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Summary

A referee, typical of a population, classifies each of » > 2 stimuli into one of
m > 2 response categories which are ordered and mutually exclusive. The Law
of Categorical Judgment specifies a set of equations relating stimuli and categories
parameters to the probabilities of classification of stimuli into categories. This
paper proposes the use of restricted maximum likelihood or restricted generalized
least squares to estimate and test different parametric formulations of the Law
of Categorical Judgment as well as a method to assess the relative importance
of the stimuli. Both approaches allow the use of distributions other than the
standard normal to model classification probabilities.
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1 Introduction

Consider a set of r > 2 stimuli S = {S1,...,S5,} and a set of m > 2 cat-
egories C = {Cq,...,Cp}. A referee or judge, randomly chosen from a
population, is to classify each stimulus S; into one of the categories C}.
The categories in C' are mutually exclusive and ordered according to an
underlying carachteristic of interest. In this context C; < Cy < ... < C)
represents the ordination in C, that is, relative to the characteristics of
interest ' represents the least intense impulses and C),, the most intense
impulses. Data sets generated from such processes are known as polyto-
mous data with measurements on an ordinal scale. They are very common
in biological, econometric, social, psychometric, and administrative work.
See Souza and Avila (2000), Rousseu et al (1999), Macedo (1997), Tur-
off and Hiltz (1996), Sousa (1993), and MacCullagh and Nelder (1989).
A typical example obtains when each element of a sample of individuals,
taken from a certain population, is asked to manifest his opinion, relative
to some criterion, of each activity in a set of interest. Such stimuli could
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be research projects, research units of an institution or a set of actions for
which we want to evaluate each element on a psychometric scale. Nelder
and MacCullagh (1989, page 175) provides a simple instance of such a pro-
cess where the stimuli are four cheese types (A,B, C, and D). The referee
(taster) manifests the intensity relative to which he likes or dislikes a given
cheese type in a ordinal scale from 1 to 10, where 1 means ‘strong dis-
like’ and 10 means ‘excellent taste’. For those situations Thurstone (1927)
proposes a general judgment model from which is possible to derive a set
of equations relating stimuli and category parameters to frequencies in the
contingency table of the referees evaluations. This set of equations is known
as the Law of Categorical Judgment. The resulting statistical model, in
its linear version, falls in the class of multinomial responses models which
Nelder and MacCullagh (1989) discuss in Chapter 5.

Thurstonian models although originated a long time ago have been ob-
ject of continous use and research. In this context it is worth mentioning
the works of McFadden (1974, 2001) and Madeu-Olivares (1999, 2000),
which discuss the use of Thurstone’s proposal to model preferences in eco-
nomics and psychology respectively. The best reference in regard to the
philosophycal and mathematical aspects of the Law of Categorical Judg-
ment is still Torgerson (1958). Some useful insights may also be obtained
from Maydeu-Olivares (2000), Saaty (1994), Kotz and Johnson (1989), and
Souza (1988).

In this paper we show how the Law of Categorical Judgment can be
put into a framework similar to the one used by Grizzle, Stamer, and
Koch (1969) in categorical data analysis and, alternatively, as a generalized
nonlinear multinomial response model that can be analyzed via maximum
likelihood. The statistical inference that follows is flexible enough to es-
timate stimulus and category and to test Thurstone’s Law of Categorical
Judgment as well. The approach adopted here, although well known in the
statiscal literature, to the best knowledge of the author, does not appear
in the standard psychometric literature and in the majority of the applica-
tions of the Law of Categorical Judgment which, typically, base analyses
on the method of moments estimation.

The discussion carried out in the paper proceeds as follows. Section 2
deals with Thurstone’s theory which leads to the Law of Categorical Judg-
ment. Section 2 also shows how linear and nonlinear regression models can
be put in use to fit the Law of Categorical Judgment via generalized least
squares and maximum likelihood. Section 3 presents the classical approach
to the Law of Categorical Judgment exploiting the discussion in Torger-
son (1958). Section 4 illustrates Thurstone’s theory with an application
exploring some features of the statistical package SAS. Section 5 shows
how to obtain a set of weights summing to one that serves the purpose of
ranking stimuli. This approach is original and is competitive with Saaty’s
(1994) Analytical Hierarchy Process and the companion Thurstone’s Law
of Comparative Judgments when the number of stimuli and the size of the
referees set are too large so that pairwise judgments become a nuisance to
record and control. Finally in Section 6 a summary of the paper is pre-
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sented including a brief discussion on the assumption of independence of
stimuli judgments and the general applicability of the Law of Categorical
Judgment.

