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Abstract: Pairwise interaction Gibbs processes with density belonging

to a m-parameter exponential family are frequently used as models for point

processes exhibiting inhibition or repulsion between the events. The normal-

izing constant of the probability density is untractable analytically and many

procedures to make inference in these Gibbs processes have been proposed in

the literature such as pseudo-likelihood methods, analytical approximations,

Markov chain Monte Carlo or perfect sampling methods. In this paper, we

propose a score test for the interaction parameters of the Gibbsian exponen-

tial family processes that does not requires the calculation of the normalizing

constant and whose distribution under the null hypothesis can be simulated

providing then an exact Monte Carlo test.

Key words: Gibbs point processes; point process; Poisson process; spa-
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1 Introduction

Gibbs processes have been frequently used in spatial statistics as models for ran-
dom point patterns, particularly those showing inhibition between events, or more
regularly spread than Poisson processes with the same intensity of events. One of
the main attractive aspects of these models is that their probability distribution is
characterized by a small number of parameters which have physical interpretation.
However, inference about these parameters are complicated due to the presence of
a normalizing constant which can not be obtained explicitly even in very simple
cases.

Several inference approaches for the parameters of these models have been
suggested in the literature such as the Takacs-Fiksel estimating equation method
(Takacs, 1986; Fiksel, 1988), the pseudo-likelihood method (Besag, 1977), ana-
lytical approximations for the normalizing constant (Ogata and Tanemura, 1981,
1984), maximum likelihood estimation through Markov chain Monte Carlo meth-
ods for evaluation of the normalizing constant (Geyer and Møller, 1994).

In this paper, we present a score test for the interaction parameter of pairwise
interaction Gibbs processes, a widely used class of models. We show that an exact
Monte Carlo test can be obtained without resource to analytical approximation
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or MCMC methods. The test is easily implemented in a high-level environment
such as R.

2 Preliminaries

Let W be a known, bounded subset of d-dimensional space Rd, where d ≥ 1. The
data consist of a spatial point pattern ϕ = {x1, . . . , xn} observed in W , where
n ≥ 0 is not fixed and xi ∈ W ⊂ Rd. We consider inference conditional on the
total number n of observed events since n typically will not provide substantial
information on the interaction between events.

A particular and widely used class of Gibbs processes are the homogeneous
pairwise interaction processes for which the density with respect to the Poisson
process with intensity measure 1 is given by

f(ϕ; θ) = C(θ) exp




−
∑

i<j

φ(xi, xj ; θ)




 , (2.1)

where C(θ) is the normalizing constant and φ(·) a potential function depending
on θ. It is common to work with an isotropic point process where the potential
function depends only on the relative distance between xi and xj :

f(ϕ; θ) = C(θ) exp




−
∑

i<j

φ(|xi − xj | ; θ)




 . (2.2)

In this paper, we focus on isotropic pairwise interaction Gibbs point process
models for which the density belongs to a m-parameter exponential family:

f(ϕ; θ) = C(θ) exp{−θ
t
T } = C(θ) exp

{
−

m∑

k=1

θkTk(ϕ)

}
, (2.3)

where θt = (θ1, . . . , θm) and T t = (T1, . . . , Tm) with Tk(ϕ) =
∑

i<j φk(|xi − xj |)
and not involving unknown parameters. We allow θk to be equal to ∞, as we
explain below.

Several famous models appear as special cases of model (2.3). For example,
the Strauss process (Strauss, 1975) with fixed number n of events can be written
as

f(ϕ; θ) = C(θ) exp{−θ
∑

i<j

I[ |xi − xj | < r ]} = C(θ) exp{−θ T (ϕ)}, (2.4)

where I[·] is the indicator function, r is a known constant and T (ϕ) is the num-
ber of unordered pairs of events which lie closer than r units. In order to have
integrable density, we need to impose the additional constraint θ > 0. This im-
plies that only patterns showing inhibition or repulsion between events can be
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generated by this model. We allow θ = ∞ implying that the measurable set of
configurations with any two events lying closer than r units has null probability.

