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a, 70910-990,Bras��lia, DF, Brazil. E-mail: Geraldo.Souza�embrapa.brSummaryA referee, typi
al of a population, 
lassi�es ea
h of r � 2 stimuli into one ofm � 2 response 
ategories whi
h are ordered and mutually ex
lusive. The Lawof Categori
al Judgment spe
i�es a set of equations relating stimuli and 
ategoriesparameters to the probabilities of 
lassi�
ation of stimuli into 
ategories. Thispaper proposes the use of restri
ted maximum likelihood or restri
ted generalizedleast squares to estimate and test di�erent parametri
 formulations of the Lawof Categori
al Judgment as well as a method to assess the relative importan
eof the stimuli. Both approa
hes allow the use of distributions other than thestandard normal to model 
lassi�
ation probabilities.Key words: Categori
al data analysis; generalized linear models; nonlinearmodels; Thurstone's law of 
ategori
al judgment.1 Introdu
tionConsider a set of r � 2 stimuli S = fS1; : : : ; Srg and a set of m � 2 
at-egories C = fC1; : : : ; Cmg. A referee or judge, randomly 
hosen from apopulation, is to 
lassify ea
h stimulus Si into one of the 
ategories Cj .The 
ategories in C are mutually ex
lusive and ordered a

ording to anunderlying 
ara
hteristi
 of interest. In this 
ontext C1 < C2 < : : : < Cmrepresents the ordination in C, that is, relative to the 
hara
teristi
s ofinterest C1 represents the least intense impulses and Cm the most intenseimpulses. Data sets generated from su
h pro
esses are known as polyto-mous data with measurements on an ordinal s
ale. They are very 
ommonin biologi
al, e
onometri
, so
ial, psy
hometri
, and administrative work.See Souza and �Avila (2000), Rousseu et al (1999), Ma
edo (1997), Tur-o� and Hiltz (1996), Sousa (1993), and Ma
Cullagh and Nelder (1989).A typi
al example obtains when ea
h element of a sample of individuals,taken from a 
ertain population, is asked to manifest his opinion, relativeto some 
riterion, of ea
h a
tivity in a set of interest. Su
h stimuli 
ould123
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s, 16, 2002be resear
h proje
ts, resear
h units of an institution or a set of a
tions forwhi
h we want to evaluate ea
h element on a psy
hometri
 s
ale. Nelderand Ma
Cullagh (1989, page 175) provides a simple instan
e of su
h a pro-
ess where the stimuli are four 
heese types (A,B, C, and D). The referee(taster) manifests the intensity relative to whi
h he likes or dislikes a given
heese type in a ordinal s
ale from 1 to 10, where 1 means `strong dis-like' and 10 means `ex
ellent taste'. For those situations Thurstone (1927)proposes a general judgment model from whi
h is possible to derive a setof equations relating stimuli and 
ategory parameters to frequen
ies in the
ontingen
y table of the referees evaluations. This set of equations is knownas the Law of Categori
al Judgment. The resulting statisti
al model, inits linear version, falls in the 
lass of multinomial responses models whi
hNelder and Ma
Cullagh (1989) dis
uss in Chapter 5.Thurstonian models although originated a long time ago have been ob-je
t of 
ontinous use and resear
h. In this 
ontext it is worth mentioningthe works of M
Fadden (1974, 2001) and Madeu-Olivares (1999, 2000),whi
h dis
uss the use of Thurstone's proposal to model preferen
es in e
o-nomi
s and psy
hology respe
tively. The best referen
e in regard to thephilosophy
al and mathemati
al aspe
ts of the Law of Categori
al Judg-ment is still Torgerson (1958). Some useful insights may also be obtainedfrom Maydeu-Olivares (2000), Saaty (1994), Kotz and Johnson (1989), andSouza (1988).In this paper we show how the Law of Categori
al Judgment 
an beput into a framework similar to the one used by Grizzle, Stamer, andKo
h (1969) in 
ategori
al data analysis and, alternatively, as a generalizednonlinear multinomial response model that 
an be analyzed via maximumlikelihood. The statisti
al inferen
e that follows is 
exible enough to es-timate stimulus and 
ategory and to test Thurstone's Law of Categori
alJudgment as well. The approa
h adopted here, although well known in thestatis
al literature, to the best knowledge of the author, does not appearin the standard psy
hometri
