with properties,
relationships, operations and distinguished elements. A species of structure is
defined by a set of conditions, called the axioms of the structure, which the
properties, relationships, operations and distinguished elements are collectively
required to satisfy. For example, the axioms for a vector space define a species
of structure, and each particular vector space is a member of that species, a
structured set. In a sense which will be precisely defined below, each member
of the species is a ‘model’ of the axiomatic theory which defines the species.

If our physical universe is conceived to possess a mathematical structure,
then one can define a multiverse consisting of all the models of that species
of structure. In addition, the species of structures are arranged into tree-like
hierarchies (McCabe 2007, p9), hence one can generalise from the structure of
our own universe to find parent structures in the hierarchy of mathematics, from
which one can postulate the existence of ever more general multiverses.

Let us consider a couple of examples. In general relativity, a universe is
represented by a 4-dimensional differential manifoldM equipped with a metric

1This paper will refrain from using the phrase ‘ensemble of universes’, given that an ensem-
ble is typically considered to be a space which possesses a probability measure. It is debatable
whether the universe collections postulated by mathematical physicists and cosmologists pos-
sess a well-defined probability measure.
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tensor field g and a set of matter fields and gauge force fields {φi} which generate
an energy-stress-momentum tensor T that satisfies the Einstein field equations

T = 1/(8πG)(Ric− 1/2 S g) .

Ric denotes the Ricci tensor field determined by g, and S denotes the curvature
scalar field. The matter fields have distinctive equations of state, and include
fluids, scalar fields, tensor fields, and spinor fields. Gauge force fields, such
as electromagnetism, are described by n-form fields. Hence, one can define
a general relativistic multiverse to be the class of all models of such n-tuples
{M, g, φ1, ...}, interpreted in this sense.

Alternatively, quantum field theory represents a universe to be a Lorentzian
manifold (M, g) which is equipped with a Hilbert space H , a density operator ρ
on H , and a collection of operator-valued distributions {φ̂i} on M which take
their values as bounded self-adjoint operators on H (Wallace 2001). (Given
that there is no mathematically well-defined interacting quantum field theory,
we shall draw a veil over the issue of the law-like equations which the operator-
valued distributions are required to satisfy). A quantum field theory multiverse
is the class of all models of such n-tuples {M, g,H , ρ, φ̂1, ... }, interpreted in
this sense.

Such universe collections are considered to exist merely by virtue of the
absence of contradiction in their definition, and Max Tegmark (1998, 2008) is
the most renowned proponent of the hypothesis that these universe collections
physically exist. Tegmark considers the proposal that “some subset of all math-
ematical structures. . . is endowed with. . . physical existence,” (1998, p1) as inad-
equate because it fails to explain why some particular collection of mathematical
structures is endowed with physical existence rather than another. This is what
philosophers would refer to as a problem of contingency, where a contingent fact
is something which happens to be true, but which isn’t true as a matter of ne-
cessity. Tegmark’s response to this problem of contingency was to suggest that
all mathematical structures have physical existence. More recently, however,
Tegmark (2008) has incorporated the implications of Gödel incompleteness and
Church-Turing uncomputability, by considering the possibility that only com-
putable structures, or finite computable structures, physically exist (2008, p22).
(Tegmark defines a computable structure to be one whose relations can be ob-
tained by computations which are guaranteed to halt after a finite number of
steps (2008, p20)). In the case of all Tegmark’s proposals, the most general pos-
tulated multiverse is a timeless multiverse of disjoint, non-interacting universes.

Other universe collections consist of universes created over time by the op-
eration of some postulated physical process. The primary examples here are the
universe-domains in Linde’s chaotic inflation theory (1983a and 1983b), and the
universes created inside black holes in Smolin’s theory of cosmological natural
selection (2006). Such universe collections, however, are not the main focus of
interest in this paper.
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2 Multiverses, parameters, theories and models

Multiverses are often introduced by varying the so-called ‘parameters of physics’.
These are parameters in the standard model of particle physics2, and parame-
ters which specify the initial conditions in general relativistic cosmology, whose
values cannot be theoretically derived, and need to be determined by experiment
and observation.

Philosopher of science Jesus Mosterin (2004) points out that “the set of all
possible worlds is not at all defined with independence from our conceptual
schemes and models. If we keep a certain model (with its underlying theories
and mathematics) fixed, the set of the combinations of admissible values for its
free parameters gives us the set of all possible worlds (relative to that model).
It changes every time we introduce a new cosmological model (and we are in-
troducing them all the time). Of course, one could propose considering the set
of all possible worlds relative to all possible models formulated in all possible
languages on the basis of all possible mathematics and all possible underlying
theories, but such consideration would produce more dizziness than enlighten-
ment.”