The step function pair potential model is a generalization of Strauss process
with

f(ϕ; θ) = C(θ) exp




−

m∑

k=1

θk

∑

i<j

I[ rk < |xi − xj | ≤ rk+1 ]




 , (2.5)

where the cutpoints rk are known with r1 = 0 and, occasionally, rm+1 = ∞.
Hence, Tk(ϕ) is the number of unordered pairs of events with distance between rk

and rk+1.
Another famous model belonging to the exponential family is the soft core

model discussed by Ogata and Tanemura (1984). Loosely speaking, their model
weights configurations with events close to each other with values increasing
smoothly with distance between them rather than having hard thresholds as in
(2.4) or (2.5). More specifically, the density is defined as:

f(ϕ; θ) = C(θ) exp




−
∑

i<j

(
σ

|xi − xj |

)2/ν



 , (2.6)

where 0 < ν < 1 is known.
Under the null hypothesis H0 : θ = 0 the Gibbs process (2.3) is simply a ho-

mogeneous Poisson process. Therefore, before undertaking complicated inference
procedures to fit Gibbs processes, there is interest in testing if either the observed
process is compatible with the simpler homogeneous Poisson process or if there is
evidence of interaction between the events.

3 A score test for the interaction parameter

These inferential problems with the K function motivates our proposal described
next, a score test for the hypothesis H0 : θ = 0. This score test has two main
advantages: since it is based in the likelihood function, it provides a less ad-hoc
approach to the problem in hand; it inherits the optimality property of the score
test of being the locally most powerful test of H0.

A score test can be derived for the Gibbs model (2.3) to test the null hypothesis
H0 : θ = 0 versus the alternative hypothesis H1 : θ 6= 0, meaning that at least
one entry of θ is different from zero. It will be useful to denote by Hθ the simple
hypothesis that θ is the true parameter vector.

Since we are conditioning in the total number events observed in W , the log-
likelihood function of configuration ϕ is

l(θ) = log C(θ) −
∑

k

θk Tk(ϕ).

It is clear that
T (ϕ) = (T1(ϕ), . . . , Tm(ϕ))

t
,
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with Tk(ϕ) =
∑

i<j φk(|xi−xj |), is a natural sufficient statistic for the parameter
θ.

The score statistic is given by

∂l

∂θ
=

1

C(θ)

∂C(θ)

∂θ
− T (ϕ) .

We know that 0 = Eθ (∂l/∂θ), which implies that

∂C(θ)

∂θ
= C(θ)Eθ (T (ϕ))

and therefore
∂l

∂θ

∣∣
θ=0 = E0 (T (ϕ)) − T (ϕ) , (3.1)

a contrast between expected under the null hypothesis and the observed value
of the sufficient statistic. In the one-dimensional case, large values of (3.1) or,
equivalently, small values of T (ϕ) lead to rejection of H0.

Under H0, the value E0 (T (ϕ)) can be easily evaluated by simple Monte Carlo
by generating many independent configurations of n i.i.d. uniform points in the
sampling window W and taking the average of the values of the test statistic.
Note that it is trivial to generate uniform variables and we can make the empirical
evaluation as accurate as we wish by increasing the number of replications.

Alternatively, explicit analytical functions can be calculated if T (ϕ) and the
sampling window W are simple enough. For example, consider the Strauss process
(2.4) where

T (ϕ) =
∑

i<j

I[ |xi − xj | < r ].

Then

E0 (T (ϕ)) =
∑

i<j

P (|xi − xj | < r) =
n(n − 1)

2
P (B),

where B is the event that two independently and uniformly distributed random
points x and y in the sampling window W are less than r units apart. Hence,

P (B) = Ex [P (B|x)] = Ex [A(x)] ,

where A(x) is the proportion of the intersection area between a circle centered at
x and with radius r and the sampling window W . If W has a simple geometry,
this probability can be calculated explicitly. For example, if W is a square with
side s larger than r, then

P (B) =
r4

2
−

8r3

3
+ r2π ,

as shown in Taylor et al.(2001).
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The covariance matrix of the test statistic is associated with the second deriva-
tive of the log-likelihood function and the Fisher information I(0):

∂2l

∂θ∂θt |0 = I(0) = Var0 T (ϕ) .

As before, under H0, the value Var0T (ϕ) can be easily evaluated by simple Monte
Carlo with any desired precision. Alternatively, analytical calculations can be
performed if T (ϕ) is not too complicated and the sampling window W has a
simple geometry.

Hence, for the local alternative Hθ , we can use the score test with test statistic
U given by the quadratic form

U = (E0 (T (ϕ)) − T (ϕ))
t

I−1(0) (E0 (T (ϕ)) − T (ϕ)) , (3.2)

which is the locally most powerful test in the sense that it maximizes the power
function derivative vector module at θ = 0 (Cox and Hinkley, 1974, page 113).