 literature and in the majority of the appli
a-tions of the Law of Categori
al Judgment whi
h, typi
ally, base analyseson the method of moments estimation.The dis
ussion 
arried out in the paper pro
eeds as follows. Se
tion 2deals with Thurstone's theory whi
h leads to the Law of Categori
al Judg-ment. Se
tion 2 also shows how linear and nonlinear regression models 
anbe put in use to �t the Law of Categori
al Judgment via generalized leastsquares and maximum likelihood. Se
tion 3 presents the 
lassi
al approa
hto the Law of Categori
al Judgment exploiting the dis
ussion in Torger-son (1958). Se
tion 4 illustrates Thurstone's theory with an appli
ationexploring some features of the statisti
al pa
kage SAS. Se
tion 5 showshow to obtain a set of weights summing to one that serves the purpose ofranking stimuli. This approa
h is original and is 
ompetitive with Saaty's(1994) Analyti
al Hierar
hy Pro
ess and the 
ompanion Thurstone's Lawof Comparative Judgments when the number of stimuli and the size of thereferees set are too large so that pairwise judgments be
ome a nuisan
e tore
ord and 
ontrol. Finally in Se
tion 6 a summary of the paper is pre-
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luding a brief dis
ussion on the assumption of independen
e ofstimuli judgments and the general appli
ability of the Law of Categori
alJudgment.2 The law of 
ategori
al judgmentThe psy
hometri
 model proposed by Thurstone (1927) postulates thepresen
e of a psy
hologi
al 
ontinuum. Ea
h time a referee fa
es a stim-ulus, a mental dis
riminal pro
ess is put into a
tion and it generates anumeri
al value in the real line re
e
ting the stimulus intensity. There-fore, in this way, the stimuli translate in the psy
hologi
al 
ontinuum intos
ale values �1; : : : ; �r. Likewise the 
ategories translate into lo
ation val-ues �1; : : : ; �m�1. These later quantities form a partition of the real line(�1; �1℄; (�1; �2℄; : : : ; (�m�1;+1). The partition relates to stimuli Si and
ategories Cj a

ording to the following rule. The referee 
lassi�es stimulusSi into Sjl=1Cl if and only if �i � �j. The pro
ess inherits randomness fromthe sampling s
heme and from the fa
t that due to sto
hasti
 
u
tuationsin nature, a given stimulus and 
ategory when repeatedly evaluated by areferee do not generate the same s
ale and boundary values in the psy
ho-logi
al 
ontinuum. Randomness leads one to assume that the �i are indeedmeans of random variables �i with varian
e �2i and that �j are indeed meansof random variables �j with varian
es �2j . The dis
ussion imposes row in-dependen
e and joint normality, that is, the �i are un
orrelated and (�i; �j)are jointly normally distributed. In prin
iple, one has primary interest inthe di�eren
es �i � �j . These quantities may serve the purpose of assess-ing di�eren
es in intensity between stimuli. Se
tion 5 treats the problemof measuring intensity and of ranking stimuli in more detail and o�ers analternative and equivalent approa
h to measure di�eren
es in intensity.Let �ij denote the probability of lo
ating stimulus Si into one of the�rst j 
ategories C1; C2; : : : ; Cj . We assume �ij > 0. We have,P 8<:Si 2 j[l=1Cl9=; = �ij i = 1; : : : ; r; j = 1; : : : ;m� 1:= P f�i � �jg= P 8<:Z � � �i � �jqVar (�i � �j)9=;Let g(:) denote the probit transformation. The assumption of jointnormality lead to the equationsg(�ij) = � �i � �jqVar (�i � �j) i = 1; : : : ; r j = 1; : : : ;m� 1 (2.1)
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s, 16, 2002relating the 
umulative probabilities �ij to the parameters of Thurstone'smodel . Clearly it is possible to generalize the normal proje
tion on the psy-
hologi
al 
ontinuum to other distributions. Any monotoni
 fun
tion mayplay the role of g(.). Typi
al alternatives in this 
ontext would be the logis-ti
 s
ale g(x) = ln fx=(1� x)g and the log-log s
ale g(x) = ln f� ln(1� x)g.Suppose �rst that enough observations are available to estimate theprobabilities �ij in (2.1). In this 
ontext a sample version of the Law ofCategori
al Judgment is thereforeg(�̂ij) = � �i � �jqVar (�i � �j) + uij i = 1; : : : ; r j = 1; : : : ;m� 1 (2.2)where �̂ij is the relative 
umulative frequen
y of observations in 
ategoryCj. The ve