2 The law of categorical judgment

The psychometric model proposed by Thurstone (1927) postulates the
presence of a psychological continuum. Each time a referee faces a stim-
ulus, a mental discriminal process is put into action and it generates a
numerical value in the real line reflecting the stimulus intensity. There-
fore, in this way, the stimuli translate in the psychological continuum into

scale values uq, ..., u,. Likewise the categories translate into location val-
ues 7i,...,Tm—1. These later quantities form a partition of the real line
(—o0, 11], (11, 72), - -+, (Tm—1, +00). The partition relates to stimuli S; and

categories C; according to the following rule. The referee classifies stimulus

S; into ngl C; if and only if y; < 7;. The process inherits randomness from
the sampling scheme and from the fact that due to stochastic fluctuations
in nature, a given stimulus and category when repeatedly evaluated by a
referee do not generate the same scale and boundary values in the psycho-
logical continuum. Randomness leads one to assume that the p; are indeed
means of random variables ¢; with variance o2 and that 7; are indeed means
of random variables n; with variances ¢2 The discussion imposes row in-

dependence and joint normality, that is, the &; are uncorrelated and (¢;, n])
are jointly normally distributed. In pr1nc1ple one has primary interest in
the differences p; — ;. These quantities may serve the purpose of assess-
ing differences in intensity between stimuli. Section 5 treats the problem
of measuring intensity and of ranking stimuli in more detail and offers an
alternative and equivalent approach to measure differences in intensity.

Let m;; denote the probability of locating stimulus S; into one of the
first j categories C,C>,...,C;. We assume m;; > 0. We have,

J
P SiEUCl = Wiji:1,...,7‘, j=1....m—1
=1
= P{& <mn;}
_ plge__MizT
Var (& — ;)

Let g(.) denote the probit transformation. The assumption of joint
normality lead to the equations

i=1,...,r j=1,...,m—1 (2.1)
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relating the cumulative probabilities m;; to the parameters of Thurstone’s
model . Clearly it is possible to generalize the normal projection on the psy-
chological continuum to other distributions. Any monotonic function may
play the role of g(.). Typical alternatives in this context would be the logis-
ticscale g(z) = In{z/(1 — z)} and the log-log scale g(z) = In{—In(1 — z)}.

Suppose first that enough observations are available to estimate the
probabilities 7;; in (2.1). In this context a sample version of the Law of
Categorical Judgment is therefore

)= Ly i=1,.r j=1,...,m—1 (22)

Var (& — ;)

where 7;; is the relative cumulative frequency of observations in category
Cj. The vectors w; = (uj1,...,Uim—1) are independently distributed with
a distinct variance matrix for each i. Clearly,

Tij = Pit + Piz + ... + Dij

where p;; represents the proportion of times the referees (sample) classify
stimulus S; into C). Let

G(7) = (Gy(71), ..., GL(7)), & = (F1,...,7,) (2.3)

where G(7) is the response vector, 7t; = (@1,...,Tim—1)" and G;(7;) is
the subvector of G(#) formed with the quantities g(#;;), 7 =1,...,m — L.
The first order Taylor’s expansion of G;(7;) about the true parameter m; =

(pit, ..., Pim_1)" yields

Gi(7;) = Gi(m;) + (2.4)
g'(mi1) 0 0 ... 0 o
g (mi2) g (mi2) 0 ... 0 Di1 . i1
9 (Tim-1) ¢ (Tim-1) o oo g (Tim-1) DPim—1 — Pim—1

where

gl(Wij) _ \/ﬁexp {92(;%‘)}

for the probit link function,
!/
g (mij) =

for the logistic, and
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for the log-log scale.

Let H; denote the lower triangular matrix in (2.5) and let V; denote
the variance matrix of 7;. It is reasonable to assume that in the regression
model (2.2) the residual vector has mean zero and variance

V = diag(H, V1 HY,...,H.V, H)) (2.5)
which can be estimated by
¥ = diag(BV AT FLVL ) (2.6)

using the quantities p;; and 7;; to replace p;; and ;;, respectively.