To complete the test definition, we need to find the critical region. One alter-
native is to use a normal approximation to the U statistic. Another alternative less
dependent on asymptotic arguments is an exact Monte Carlo test, implemented
as follows. Generate a large number B of independent patterns with n events
under H0 and indexed by b = 2, . . . , B +1. Each pattern ϕb is obtained simply by
sampling n points in W independently and with uniform distribution. For each
pattern ϕb, including the observed one indexed as b = 1, evaluate the sufficient
statistics Tb = T (ϕb).

Assuming that E0 (T (ϕ)) and Var0T (ϕ) can be calculated analytically, eval-
uate the test statistic values u2, . . . , uB+1 with the simulated patterns as well as
the u1 observed value of the test statistic. Under the null hypothesis, the values
u1, . . . , uB+1 are independently and identically distributed. The value of u1 based
on the observed pattern is ranked amongst the values u2, ..., uB+1. Then, if u1

ranks k-th largest or higher, the one-sided exact p-value is k/(B + 1). In fact, we
obtain, under the null hypothesis, a random sample of B + 1 observations from
the appropriate null distribution of U , and the rank of the observed statistic must
provide an exact significance level for the test.

Monte Carlo tests were introduced by Barnard (1963). A critical region based
on the null distribution of U is different from that based on the exact Monte
Carlo test, both with the same significance level. This implies that it is possible
to have a value of u1 declared significant in an exact analytical test but declared
non significant in an exact Monte Carlo test, and vice versa. Hope (1968) showed
that there is a slight power loss resulting from Monte Carlo tests rather than ana-
lytically deriving the critical region with the power differences decreasing to zero
as B goes to infinity. Marriott (1979) investigated this power loss and concludes
that, to make the power differences small for a test at the 5% level, B = 99 is
adequate while B = 499 should be used if a test at level 1% is desired.

If E0 (T (ϕ)) and Var0T (ϕ) can not be calculated analytically, we can use
an additional set of simulated patterns to calculate both moments with any de-
sired precision under the null hypothesis and plug in these estimates to evaluate
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u1, . . . , uB+1. The fact that we use an additional set of simulations guarantees
that u1, . . . , uB+1 are independent and identically distributed under the null hy-
pothesis. This implies that, if u1 ranks k-th largest or higher, the one-sided p-value
k/(B + 1) is still exact.

When T is one-dimensional, the test can be based simply on the ranks of the
statistic T = T (ϕ) because, in this case, the test statistic could be defined as

U =
E0 (T (ϕ)) − T (ϕ)√

Var0 (T (ϕ))
(3.3)

and therefore the ranks of T and U are in reverse order. Hence, critical regions
can be equivalently based on the null hypothesis distribution of T , obtained by
Monte Carlo, rather than that of U . Therefore, there is no need to calculate the
moments of T under the null hypothesis. This simplification is not possible when
the sufficient statistic θ has dimension larger than one. In this case, we need to
work with the test statistic U based on the quadratic form (3.2) and there is a
need to estimate or calculate analytically the moments E0 (T (ϕ)) and Var0T (ϕ).

Both, the test statistic and its sampling distribution based on the null hypoth-
esis, are calculated with no edge correction (Ripley, 1988). Thus, the Monte Carlo
distribution is the true distribution of U under the null hypothesis, conditionally
on the observed number of events. Therefore, no correction for edge effects is
necessary to apply our test.

4 Application of the method

Figure 1 shows a dataset with the spatial locations of 71 Swedish pine saplings
in a 10m × 10m square. Ripley (1981) fitted by trial and error a Strauss process
with density (2.4) to this dataset, obtaining r = 0.7 and γ = 0.20. Ripley (1998)
used the pseudo-likelihood method to estimate θ for fixed r, obtaining θ = 0.15.
Letting r fixed at the same value as Ripley’s analysis, we tested the hypothesis
that the process is a homogeneous Poisson process versus the hypothesis that it
is a Strauss process with unknown parameter θ.

In this case, we obtained t1 = T (ϕ) = 12 for the observed number of pairs of
events within distance r = 0.7 from each other. Since there is only one parameter,
we can find the critical region simply considering the null hypothesis of T obtained
by Monte Carlo simulation. In this case, 999 simulations of 72 independent and
identically uniformly distributed events in the square produced values t2, . . . , t999
with t1 smaller than all of the simulated values. Hence, the p-value is 1/1000, a
strong evidence to reject the null hypothesis.