tors u0i = (ui1; : : : ; uim�1) are independently distributed witha distin
t varian
e matrix for ea
h i. Clearly,�̂ij = p̂i1 + p̂i2 + : : : + p̂ijwhere p̂il represents the proportion of times the referees (sample) 
lassifystimulus Si into Cl. LetG(�̂) = (G01(�̂1); : : : ; G0r(�̂r))0; �̂0 = (�̂1; : : : ; �̂r)0 (2.3)where G(�̂) is the response ve
tor, �̂i = (�̂i1; : : : ; �̂im�1)0 and Gi(�̂i) isthe subve
tor of G(�̂) formed with the quantities g(�̂ij), j = 1; : : : ;m� 1.The �rst order Taylor's expansion of Gi(�̂i) about the true parameter �i =(pi1; : : : ; pim�1)0 yieldsGi(�̂i) = Gi(�i) + (2.4)0BBBB� g0(�i1) 0 0 : : : 0g0(�i2) g0(�i2) 0 : : : 0... ... ... ... ...g0(�im�1) g0(�im�1) : : : : : : g0(�im�1) 1CCCCA0B� p̂i1 � pi1...p̂im�1 � pim�1 1CAwhere g0(�ij) = p2� exp(g2(�ij)2 )for the probit link fun
tion,g0(�ij) = 1�ij(1� �j)for the logisti
, and g0(�ij) = 1�ij ln(1� �ij)
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ale.Let Hi denote the lower triangular matrix in (2.5) and let Vi denotethe varian
e matrix of �̂i. It is reasonable to assume that in the regressionmodel (2.2) the residual ve
tor has mean zero and varian
eV = diag(H1V1H 01; : : : ;HrVrH 0r) (2.5)whi
h 
an be estimated byV̂ = diag(Ĥ1V̂1Ĥ 01; : : : ; ĤrV̂rĤ 0r) (2.6)using the quantities p̂ij and �̂ij to repla
e pij and �ij, respe
tively.With the level of generality above, the 
lassi�
ation law that Thurstoneproposes is not identi�able. However, depending on the assumptions re-garding the 
omponents Var(�i � �j), a solution to the Law of Categori
alJudgment is viable. This se
tion 
onsiders three distin
t models whi
h Tor-genson (1958) labels Models B, C, and D. Models B and C are nonlinear.We begin our dis
ussion with the simplest Model D.2.1 Model DModel D assumes Var(�i � �j) = 1 for any pair (i; j). Thus one obtainsfrom (2.2) E(g(�̂ij)) = �j � �i (2.7)or, in matrix form
E(G(�̂)) =

0BBBBBBBBBBBBBBBBB�
1 0 0 : : : 0 �1 0 : : : 00 1 0 : : : 0 �1 0 : : : 0... ... ... ... ... ... ... ... ...0 : : : 0 0 1 �1 0 : : : 0... ... ... ... ... ... ... ... ...1 0 0 : : : 0 0 0 : : : �10 1 0 : : : 0 0 0 : : : �1... ... ... ... ... ... ... ... ...0 : : : 0 0 1 0 0 : : : �1

1CCCCCCCCCCCCCCCCCA
0BBBBBBBBB�

�1...�m�1�1...�r
1CCCCCCCCCA (2.8)

Model D in (2.7) is not identi�ed sin
e the design matrix in (2.8) is notof full 
olumn rank. However all 
ontrasts involving the �i are estimable.Sin
e we are primarily interested in pairwise 
omparisons we may, withoutany loss of generality, impose the 
onditionXi �i = 0 (2.9)
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s, 16, 2002Under the restri
tion (2.9) the appopriate estimation pro
ess is re-stri
ted generalized least squares. The goodness of �t of the model maybe assessed using the residual sum of squares and the 
hi-square test, with(r� 1)(m� 2) degrees of freedom, proposed by Grizzle, Stamer, and Ko
h(1969).2.2 Model BModel B assumes Var(�i � �j) = Æi. From (2.2) this assumption generatesthe nonlinear regression modelg(�̂ij) = ��i � �jÆi + �ij (2.10)Noti
e that we must have 2r + m � 3 � r(m � 1); i.e, the number ofparameters should be at most the number of observations. The number ofparameters is adjusted for two identifying restri
tions:rXi=1 1Æi = r; and rXi=1 �iÆi = 0: (2.11)Conditions in (2.10) are Torgerson (1958) restri
tions. They general-ize (2.9) imposed in the linear 
ase. Alternative sets of restri
tions havebeen suggested in the literature. Torgenson (1958), for example, mimi
sGulliksen (1954) and imposes Pj �j = 0 and Pj �2j = m� 1. This se
tion
onsiders only the set of restri
tions (2.11) sin
e they seem to be morenatural as a generalization of Model D (Æ0is = 1). In some 
ases, how-ever, Gulliksen's type restri
tions may be easier to impose. It is worthmentioning that Model B is analogous to Equation 5.4 of M
Cullagh andNelder (1989, p. 154) with the reparametrization Æi = exp(!i).Let �i = 1=Æi, 
i = �i=Æi, and� = (�1�1; : : : ; �1�m�1; : : : ; �r�1; : : : ; �r�m�1; 
1; : : : ; 
r)0Then (2.10) 
an be written equivalently asE(G(�̂)) = [I;A℄� (2.12)where I is the identity of order r(m�1) and A is the verti
al 
on
atenationof the r blo
ks0B� �1 0 : : : 0... ... ...�1 0 : : : 0 1CA ; : : : ;0B� 0 0 : : : �1... ... ...0 0 : : : �1 1CAea
h of dimension (m� 1)r.