With the level of generality above, the classification law that Thurstone
proposes is not identifiable. However, depending on the assumptions re-
garding the components Var(&; —n;), a solution to the Law of Categorical
Judgment is viable. This section considers three distinct models which Tor-
genson (1958) labels Models B, C, and D. Models B and C are nonlinear.
We begin our discussion with the simplest Model D.

2.1 Model D

Model D assumes Var(§; —n;) = 1 for any pair (¢,j). Thus one obtains
from (2.2)

E(g(7ij)) = 7j — i (2.7)
or, in matrix form
1 0 0 -1 0 0
10 0 —1 0 0
. T1
0 ..0 01 10 ... 0
EG@)=| : ¢ o1 T’;‘l (2.8)
| 0 0 00 1 !
10 0 0 0 1 :
. . . . . . . ur
0O ..0 01 00 .. —1

Model D in (2.7) is not identified since the design matrix in (2.8) is not
of full column rank. However all contrasts involving the u; are estimable.
Since we are primarily interested in pairwise comparisons we may, without
any loss of generality, impose the condition

Z_ pi =0 (2.9)
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Under the restriction (2.9) the appopriate estimation process is re-
stricted generalized least squares. The goodness of fit of the model may
be assessed using the residual sum of squares and the chi-square test, with
(r —1)(m — 2) degrees of freedom, proposed by Grizzle, Stamer, and Koch
(1969).

2.2 Model B

Model B assumes Var(¢; — ;) = 6;. From (2.2) this assumption generates
the nonlinear regression model

) o
9(7ij) = —M(s_ L+ e (2.10)
1

Notice that we must have 2r +m — 3 < r(m — 1), i.e, the number of
parameters should be at most the number of observations. The number of
parameters is adjusted for two identifying restrictions:

r 1 roo
Y s=r and Y=o (2.11)
i=1 " i=1 "

Conditions in (2.10) are Torgerson (1958) restrictions. They general-
ize (2.9) imposed in the linear case. Alternative sets of restrictions have
been suggested in the literature. Torgenson (1958), for example, mimics
Gulliksen (1954) and imposes >-; 7; = 0 and 3, 7']2 = m — 1. This section
considers only the set of restrictions (2.11) since they seem to be more
natural as a generalization of Model D (d;s = 1). In some cases, how-
ever, Gulliksen’s type restrictions may be easier to impose. It is worth
mentioning that Model B is analogous to Equation 5.4 of McCullagh and
Nelder (1989, p. 154) with the reparametrization d; = exp(w;).

Let n; = 1/d;, v; = pi/d;, and

B = (anla e MTm=15 -y e Tl oo s P T—1, V15 - - - a'}’r)l

Then (2.10) can be written equivalently as
E(G(x)) = [I, Al (2.12)

where I is the identity of order r(m —1) and A is the vertical concatenation
of the r blocks

-1 0 ... 0 00 ... -1
-1 0 ... 0 00 ... -1

each of dimension (m — 1)r.
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One can estimate Model B using generalized restricted nonlinear least
squares. As before one may assess goodness of fit using the chi-square test
of Grizzle, Stamer, and Koch (1969).

We may obtain convenient initial values for the nonlinear estimation
making J; = 1 and using Model D estimates for the parameters y; and 7;.

2.3 Model C
Model C postulates that |/Var(& —n;) = 6;. From (2.2) this assumption

generates the nonlinear regression model

X R
g(fy) = _”’9 4wy (2.13)
J
The following two identifying restrictions are required:
> g—j:m—land 29—;:0. (2.14)
7=1 7=1

Restrictions (2.14) are dual of restrictions (2.11).

Obviously Model C also generalizes Model D although no restrictions
are necessary to be imposed on the scale values ;. Notice that the effective
number of parameters r+2(m — 1) should be less then or equal to r(m —1).

Let n; =1/6; and y; = 7;/6;. Then from (2.10)

9(mij) = —pin; + 5 + wij
It follows that (2.13) is equivalent to
B(G(7) =[-1,4]5 (2.15)

where

ﬁ = (/.117’]1, sy M1 m—1y e e e s My ey B Tim—15 Y1y - - - 77m—1)l

and A is the vertical concatenation of r identical blocks each being the
identity of order m — 1.

