
Brazilian Journal of Probability and Statistis (2002), 16, pp. 123{140.Assoia�~ao Brasileira de Estat��stiaTHE LAW OF CATEGORICAL JUDGMENTREVISITEDGeraldo da Silva e SouzaUniversidade de Bras��lia, Departamento de Estat��stia, 70910-990,Bras��lia, DF, Brazil. E-mail: Geraldo.Souza�embrapa.brSummaryA referee, typial of a population, lassi�es eah of r � 2 stimuli into one ofm � 2 response ategories whih are ordered and mutually exlusive. The Lawof Categorial Judgment spei�es a set of equations relating stimuli and ategoriesparameters to the probabilities of lassi�ation of stimuli into ategories. Thispaper proposes the use of restrited maximum likelihood or restrited generalizedleast squares to estimate and test di�erent parametri formulations of the Lawof Categorial Judgment as well as a method to assess the relative importaneof the stimuli. Both approahes allow the use of distributions other than thestandard normal to model lassi�ation probabilities.Key words: Categorial data analysis; generalized linear models; nonlinearmodels; Thurstone's law of ategorial judgment.1 IntrodutionConsider a set of r � 2 stimuli S = fS1; : : : ; Srg and a set of m � 2 at-egories C = fC1; : : : ; Cmg. A referee or judge, randomly hosen from apopulation, is to lassify eah stimulus Si into one of the ategories Cj .The ategories in C are mutually exlusive and ordered aording to anunderlying arahteristi of interest. In this ontext C1 < C2 < : : : < Cmrepresents the ordination in C, that is, relative to the harateristis ofinterest C1 represents the least intense impulses and Cm the most intenseimpulses. Data sets generated from suh proesses are known as polyto-mous data with measurements on an ordinal sale. They are very ommonin biologial, eonometri, soial, psyhometri, and administrative work.See Souza and �Avila (2000), Rousseu et al (1999), Maedo (1997), Tur-o� and Hiltz (1996), Sousa (1993), and MaCullagh and Nelder (1989).A typial example obtains when eah element of a sample of individuals,taken from a ertain population, is asked to manifest his opinion, relativeto some riterion, of eah ativity in a set of interest. Suh stimuli ould123



124 Brazilian Journal of Probability and Statistis, 16, 2002be researh projets, researh units of an institution or a set of ations forwhih we want to evaluate eah element on a psyhometri sale. Nelderand MaCullagh (1989, page 175) provides a simple instane of suh a pro-ess where the stimuli are four heese types (A,B, C, and D). The referee(taster) manifests the intensity relative to whih he likes or dislikes a givenheese type in a ordinal sale from 1 to 10, where 1 means `strong dis-like' and 10 means `exellent taste'. For those situations Thurstone (1927)proposes a general judgment model from whih is possible to derive a setof equations relating stimuli and ategory parameters to frequenies in theontingeny table of the referees evaluations. This set of equations is knownas the Law of Categorial Judgment. The resulting statistial model, inits linear version, falls in the lass of multinomial responses models whihNelder and MaCullagh (1989) disuss in Chapter 5.Thurstonian models although originated a long time ago have been ob-jet of ontinous use and researh. In this ontext it is worth mentioningthe works of MFadden (1974, 2001) and Madeu-Olivares (1999, 2000),whih disuss the use of Thurstone's proposal to model preferenes in eo-nomis and psyhology respetively. The best referene in regard to thephilosophyal and mathematial aspets of the Law of Categorial Judg-ment is still Torgerson (1958). Some useful insights may also be obtainedfrom Maydeu-Olivares (2000), Saaty (1994), Kotz and Johnson (1989), andSouza (1988).In this paper we show how the Law of Categorial Judgment an beput into a framework similar to the one used by Grizzle, Stamer, andKoh (1969) in ategorial data analysis and, alternatively, as a generalizednonlinear multinomial response model that an be analyzed via maximumlikelihood. The statistial inferene that follows is exible enough to es-timate stimulus and ategory and to test Thurstone's Law of CategorialJudgment as well. The approah adopted here, although well known in thestatisal literature, to the best knowledge of the author, does not appearin the standard psyhometri literature and in the majority of the applia-tions of the Law of Categorial Judgment whih, typially, base analyseson the method of moments estimation.The disussion arried out in the paper proeeds as follows. Setion 2deals with Thurstone's theory whih leads to the Law of Categorial Judg-ment. Setion 2 also shows how linear and nonlinear regression models anbe put in use to �t the Law of Categorial Judgment via generalized leastsquares and maximum likelihood. Setion 3 presents the lassial approahto the Law of Categorial Judgment exploiting the disussion in Torger-son (1958). Setion 4 illustrates Thurstone's theory with an appliationexploring some features of the statistial pakage SAS. Setion 5 showshow to obtain a set of weights summing to one that serves the purpose ofranking stimuli. This approah is original and is ompetitive with Saaty's(1994) Analytial Hierarhy Proess and the ompanion Thurstone's Lawof Comparative Judgments when the number of stimuli and the size of thereferees set are too large so that pairwise judgments beome a nuisane toreord and ontrol. Finally in Setion 6 a summary of the paper is pre-