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an estimate Model B using generalized restri
ted nonlinear leastsquares. As before one may assess goodness of �t using the 
hi-square testof Grizzle, Stamer, and Ko
h (1969).We may obtain 
onvenient initial values for the nonlinear estimationmaking Æi = 1 and using Model D estimates for the parameters �i and �j.2.3 Model CModel C postulates that qVar(�i � �j) = �j. From (2.2) this assumptiongenerates the nonlinear regression modelg(�̂ij) = ��i � �j�j + uij (2.13)The following two identifying restri
tions are required:m�1Xj=1 1�j = m� 1 and m�1Xj=1 �j�j = 0: (2.14)Restri
tions (2.14) are dual of restri
tions (2.11).Obviously Model C also generalizes Model D although no restri
tionsare ne
essary to be imposed on the s
ale values �i. Noti
e that the e�e
tivenumber of parameters r+2(m�1) should be less then or equal to r(m�1).Let �j = 1=�j and 
j = �j=�j . Then from (2.10)g(�ij) = ��i�j + 
j + uijIt follows that (2.13) is equivalent toE(G(�̂)) = [�I;A℄ � (2.15)where � = (�1�1; : : : ; �1�m�1; : : : ; �r�1; : : : ; �r�m�1; 
1; : : : ; 
m�1)0and A is the verti
al 
on
atenation of r identi
al blo
ks ea
h being theidentity of order m� 1.We may obtain initial values for the nonlinear estimation of Model Cmaking �j = 1, using for �i the negative of the mean of the ith row ofthe matrix (g(�̂ij)), and using for �j the deviation of the mean of 
olumnj relative to the overall mean of the matrix.If not enough repli
ations are available to estimate all �ij one maywant to appeal to maximum likelihood instead of generalized least squares.Su
h is the 
ase when some 
ells show zero frequen
ies and the usual linkfun
tions and their derivatives are not de�ned at zero. We should warn thereader however that sparse 
ontigen
y tables may pose estimation problemsto both methods. M
Cullagh and Nelder (1989) refer to sparseness whena large proportion of observed 
ounts are small, that is, less than 5. These
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es as well as the extreme 
ase of zero frequen
ies may be solvedpartially by adding small 
onstants to the 
ell frequen
ies. A few methodsof doing this are given in Forthofer and Lehnen (1981).For the maximum likelihood approa
h this se
tion assumes the rowtotals mi to be �xed. Let yij denote the frequen
y in 
ell (i; j). The totallog-likelihood for the table isrXi=1 ln� mi!yi1! : : : yim!�+ rXi=1 mXj=1 yij ln(pij) (2.16)where pim = 1�Pm�1j=1 pij for every row i and, for Model B to �x ideas,pi1=g�1��1 � �iÆi � and pij=g�1��j � �iÆi �� g�1��j�1 � �iÆi � ; (2.17)j = 2; : : : ;m� 1.We seek to maximize the quantityPri=1Pmj=1 yij ln(pij) in (2.16), whi
hfrom now on we refer simply as the log-likelihood, with respe
t to �i, Æi,and �j, subje
t to (2.17) and Torgenson's restri
tions.Standard maximum likelihood theory applies to estimation and hypoth-esis testing and the analysis of devian
e (M
Cullagh and Nelder, 1989) isthe key to the assessment of goodness of �t and to �nd the best model, ifany, �tting the data.3 The 
lassi
al approa
h to the law of 
ategori
aljudgmentThe 
lassi
al estimation approa
h to the Law of Categori
al Judgment isrestri
ted to �nding solutions to the set of equations (2.1) for the unknownparameters when one repla
es �ij with �̂ij, under the assumptions underly-ing Models D, B or C. The approa
h is basi
ally derived from the methodof moments. One 
omputes these estimates as follow. Suppose that thereare no zero frequen
ies in any 
ell and let Z = (ẑij) be the matrix withthe probit, or any other link fun
tion, values ẑij = g(�̂ij). Let �zi: and ~zi:denote the mean and the standard error of row i respe
tively. Let �z:j and~z:j denote these same quantities for 
olumn j. Let d be the standard errorof the 
olumn means �z:j , let e be the standard error of the row means �zi:,and let �z:: be the overall mean of Z.For Model D, the solution for (2.1) subje
t to (2.9) is given by�̂i = ��zi: + �z::; �̂j = �z:j : (3.1)This solution also minimizes the residual sum of squares for model (2.8)assuming ordinary least squares.