Mosterin’s point here is aimed at the anthropic principle, and the suggestion
that there are multiverses which realise all possible combinations of values for
the parameters of physics. At face value, this might seem to be a different type of
multiverse than that obtained by varying mathematical structures and models.
However, the values chosen for the free parameters of a theory do actually cor-
respond to a choice of model. For example, consider the free parameters of the
standard model of particle physics, which include: the coupling constants of the
strong and electromagnetic forces; two parameters which determine the Higgs
field potential; the Weinberg angle; the masses of the elementary quarks and
leptons; and the values of four parameters in the Kobayashi-Maskawa matrix
which specifies the ‘mixing’ of the {d, s, b} quark flavours in weak force interac-
tions. In terms of a choice of model, the value chosen for the coupling constant
of a gauge field with gauge group G corresponds to a choice of metric in the
lie algebra g, (Derdzinksi 1992, p114-115); the Weinberg angle corresponds to a
choice of metric in the lie algebra of the electroweak force, (ibid., p104-111); the
values chosen for the masses of the elementary quarks and leptons correspond
to the choice of a finite family of irreducible unitary representations of the local
space-time symmetry group, from a continuous infinity of alternatives on offer
(McCabe 2009); and the choice of a specific Kobayashi-Maskawa matrix corre-
sponds to the selection of a specific orthogonal decomposition σd′ ⊕ σs′ ⊕ σb′ of
the fibre bundle which represents a generalization of the {d, s, b} quark flavours,
(Derdzinski 1992, p160).

Nevertheless, Lee Smolin (2009) argues against the notion that there exists
a multiverse of (timeless) universes. Smolin believes that the need to invoke
a multiverse is rooted in the dichotomy between laws and initial conditions in
existing theoretical physics, and suggests moving beyond this paradigm.

2Note that the standard ‘model’ is, in terms of mathematical logic, a theory and not a
model.
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A choice of initial conditions, however, is merely one of the means by which
particular solutions to the laws of physics are identified. More generally, there
are boundary conditions, and free parameters in the equations, which have no
special relationship to the nature of time. To reiterate, each theory in physics
represents a type of physical system by a species of mathematical structure,
for which there are, generally, many possible non-isomorphic models; the laws
associated with that theory select a particular sub-class of models. As Earman
puts it, “a practitioner of mathematical physics is concerned with a certain
mathematical structure and an associated set M of models with this struc-
ture. The. . . laws L of physics pick out a distinguished sub-class of models
ML := Mod(L) ⊂ M, the models satisfying the laws L (or in more colorful, if
misleading, language, the models that “obey” the laws L),” (p4, 2002). One
might add that if those laws contain a set of free parameters {pi : i = 1, ..., n},
then one has a different class of models ML(pi) for each set of combined val-
ues of the parameters {pi}. The application of a theory to explain or predict
a particular empirical phenomenon, then requires the selection of a particular
solution, i.e., a particular model. The choice of initial conditions and boundary
conditions is then simply a way of picking out a particular model of a theory.

One point of nomenclature to note here is that, whilst mathematical logicians
consider a theory to be the set of sentences which define a species of structure,
physicists consider the laws which define a sub-class of mathematical models to
define a theory. If one retains the same species of mathematical structure, but
one changes the laws imposed upon it, then, as far as physicists are concerned,
one obtains a different theory. Thus, for example, whilst general relativity
represents space-time as a 4-dimensional Lorentzian manifold, if one changes the
laws imposed by general relativity upon a Lorentzian manifold, (the Einstein
field equations), then one obtains a different physical theory.

The crucial point, however, is that any theory whose domain extends to
the entire universe, (i.e. any cosmological theory), potentially has a multiverse
associated with it: namely, the class of all models of that theory. Irrespective
of whether a future theory abolishes the dichotomy between laws and initial
conditions, as Smolin prescribes, the application of that theory will require a
means of identifying particular models of the species of mathematical structure
selected by the theory. If there is only one physical universe, as Smolin claims,
then the problem of contingency will remain: why does this particular model
exist and not any one of the other possibilities? The invocation of a multiverse
solves the problem of contingency by postulating that all the possible models
physically exist.

3 Lagrangians and multiverses

At a classical level, the equations of a theory can be economically specified by
its Lagrangian, hence physicists tend to identify a theory with its Lagrangian.
In superstring theory, for example, there are five candidate theories precisely
because there are five candidate Lagrangians. This point is particularly crucial
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because it also explains why physicists associate different (effective) theories
with different ‘vacua’.