Inference on the parameter r is not simple and the solution has been the
adoption of a step function model such as (2.5) where we make the dependence
of the model on the definition of a distance threshold less demanding. For the
example considered here, we used 5 intervals determined by r1 = 0, r2 = 0.25, r3 =
0.5, r4 = 0.75, r5 = 1.0, and r6 = 1.5. Then, θ is a vector whose k-th element is∑

i<j I [ rk < |xi − xj | ≤ rk+1], with k = 1, . . . , 5.
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Figure 1 Spatial locations of 71 Swedish pine saplings in a 10m × 10m
square.
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The observed vector T had the counts (1, 8, 8, 24, 111) whereas its null hypothe-
sis expected value, evaluated through 999 Monte Carlo simulations, is (4.87, 14.07,
22.41, 30.52, 82.40) and the standard deviation is (2.16, 3.88, 5.02, 5.79, 10.63).
The evaluation of the quadratic form (3.2) in the 999 simulations gave an exact
p-value of 0.002 for testing the hypothesis that θ = (θ1, . . . , θ5) = 0.

5 A relationship between the K-function and the

score test

The most common way to test if an observed point process could have been gener-
ated by a homogeneous Poisson point process is to use the K-function introduced
by Ripley (1977) to analyze point patterns. For a stationary point process, it is
defined using the conditional expectation given an event at a specified location:

K(r) = λ−1E (N(Br) − 1|N(0) = 1) ,

where λ is the first-order intensity, and N(Br) is the number of events within a
circle centered at the origin 0 and with radius r. Ignoring edge correction , an
estimate of K(r) is

K̂(r) =
2|W |

n(n − 1)

∑

i<j

I[ |xi − xj | < r ] =
2|W |

n(n − 1)
Tr(ϕ),

where Tr(ϕ) is the sufficient statistic for the parameter θ in the Strauss model
(2.4) with known r. Hence, the K-function is proportional Tr(ϕ) and tests of H0

based on Tr(ϕ) can be seen as equivalent to a test based on the K-function for a
fixed distance r.

In fact, tests based on the K-function scan its values in a range of distances
r searching for departures from H0. Agreement with H0 is characterized by the
K-function staying within pointwise 95% confidence intervals. Hence, the scale r
where one finds the most extreme departure of the K-function can be interpreted
then as value of r where the most extreme standardized score statistic Tr(ϕ) is
observed.

Note that the K-function test uses a simultaneous procedure. Confidence
intervals of confidence level 1 − α are obtained at each distance r generating a
confidence envelope of nominal level 1−α to the K-function. The upper envelope
limit is drawn by connecting the upper intervals’ endpoints for a set of r values.
Likewise, the lower envelope limit is obtained by connecting the lower intervals’
endpoints. Hence, the K-function envelope confidence level refers to the pointwise
intervals and not the envelope itself. As a consequence, although the nominal
error type I probability of the K-function test is equal to α, its real error type
I is larger and unknown. Usual solutions such as Bonferroni corrections are not
feasible because too many correlated tests are involved in the K-function test.
This is unfortunate but this problem has not been solved yet.
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6 Discussion and conclusion

The score test requires fitting only the simpler model under the null hypothesis H0

and this is its main advantage of the score test in comparison with the likelihood
ratio test. We showed that for the exponential family model (2.3), the evaluation
of the score statistic is very simple, irrespective of the normalizing constant com-
plexity in the Gibbs model density. For some regions with simple geometry, we
can have an analytical expression for this score test statistic.

In the independent random variables sample context, the score test approaches
its asymptotic distribution more slowly than the likelihood ratio statistic and this
is its main disadvantage in comparison with the likelihood ratio test. Therefore,
significance levels derived from the score statistic and based on its asymptotic
distribution can be misleading, particularly in small samples. A necessary fur-
ther research step is a thorough analysis of the asymptotic behavior of the score
test, based on extensive simulations, for the case of a heavily dependent sample
represented by densities such as (2.3).

Because of this difficulty with the asymptotic distribution of the score test,
we suggest the use of the Monte Carlo approach to obtain the null hypothesis
distribution of the test statistic U . There are several advantages in adopting this
approach. First, although the null hypothesis distribution of U is not known, it
can be simulated with no approximation whatsoever. Hence, we can easily gen-
erate a very large number B of independent realizations of U to obtain its null
approximation with any desired level of accuracy. Second, the Monte Carlo test
p-value is exact, whatever the number B of simulations generated. Finally, simu-
lation under the null hypothesis is so simple for present day computer resources
that there is no compelling reason to resort to unnecessarily complicated analytical
approximations.
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