Souza: The law of 
ategori
al judgment revisited 131For Model B, the solution for (2.1) subje
t to (2.11) is given by�̂j = �z:j; Æ̂i = d=~zi:; �̂i = �z:: � Æ̂i�zi: (3.2)Noti
e that when 2r +m� 3 = r(m� 1) the generalized least squaresestimates will 
oin
ide with the method of moments solution sin
e theresidual sum of squares fun
tion will be zero when evaluated at the methodof moments estimates.The method of moments estimates for Model C are dual of those ofModel B. They arê�j = e=~z:j; �̂i = ��zi:; �̂j = ��z:: + �̂j�z:j (3.3)When r + 2(m � 1) = r(m � 1) generalized least squares and methodof moments estimates will be equal.Varian
es for the method of moments estimates (3.1), (3.2), and (3.3)
an be 
omputed using the fa
t that the estimates are all fun
tions of G(�̂)with G(:) as in (2.3). If one uses the �rst order Taylor's series expansionof the estimates about the true values zij = g(�ij), the varian
e matrixestimates are given by expressions of the form LV̂ L0 where L is a matrixwith ea
h row de�ned by a gradient ve
tor and V̂ as in (2.5). Let � be thepopulation parameter ve
tor 
orresponding to �̂ of (2.3). For Model D, Lhas rows ��̂i=��0 and ��̂j=��0. The typi
al elements of these gradients are��̂i�z�l = ( � r�1r(m�1) if i = �1r(m�1) if i 6= � (3.4)and ��̂j�z�l = ( 1r if j = l0 if j 6= l (3.5)respe
tively. For Model B, L has rows ��̂i=��0, �Æ̂i=��0 and ��̂j=��0. Thetypi
al elements of these ve
tors are��̂i�z�l = 8<: 1r(m�1) � Æ̂im�1 � �zi: h �z:l��z::r(m�2)d~zi: � d(zil��zi:)(m�2)(~zi:)3 i if � = i1r(m�1) � �zi: �z:l��z::r(m�2)d~zi: if � 6= i (3.6)�Æ̂i�z�l = ( �z:l��z::r(m�2)d~zi: � d(zil��zi:)(m�2)(~zi:)3 if � = i�z:l��z::r(m�2)~zi: if � 6= i (3.7)and ��̂j�z�l = ( 1r if j = l0 if j 6= l (3.8)
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s, 16, 2002respe
tively. For Model C, L has rows ��̂i=��0, ��̂j=��0 and ��̂j=��0. Thetypi
al elements of these ve
tors are��̂i�z�l = ( � 1m�1 if � = i0 if � 6= i (3.9)��̂j�z�l = ( ~z:l(�z�:��z::)(r�1)(m�1)e(~z:l)2 � e(z�l��z:l)(n�1)(~z:l)3 if j = l� �z�:��z::(r�1)(m�1)e~z:j if j 6= l (3.10)and��̂j�z�l = 8<: � 1r(m�1) + �̂lr � �z:l h �z�:��z::(r�1)(m�1)e~z:l + e(z�l��z:l)(r�1)(~z:l)3 i if j = l��z:l �z�:��z::(r�1)(m�1)e~z:j � 1r(m�1) if j 6= l(3.11)No formal statisti
al testing appears in the 
lassi
al approa
h. Themeasure of goodness of �t suggested in appli
ations relates to the abilityof the models to reprodu
e the observed 
ell probabilities p̂ij . It is givenby the mean absolute deviationmad = 1rmXij j ~pij � p̂ij j (3.12)where ~pij is a model based estimate.3.1 Computational aspe
tsOne 
an 
ompute generalized least squares for both the linear (Model D)and nonlinear 
ases (Models B and C) in SAS1 (Statisti
al Analysis Sys-tem) using PROC IML and PROC MODEL or PROC NLIN. Firstly one
omputes the Cholesky de
omposition of V̂ �1 determining a matrix R su
hthat V̂ �1 = R0R. Then one uses R to rotate the model toRG(�̂) = RX� +Ruwhere X is the design matrix in (2.8), (2.12) or (2.3) depending on themodel under study. With the ve
tor of transformed responses RG(�̂) andthe new design matrix RX we may invoke PROC MODEL or PROC NLINto �t the regression, using restri
t statements in 
ase of PROC MODELand imposing restri
tions to the model equation in 
ase of PROC NLIN.One begins with Model D. This will provide 
onvenient starting valuesfor Model B. If one is using PROC MODEL, standard errors will needadjustments sin
e the residual mean squares is not unit. PROC NLIN1A ma
ro SAS (%Thusrt) for this purpose is available from the author.
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al judgment revisited 133allows the option SIGMASQ=1 and will provide 
orre
t standard errors atthe 