We may obtain initial values for the nonlinear estimation of Model C
making 6; = 1, using for p; the negative of the mean of the ith row of
the matrix (¢g(7;;)), and using for 7; the deviation of the mean of column
j relative to the overall mean of the matrix.

If not enough replications are available to estimate all m;; one may
want to appeal to maximum likelihood instead of generalized least squares.
Such is the case when some cells show zero frequencies and the usual link

functions and their derivatives are not defined at zero. We should warn the
reader however that sparse contigency tables may pose estimation problems

to both methods. McCullagh and Nelder (1989) refer to sparseness when
a large proportion of observed counts are small, that is, less than 5. These
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instances as well as the extreme case of zero frequencies may be solved
partially by adding small constants to the cell frequencies. A few methods
of doing this are given in Forthofer and Lehnen (1981).

For the maximum likelihood approach this section assumes the row
totals m; to be fixed. Let y;; denote the frequency in cell (4,5). The total
log-likelihood for the table is

Zl( L)+ 3 it (216)

i=1j5=1

where p;, =1 - >0

1T M4 1 Tj— M (T i
pi=yg 1( 15@) and pij=g 1(%) —9 1(%7”) (2.17)

i=2,...,m—1.

We seek to maximize the quantity >i_; 3272 yi; In(p;;) in (2.16), which
from now on we refer simply as the log-likelihood, with respect to u;, 0;,
and 7;, subject to (2.17) and Torgenson’s restrictions.

Standard maximum likelihood theory applies to estimation and hypoth-
esis testing and the analysis of deviance (McCullagh and Nelder, 1989) is
the key to the assessment of goodness of fit and to find the best model, if
any, fitting the data.

-1 plj for every row i and, for Model B to fix ideas,

3 The classical approach to the law of categorical
judgment

The classical estimation approach to the Law of Categorical Judgment is
restricted to finding solutions to the set of equations (2.1) for the unknown
parameters when one replaces m;; with 7;;, under the assumptions underly-
ing Models D, B or C. The approach is basically derived from the method
of moments. One computes these estimates as follow. Suppose that there
are no zero frequencies in any cell and let Z = (2;;) be the matrix with
the probit, or any other link function, values 2;; = g(7;;). Let 2, and Z;
denote the mean and the standard error of row i respectively. Let z; and
Z j denote these same quantities for column j. Let d be the standard error
of the column means zj, let e be the standard error of the row means z; ,
and let Z_ be the overall mean of Z.
For Model D, the solution for (2.1) subject to (2.9) is given by

i =—zi + 2, 7A'j =Z;. (3.1)

This solution also minimizes the residual sum of squares for model (2.8)
assuming ordinary least squares.



Souza: The law of categorical judgment revisited 131

For Model B, the solution for (2.1) subject to (2.11) is given by

Fi=Z4, 6 =d)%., [ =Z. — 0 (3.2)
Notice that when 2r +m — 3 = r(m — 1) the generalized least squares

estimates will coincide with the method of moments solution since the
residual sum of squares function will be zero when evaluated at the method

of moments estimates. .
he method of moments estimates for Model C are dual of those of
Model B. They are

éj = e/%.j, [LZ = —Z, 7A'j =—Zz + 9]'24 (33)

When r + 2(m — 1) = r(m — 1) generalized least squares and method
of moments estimates will be equal.

Variances for the method of moments estimates (3.1), (3.2), and (3.3)
can be computed using the fact that the estimates are all functions of G(7)
with G(.) as in (2.3). If one uses the first order Taylor’s series expansion
of the estimates about the true values z;; = g(m;;), the variance matrix

estimates are given by expressions of the form LVL' where L is a matrix

with each row defined by a gradient vector and V as in (2.5). Let 7 be the
population parameter vector corresponding to 7 of (2.3). For Model D, L
has rows 9fi;/0n’ and 07;/0n’. The typical elements of these gradients are

Opi [ —wm Hi=v
Do { Tl it (8.4)
and
or, [ L if j=1
921 _{ 0 if j#1 (3:5)

respectively. For Model B, I has rows dji;/dn’, d6;/0n' and 87;/9x’. The
typical elements of these vectors are