The Lagrangians of particle physics typically contain scalar fields, such as the
Higgs field postulated to exist by the unified electroweak theory. These scalar
fields appear in certain terms of the Lagrangian. The scalar fields have certain
values which constitute minima of their respective potential energy functions,
and such minima are called vacuum states (or ground states). If one assumes
that in the current universe such scalar fields reside in a vacuum state (as the
consequence of a process called symmetry breaking), then the form of the La-
grangian changes to specify this special case. After symmetry breaking, the
Lagrangian is not the Lagrangian of the fundamental theory, but an ‘effective’
Lagrangian. Hence, the selection of a vacuum state changes the form of the
Lagrangian, and because a Lagrangian defines a theory, the selection of a vac-
uum state for a scalar field is seen to define the selection of a theory. Physicists
therefore tend to talk, interchangeably, about the number of possible vacua,
and the number of possible (effective) theories in string theory. The collection
of different string theory vacua defines the so-called string theory ‘landscape’,
and this landscape defines a type of multiverse.

However, it should be carefully noted that the string theory landscape defines
a collection of different (effective) theories, not a collection of models of a fixed
theory. Hence, even if one fixes a particular string theory, with a particular
Lagrangian, there is still a multiverse consisting of the class of all models of
that theory.

4 Mathematical logic, theories of everything,
and multiverses

A final theory of everything, with no free parameters, has often been postulated
as a superior alternative to the multiverse generated by our current suite of
theories, with their various free parameters. The idea here is that the values of
the free parameters in current theories, will follow by definition from the axioms
of a final theory, in the same way that the value of pi follows from the axioms of
classical Euclidean geometry. However, whilst there may be no free parameters
in a final theory, the absence of free parameters is no guarantee that a theory
will possess only one model. Hence, even if a final, parameter-free, theory of
everything is obtainable, it may still generate a multiverse consisting of all its
mutually non-isomorphic models.

However, before we proceed to consider the conditions under which a theory
of everything will generate a multiverse, we first need to address the frequent
question of whether Gödel’s incompleteness theorem is inconsistent with the
possibility of a theory of everything. It’s a question which, curiously, has re-
ceived scant attention in the foundations of physics literature.

To understand the question, first we’ll need to introduce some concepts from
mathematical logic. Here, a theory T is defined to be a set of sentences, in
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some language, which is closed under logical implication. In other words, any
sentence which can be derived from a subset of the sentences in a theory, is itself
a sentence in the theory. An intepretation of a language identifies: the domain
over which the variables in the language range; the elements in the domain which
correspond to the constants in the language; which elements in the domain
possess the predicates in the language; which n-tuples of elements are related
by the n-ary relations in the language; and which elements in the domain result
from performing n-ary operations upon n-tuples in the domain. A model U for a
theory T is an interpretation of the langauge in which that theory is expressed,
which renders each sentence in the theory as true. A mathematical structure
is a set equipped with properties, relationships, operations and distinguished
elements.

To reiterate, theories generally have many different models. For example,
each different vector space is a model for the theory of vector spaces, and each
different group is a model for the theory of groups. The class of groups and
the class of vector spaces can be said to be species of mathematical structure.
Conversely, given any structure or model U, there is a theory Th U which consists
of the sentences which are true in the structure U.

Now, a theory T is defined to be complete if for any sentence σ, either σ or
its negation ¬σ belongs to T . A theory T is defined to be decidable if there is
an effective procedure of deciding whether any given sentence σ belongs to T ,
(where an ‘effective procedure’ is generally defined to be a finitely-specifiable
sequence of algorithmic steps). A theory is axiomatizable if there is a decidable
set of sentences in the theory, whose closure under logical implication equals the
entire theory.3

Gödel’s incompleteness theorem revolves around the theory of Peano arith-
metic (the theory of conventional additional and multiplicational arithmetic),
and a particular model R = (N; 0,S, <,+, ·,E) of Peano arithmetic, whose
theory Th R can be referred to as ‘number theory’ (Enderton, p182).4 It tran-
spires that the theory of Peano arithmetic is both incomplete and undecidable.
Moreover, whilst Peano arithmetic is axiomatizable, Gödel demonstrated that
number theory is undecidable and non-axiomatizable. Gödel obtained sentences
σ, which are true in the model, but which cannot be proven from the theory
of the model. These sentences are of the self-referential form, σ = ‘I am not
provable from A’, where A is a subset of sentences in the theory.

It should be recognized that an incomplete theory is a highly generic oc-
currence in mathematics, and is not in itself a pathology of some kind. The
axiomatic theory of groups, for example, is incomplete. Moreover, an incom-
plete theory can be turned into a complete theory by adding more axioms. For

3In this context, it should be noted that Tegmark (1998, 2008) draws a distinction between
formal systems and mathematical structures, rather than a distinction between theories and
models. The distinctions are almost equivalent, but the notion of a formal system is not
equivalent to the notion of a theory. A formal system is an axiomatic theory, and because not
all theories can be axiomatized, not all theories are formal systems.