ost of additional 
omputations to determine standard errors for theparameters left out of the model in the pro
ess of imposing restri
tions.For maximum likelihood estimation one noti
es �rst that the fun
tion to bemaximized is negative and therefore we may �nd its maximum minimizingits symmetri
. Thus if we de�ne the model response as being the squareroot of twi
e the negative of the log-likelihood for ea
h row (stimulus) andzero as the response variable, then the quantity to be minimized is pre
iselythe residual sum of squares for the 
orresponding nonlinear model. One 
anthen use PROC NLIN to 
ompute this minimum residual sum of squareswith the options SIGMASQ=1 and METHOD=NEWTON.More powerful and also more 
onvenient than PROC NLIN to obtainmaximum likelihood estimates in SAS is PROC NLMIXED. For PROCNLMIXED the same null response variable should be used with the obje
-tive fun
tion being the likelihood fun
tion itself.The maximum likelihood estimation for the linear version of the Law ofCategori
al Judgment is a parti
ular 
ase of the more general linear modelsthat PROC GENMOD 
an handle. See the do
umentation of SAS-STATversion 8. The parametrization PROC GENMOD uses is the same as inM
Cullagh and Nelder (1989, Chapter 5) and it di�ers from (2.9) but willprodu
e the same 
ontrast estimates.For the method of moments estimates formulas (3.1)-(3.3) and (3.4)-(3.11) 
an also be 
omputed without mu
h e�ort in PROC IML.4 An exampleThe 
ontingen
y table de�ned in Table 1 shows frequen
ies of responses toordinal 
ategories 1, 2, 3, 4, and 5 of 5 stimuli, A, B, C, D and E. Thetable is taken from Torgenson (1958, p.211).Table 1Frequen
ies of responses to stimuliStimuli/Response 1 2 3 4 5 TotalA 100 38 49 11 2 200B 84 27 47 23 19 200C 13 32 110 39 6 200D 62 14 32 23 69 200E 4 9 49 58 80 200Total 263 120 287 176 176 1000We perform our analysis of the data in Table 1 �tting Models B, C andD with the probit link fun
tion and using method of moments, generalized
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s, 16, 2002least squares and maximum likelihood estimation. The probit provides thebest �t, although one 
annot reje
t the alternatives logisti
 and log-log.Table 2 shows the values of the mean absolute deviation (mad) for ea
h ofthe estimation methods. Clearly Model B provides a superior �t than Mod-els C and D. For Model B, method of moments, generalized least squaresand maximum likelihood are essentially equivalent. The latter methodsare only slightly superior to the method of moments. Formal tests of spe
-i�
ations 
an be performed with generalized least squares and maximumlikelihood. Table 3 shows the proper statisti
s to this end. Model B isthe only model not reje
ted by the 
hi-square test of Grizzle, Stamer, andKo
h (1969) whi
h applies to the generalized least squares residual sum ofsquares. These results are in 
lose agreement with Table 2. It is interest-ing to report in terms of maximum likelihood estimation that the Pearson'sgeneralized 
hi-square for Model B is 0,179 and that overdispersion is notpresent. Also Model B is the only model with an a

eptable devian
e value.Table 2Goodness of �t statisti
s - mad, for method of moments,maximum likelihood (ML), and generalized least squares(GLS). Method/Model D B CMoments 0.064 0.002 0.074ML 0,062 0.001 0.058GLS 0,065 0.001 0.060Table 3Generalized least squares (GLS) and maximum likelihoodgoodness of �t statisti
s.Model DF GLS Residual SS �Pij yij ln(pij) Devian
eD 12 170.514 1413.316 174.840B 8 0.160 1325.978 0.164C 9 159.369 1412.012 172.232Estimation results for Model B are shown in Table 4. As expe