~ 51 = Z1—2Z2.. d(2i1—Zi. 3 —
Opi _ { D)~ et A |~ aeg) i v = (3.6)

azyl T‘(Tnlfl) — Z. T(Tf_l*;?diz if v ;é 7
zZ1—Z2 d(z; fi
85z T(ml— 7)d21 - (n,l(ié)(; 33 if v=4 (3 7)

and

or;, |1 if j=
—{6 o (3.8)
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respectively. For Model C, L has rows 9ji; /07, Béj/aw' and 07;/0n’. The
typical elements of these vectors are

ofyi —ﬁ if v=1
Oz { 0 if v#£i (3.9)
0 _ [ Gty ~ ey =l
- 2y, —% o (3.10)
Oz — ==z if j#1

and

0z

- é > Zv.—Z.. vi—2Z. 1 —
ﬁz:{‘m#n+%—%<wﬁﬁma+5ﬁéﬁ ity=

(3.11)

No formal statistical testing appears in the classical approach. The

measure of goodness of fit suggested in applications relates to the ability

of the models to reproduce the observed cell probabilities p;;. It is given
by the mean absolute deviation

1 ~ .
mad = — %: | Dij — Dij | (3.12)
where p;; is a model based estimate.

3.1 Computational aspects

One can compute generalized least squares for both the linear (Model D)
and nonlinear cases (Models B and C) in SAS! (Statistical Analysis Sys-
tem) using PROC IML and PROC MODEL or PROC NLIN. Firstly one

computes the Cholesky decomposition of V-1 determining a matrix R such
that V—! = R'R. Then one uses R to rotate the model to

RG(#) = RXB + Ru

where X is the design matrix in (2.8), (2.12) or (2.3) depending on the
model under study. With the vector of transformed responses RG(7) and
the new design matrix RX we may invoke PROC MODEL or PROC NLIN
to fit the regression, using restrict statements in case of PROC MODEL
and imposing restrictions to the model equation in case of PROC NLIN.
One begins with Model D. This will provide convenient starting values
for Model B. If one is using PROC MODEL, standard errors will need
adjustments since the residual mean squares is not unit. PROC NLIN

'A macro SAS (% Thusrt) for this purpose is available from the author.
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allows the option SIGMASQ=1 and will provide correct standard errors at
the cost of additional computations to determine standard errors for the
parameters left out of the model in the process of imposing restrictions.

For maximum likelihood estimation one notices first that the function to be
maximized is negative and therefore we may find its maximum minimizing

its symmetric. Thus if we define the model response as being the square
root of twice the negative of the log-likelihood for each row (stimulus) and
zero as the response variable, then the quantity to be minimized is precisely
the residual sum of squares for the corresponding nonlinear model. One can
then use PROC NLIN to compute this minimum residual sum of squares
with the options SIGMASQ=1 and METHOD=NEWTON.

More powerful and also more convenient than PROC NLIN to obtain

maximum_likelihood estimates in SAS is PROC NLMIXED. For PROC
NLMIXED the same null response variable should be used with the objec-

tive function being the likelihood function itself.

The maximum likelihood estimation for the linear version of the Law of
Categorical Judgment is a particular case of the more general linear models

that, PROC GENMOD can handle. See the documentatlon of SAS-STAT
version 8. The parametrization PROC GENMOD uses is the same as in

McCullagh and Nelder (1989, Chapter 5) and it differs from (2.9) but will
produce the same contrast estimates.

For the method of moments estimates formulas (3.1)-(3.3) and (3.4)-
(3.11) can also be computed without much effort in PROC IML.

4 An example
The contingency table defined in Table 1 shows frequencies of responses to

ordinal categories 1, 2, 3, 4, and 5 of 5 stimuli, A, B, C, D and E. The
table is taken from Torgenson (1958, p.211).