4N is the set of natural numbers, 0 denotes the number zero as a distinguished element,
S is the successor function, S(n) = n + 1, < is the ordering relation on N, and +, ·,E are
addition, multiplication and exponentiation.
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example, whilst the theory of fields is not complete, the theory of algebraically
closed fields of characteristic zero is complete (Enderton p156). The undecid-
ability of a theory can also be solved in some cases by adding more axioms, but
the crucial point is that Gödel discovered a type of undecidability which could
never be remedied by the addition of extra axioms.

Any theory which includes number theory will be undecidable, hence if a
final theory of everything includes number theory, then the final theory will also
be undecidable. The use of number theory is fairly pervasive in mathematical
physics, hence, at first sight, this appears to be highly damaging to the prospects
for a final theory of everything in physics.

In some mitigation, for the application of mathematics to the physical world,
one’s conscience may be fairly untroubled by the difficulties of self-referential
sentences. However, undecidable sentences which are free from self-reference
have been found in various branches of mathematics. It has, for example, been
proven that there is no general means of proving whether or not a pair of ‘trian-
gulated’ 4-dimensional manifolds are homeomorphic (topologically identical).

A final theory of everything might have no need of number theory, and might
well be complete and decidable. However, even if a final theory of everything
is incomplete and undecidable, it is the models U of a theory which purport
to represent physical reality, and whilst the theory of a model, Th U, may be
undecidable, it is guaranteed to be complete. That is, every sentence in the
language of the theory will either belong or not belong to Th U.

The potential undecidability of the theory of the structure of our universe,
constitutes a potential epistemological limit; it is potentially a limit on what
can be proven about the structure of our universe. However, the guaranteed
completeness of the theory of the structure of our universe, entails that there is
no ontological limit to the existence of such a theory.

The concepts of mathematical logic, introduced to explain Gödel’s theorem,
can also be exploited to shed further light on the question of multiverses in
mathematical physics.

Recall that any physical theory whose domain extends to the entire universe,
(i.e. any cosmological theory), potentially has a multiverse associated with it:
namely, the class of all models of that theory. Both complete and incomplete
theories are capable of generating such multiverses. The class of models of a
complete theory will be mutually non-isomorphic, but they will nevertheless be
elementarily equivalent.

Two models of a theory are defined to be elementarily equivalent if they share
the same truth-values for all the sentences of the language. Whilst isomorphic
models must be elementarily equivalent, there is no need for elementarily equiv-
alent models to be isomorphic. For example, the structure (R, <R) consisting
of the real numbers, equipped with its conventional ordering relationship, is el-
ementarily equivalent to (Q, <Q), the set of rational numbers equipped with its
conventional ordering relationship. However, whilst Q is a countable set, R is
uncountable; there cannot be an isomorphic mapping between sets of different
cardinality, hence these structures are non-isomorphic (Enderton p97-98).

Recalling that a complete theory T is one in which any sentence σ, or its
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negation ¬σ, belongs to the theory T , it follows that every model of a complete
theory must be elementarily equivalent.

Alternatively, if a theory is such that there are sentences which are true in
some models but not in others, then that theory must be incomplete. In this
case, the models of the theory will be mutually non-isomorphic and elementarily
inequivalent.

Hence, mathematical logic suggests that the application of mathematical
physics to the universe as a whole can generate two different types of multiverse:
classes of non-isomorphic but elementarily equivalent models; and classes of
model which are both non-isomorphic and elementarily inequivalent.

The question then arises: are there any conditions under which a theory has
only one model, up to isomorphism? In other words, are there conditions under
which a theory doesn’t generate a multiverse, and the problem of contingency
(‘Why this universe and not some other?’) is eliminated?

A corollary of the upward Löwenheim-Skolem theorem provides an answer
to this. The latter entails that if a theory has a model of any infinite cardinality,
then it will have models of all infinite cardinalities.5 Models of different cardinal-
ity obviously cannot be isomorphic, hence any theory, complete or incomplete,
which has at least one model of infinite cardinality, will have a multiverse associ-
ated with. (In the case of a complete theory, the models of different cardinality
will be elementarily equivalent, even if they are non-isomorphic). Needless to
say, general relativity has models which employ the cardinality of the continuum,
hence general relativity, for example, will possess models of every cardinality.

For a theory of mathematical physics to have only one possible model, it
must have only a finite model. A theory of everything must have a unique finite
model if the problem of contingency, and the potential existence of a multiverse
is to be eliminated.
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