ted, thesmallest standard errors are for generalized least squares and maximumlikelihood estimates.The primary interest in the analysis of the data in Table1 1 is to rankstimuli A, B, C, D and E. From the s
ale values estimates �̂i in Table 4 we



Souza: The law of 
ategori
al judgment revisited 135see that the indu
ed order is E > D > C > B > A. Table 5 shows 
ontrastsbetween pair of stimuli and serves the purpose of assessing the existen
eof real di�eren
es in this ordering. The quantities reported were derivedfor Model B generalized least squares estimates. At the 5% level the onlynonsigni�
ant di�eren
e is D-C. The 
ontrast B-A is a boundary 
ase.Table 4Model B method of moments (MM), maximum likelihood (ML),and generalized least squares (GLS) estimates. Values in paren-thesis are standard errors.Parameter MM ML GLS�̂1 -0.853 -0.847 -0.847(0.058) (0.053) (0.053)�̂2 -0.388 -0.388 -0.388(0.046) (0.045) (0.045)�̂3 0.536 0.537 0.537(0.047) (0.046) (0.046)�̂4 1.234 1.225 1.225(0.073) (0.064) (0.064)Æ̂1 0.898 0.908 0.909(0.082) (0.068) (0.068)Æ̂2 1.381 1.370 1.370(0.114) (0.107) (0.107)Æ̂3 0.614 0.611 0.611(0.033) (0.030) (0.030)Æ̂4 2.322 2.314 2.315(0.242) (0.234) (0.234)Æ̂5 0.906 0.909 0.909(0.069) (0.064) (0.064)�̂1 -0.841 -0.844 -0.844(0.184) (0.079) (0.079)�̂2 -0.577 -0.572 -0.571(0.178) (0.104) (0.104)�̂3 0.076 0.075 0.075(0.066) (0.047) (0.047)�̂4 0.308 0.305 0.304(0.405) (0.170) (0.170)�̂5 0.995 0.993 0.993(0.091) (0.076) (0.076)
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s, 16, 2002Table 5Pairwise 
ontrasts �̂i��̂� for generalized least squares ModelB estimates.Contrast Estimate Std error zB-A 0.273 0.137 1.993C-A 0.919 0.093 9.882D-A 1.148 0.198 5.798E-A 1.837 0.110 16.700C-B 0.646 0.121 5.339D-B 0.875 0.213 4.108E-B 1.564 0.135 11.585D-C 0.229 0.188 1.218E-C 0.918 0.091 10.088E-D 0.689 0.196 3.5155 Measuring stimuli intensityUsually one would study di�eren
es in intensity between two impulses Siand Sj examining for signi�
an
e the 
ontrast �̂i � �̂j. This is the ideabehind the s
aling pro
ess suggested by Thurstone - to transform an ordinals
ale indu
ed by the referees per
eption into an interval s
ale that allows
omparisons among stimuli. In some appli
ations a further analysis maybe ne
essary. It may be of interest to measure the relative importan
eof the stimuli through a set of weights summing up to one. This wouldmake the analysis 
omparable in many regards to Saaty's (1994) Analyti
Hyerar
hy Pro
ess whi
h uses relative weights to rank stimuli. Workingwith weights re
e
ting the relative importan
e of ea
h variable in a set,a

ording to the per
eptions of a group of referees, is a 
onvenient way toassess a 
ombined measure of performan
e when the stimuli are de�nedby variables 
omprising the performan
e dimension. An example in thisregard is provided in Souza and �Avila (2000) where a set of weights isde�ned with the purpose to spe
ify a 
ombined measure of output for theprodu
tion pro
ess of a resear
h institution.Motivated by Model D under the assumption that the psy
hologi
al
ontinuum is a proje
tion of a log-normal distribution, we de�ne the rela-tive importan
e of stimulus i asri = exp(�i)nP�=1 exp(��) (5.1)It is seen from (5.1) that the ratios of relative importan
e ri=rj will bea monotoni
 transformation of the s
ale 
ontrasts �i � �j and therefore
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ategori
al judgment revisited 137their inferen
es are equivalent.Noti
e that under the assumption of a log-normal proje
tion, that is,assuming that log(�i) � N(�i; �2) and log(�j) � N(�j; �2) the ri are therelative ratios of the means of the random variables �i. In terms of theprobabilities �ij and assuming the moment equations (2.1), the weights ri