Table 1
Frequencies of responses to stimuli

Stimuli/Response | 1 2 3 4 5 | Total
A 100 38 49 11 2 200
B 8 27 47 23 19 | 200
C 13 32 110 39 6 200
D 62 14 32 23 69 | 200
E 4 9 49 58 80 200
Total 263 120 287 176 176 | 1000

We perform our analysis of the data in Table 1 fitting Models B, C and
D with the probit link function and using method of moments, generalized
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least squares and maximum likelihood estimation. The probit provides the
best fit, although one cannot reject the alternatives logistic and log-log.
Table 2 shows the values of the mean absolute deviation (mad) for each of
the estimation methods. Clearly Model B provides a superior fit than Mod-
els C and D. For Model B, method of moments, generalized least squares
and maximum likelihood are essentially equivalent. The latter methods
are only slightly superior to the method of moments. Formal tests of spec-
ifications can be performed with generalized least squares and maximum
likelihood. Table 3 shows the proper statistics to this end. Model B is
the only model not rejected by the chi-square test of Grizzle, Stamer, and
Koch (1969) which applies to the generalized least squares residual sum of
squares. These results are in close agreement with Table 2. It is interest-
ing to report in terms of maximum likelihood estimation that the Pearson’s
generalized chi-square for Model B is 0,179 and that overdispersion is not
present. Also Model B is the only model with an acceptable deviance value.

Table 2
Goodness of fit statistics - mad, for method of moments,
mazimum likelihood (ML), and generalized least squares

(GLS).
Method/Model D B C
Moments 0.064 0.002 0.074
ML 0,062 0.001 0.058
GLS 0,065 0.001 0.060
Table 3

Generalized least squares (GLS) and mazimum likelihood
goodness of fit statistics.

Model DF GLS Residual SS  —37,, yi;In(p;;) Deviance

D 12 170.514 1413.316 174.840
B 8 0.160 1325.978 0.164
C 9 159.369 1412.012 172.232

Estimation results for Model B are shown in Table 4. As expected, the
smallest standard errors are for generalized least squares and maximum

likelihood estimates. . . . .
he primary interest in the analysis of the data in Tablel 1 is to rank

stimuli A, B, C, D and E. From the scale values estimates fi; in Table 4 we
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see that the induced order is E > D > C > B > A. Table 5 shows contrasts
between pair of stimuli and serves the purpose of assessing the existence

of real differences in this ordering. The quantities reported were derived
for Model B generalized least squares estimates. At the 5% level the only

nonsignificant difference is D-C. The contrast B-A is a boundary case.

Table 4

Model B method of moments (MM), mazimum likelihood (ML),
and generalized least squares (GLS) estimates. Values in paren-

thesis are standard errors.

Parameter MM ML GLS
71 -0.853  -0.847  -0.847
(0.058) (0.053) (0.053)
T2 -0.388  -0.388  -0.388
(0.046) (0.045) (0.045)
T3 0.536 0.537 0.537
(0.047)  (0.046) (0.046)
T4 1.234 1.225 1.225
(0.073) (0.064) (0.064)
01 0.898 0.908 0.909
(0.082) (0.068) (0.068)
O 1.381 1.370 1.370
(0.114) (0.107) (0.107)
03 0.614 0.611 0.611
(0.033) (0.030) (0.030)
04 2.322 2.314 2.315
(0.242) (0.234) (0.234)
05 0.906 0.909 0.909
(0.069) (0.064) (0.064)
11 -0.841  -0.844 -0.844
(0.184) (0.079) (0.079)
2 -0.577  -0.572  -0.571
(0.178) (0.104) (0.104)
[13 0.076 0.075 0.075
(0.066) (0.047) (0.047)
g 0.308 0.305 0.304
(0.405) (0.170) (0.170)
s 0.995 0.993 0.993
(0.091) (0.076) (0.076)
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Table 5
Pairwise contrasts fi;— i, for generalized least squares Model
B estimates.

Contrast Estimate Std error zZ
B-A 0.273 0.137 1.993
C-A 0.919 0.093 9.882
D-A 1.148 0.198 5.798
E-A 1.837 0.110 16.700
C-B 0.646 0.121 5.339
D-B 0.875 0.213 4.108
E-B 1.564 0.135 11.585
D-C 0.229 0.188 1.218
E-C 0.918 0.091 10.088
E-D 0.689 0.196 3.515

5 Measuring stimuli intensity

Usually one would study differences in intensity between two impulses S;
and S; examining for significance the contrast fi; — 4i;. This is the idea
behind the scaling process suggested by Thurstone - to transform an ordinal
scale induced by the referees perception into an interval scale that allows
comparisons among stimuli. In some applications a further analysis may
be necessary. It may be of interest to measure the relative importance
of the stimuli through a set of weights summing up to one. This would
make the analysis comparable in many regards to Saaty’s (1994) Analytic
Hyerarchy Process which uses relative weights to rank stimuli. Working
with weights reflecting the relative importance of each variable in a set,
according to the perceptions of a group of referees, is a convenient way to
assess a combined measure of performance when the stimuli are defined
by variables comprising the performance dimension. An example in this
regard is provided in Souza and Avila (2000) where a set of weights is
defined with the purpose to specify a combined measure of output for the
production process of a research institution.