an expressed as follows:exp(�g(�ij))rP�=1 exp(�g(��j)) for Model Dexp(�Æig(�ij))rP�=1 exp(�Æ�g(��j)) for Model Bexp(��jg(�ij))rP�=1 exp(��jg(��j)) for Model C (5.2)
The formulas shown in (5.2) are parti
ularly appealing for the logisti
response fun
tion when they be
ome simple fun
tions of odds ratios whatprovides a further motivation for its use as a measure of stimuli relativeintensity. Noti
e that in any 
ase the ratios are the same for every j.1� �ij�ijrX�=1 1� ��j��j ! for Model D 1� �ij�ij !ÆirX�=1 1� ��j��j !Æ� for Model B 1� �ij�ij !�jrX�=1 1� ��j��j !�j for Model C

(5.3)
From (5.3) we see that, for Model D, the larger ri the more likely is to
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lassify Si into the higher response 
ategories, in
reasing its importan
e.For Models B and Models C basi
ally the same 
on
lusion applies withlikelyness being weighted by proper s
ale 
onstants.The varian
es of the relative importan
e r̂i are easily 
omputed ex-panding the estimates in Taylor series. They are given by the quantitiesl0iVar(�̂)li where li has 
omponents li� ; � = 1; : : : ; r given byli� = ( r̂i(1� r̂i) if � = i�r̂ir̂� if � 6= i (5.4)Table 6 shows the relative intensity of the stimuli (5.1) together withstandard errors derived from (33). The message is the same 
onveyed by theestimates �̂i. If the stimuli were performan
e variables the weights 
ouldbe used to de�ne a 
ombined measure of performan
e taking into a

ountthe relative importan
e of ea
h variable a

ording to the per
eption of thepopulation sampled.Table 6Intensities ri = exp�i=P� exp�� for Model B using gener-alized least squares estimates.Intensity Std Err0.070 0.0060.092 0.0110.176 0.0120.221 0.0320.441 0.0276 Con
lusionsThe Law of Categori
al Judgment derived from the work of Thurstone(1927) was revisited. The 
lassi
al method of moments solution to this setof equations was dis
ussed and proper standard errors 
omputed for theseestimators under general assumptions for the underlying distribution inthe psy
hologi
al 
ontinuum. Two major drawba
ks of the 
lassi
al theoryare the asymptoti
 ineÆ
ien
y of the estimates and the la
k of a properstatisti
al framework allowing the test of Thurstone's formulations. In this
ontext more adequate instruments of analysis were suggested with the useof maximum likelihood estimates and generalized least squares.A measure of relative importan
e was proposed to assess the intensityof ea
h stimulus. These values serve the purpose to de�ne weights summingto one that 
an be used to de�ne a 
ombined measure of performan
e insome appli
ations.
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ategori
al judgment revisited 139An important problem ignored throughout the paper until now in thedis
ussion of the Law of Categori
al Judgment is that observations 
or-responding to di�erent stimuli may not always be independent. In manyappli
ations the same set of referees evaluate ea
h stimuli. This will notinvalidate any of the estimation methods but is likely to indu
e a positive
orrelation between the ratings of any two stimuli. The e�e
t of a positive
orrelation is to redu
e the varian
e of a given 
ontrast between two stimuliand therefore the analysis in this 
ontext 
an be regarded as 
onservativesin
e standard errors are overestimated.Typi
ally the Law of Categori
al Judgment in one of the forms D, B, orC, provides a 
lose �t to the data. The estimation approa
h, by any of thethree methods, is also robust relative to the distribution postulated in thepsy
hologi
al 
ontinuum. Inferen
es will be similar whether one 
onsidersthe probit, the logisti
 or the log-log s
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