Motivated by Model D under the assumption that the psychological
continuum is a projection of a log-normal distribution, we define the rela-
tive importance of stimulus i as

ry = — ) (5.1)
V; exp ()

It is seen from (5.1) that the ratios of relative importance r;/r; will be
a monotonic transformation of the scale contrasts p; — p; and therefore
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their inferences are equivalent.

Notice that under the assumption of a log-normal projection, that is,
assuming that log(¢;) ~ N(ui, 0?) and log(n;) ~ N(7j,¢?) the r; are the
relative ratios of the means of the random variables &. In terms of the
probabilities 7;; and assuming the moment equations (2.1), the weights r;
can expressed as follows:

exp(—g(mij))

_ for Model D
21 exp(—g(my;))
Texp(—(sz‘g(ﬁi]’)) for Model B (5.2)
21 exp(—0,9(my;)) |
exp(—Tj9(mij)) for Model C

é exp(—7;9(my;))

The formulas shown in (5.2) are particularly appealing for the logistic
response function when they become simple functions of odds ratios what
provides a further motivation for its use as a measure of stimuli relative
intensity. Notice that in any case the ratios are the same for every j.

1 —

TG4

XT: (1 — 7T,,j>
v=1 Tvj

Tij for Model B

)3 <_1 - an‘)é” (5.3)

Tij _ for Model C

for Model D

From (5.3) we see that, for Model D, the larger r; the more likely is to



138 Brazilian Journal of Probability and Statistics, 16, 2002

classify S; into the higher response categories, increasing its importance.
For Models B and Models C basically the same conclusion applies with
likelyness being weighted by proper scale constants.

The variances of the relative importance 7; are easily computed ex-
panding the estimates in Taylor series. They are given by the quantities

I!Var(ji)l; where [; has components l;,, v =1,...,r given by
R T
biv = { by if v (5-4)

Table 6 shows the relative intensity of the stimuli (5.1) together with
standard errors derived from (33). The message is the same conveyed by the
estimates fi;. If the stimuli were performance variables the weights could
be used to define a combined measure of performance taking into account
the relative importance of each variable according to the perception of the
population sampled.

Table 6
Intensities r; = exp i/ Y., exp py for Model B using gener-
alized least squares estimates.

Intensity Std Err

0.070 0.006
0.092 0.011
0.176 0.012
0.221 0.032

0.441 0.027

6 Conclusions

The Law of Categorical Judgment derived from the work of Thurstone
(1927) was revisited. The classical method of moments solution to this set
of equations was discussed and proper standard errors computed for these
estimators under general assumptions for the underlying distribution in
the psychological continuum. Two major drawbacks of the classical theory
are the asymptotic inefficiency of the estimates and the lack of a proper
statistical framework allowing the test of Thurstone’s formulations. In this
context more adequate instruments of analysis were suggested with the use
of maximum likelihood estimates and generalized least squares.

A measure of relative importance was proposed to assess the intensity
of each stimulus. These values serve the purpose to define weights summing
to one that can be used to define a combined measure of performance in
some applications.
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An important problem ignored throughout the paper until now in the
discussion of the Law of Categorical Judgment is that observations cor-
responding to different stimuli may not always be independent. In many
applications the same set of referees evaluate each stimuli. This will not
invalidate any of the estimation methods but is likely to induce a positive
correlation between the ratings of any two stimuli. The effect of a positive
correlation is to reduce the variance of a given contrast between two stimuli
and therefore the analysis in this context can be regarded as conservative

since standard errors are overestimated. )
Typically the Law of Categorical Judgment in one of the forms D, B, or

C, provides a close fit to the data. The estimation approach, by any of the
three methods, is also robust relative to the distribution postulated in the
psychological continuum. Inferences will be similar whether one considers
the probit, the logistic or the log-log scale.

vspacedmm
(Received October, 2000. Revised August, 2002)
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