Souza: The law of ategorial judgment revisited 125sented inluding a brief disussion on the assumption of independene ofstimuli judgments and the general appliability of the Law of CategorialJudgment.2 The law of ategorial judgmentThe psyhometri model proposed by Thurstone (1927) postulates thepresene of a psyhologial ontinuum. Eah time a referee faes a stim-ulus, a mental disriminal proess is put into ation and it generates anumerial value in the real line reeting the stimulus intensity. There-fore, in this way, the stimuli translate in the psyhologial ontinuum intosale values �1; : : : ; �r. Likewise the ategories translate into loation val-ues �1; : : : ; �m�1. These later quantities form a partition of the real line(�1; �1℄; (�1; �2℄; : : : ; (�m�1;+1). The partition relates to stimuli Si andategories Cj aording to the following rule. The referee lassi�es stimulusSi into Sjl=1Cl if and only if �i � �j. The proess inherits randomness fromthe sampling sheme and from the fat that due to stohasti utuationsin nature, a given stimulus and ategory when repeatedly evaluated by areferee do not generate the same sale and boundary values in the psyho-logial ontinuum. Randomness leads one to assume that the �i are indeedmeans of random variables �i with variane �2i and that �j are indeed meansof random variables �j with varianes �2j . The disussion imposes row in-dependene and joint normality, that is, the �i are unorrelated and (�i; �j)are jointly normally distributed. In priniple, one has primary interest inthe di�erenes �i � �j . These quantities may serve the purpose of assess-ing di�erenes in intensity between stimuli. Setion 5 treats the problemof measuring intensity and of ranking stimuli in more detail and o�ers analternative and equivalent approah to measure di�erenes in intensity.Let �ij denote the probability of loating stimulus Si into one of the�rst j ategories C1; C2; : : : ; Cj . We assume �ij > 0. We have,P 8<:Si 2 j[l=1Cl9=; = �ij i = 1; : : : ; r; j = 1; : : : ;m� 1:= P f�i � �jg= P 8<:Z � � �i � �jqVar (�i � �j)9=;Let g(:) denote the probit transformation. The assumption of jointnormality lead to the equationsg(�ij) = � �i � �jqVar (�i � �j) i = 1; : : : ; r j = 1; : : : ;m� 1 (2.1)



126 Brazilian Journal of Probability and Statistis, 16, 2002relating the umulative probabilities �ij to the parameters of Thurstone'smodel . Clearly it is possible to generalize the normal projetion on the psy-hologial ontinuum to other distributions. Any monotoni funtion mayplay the role of g(.). Typial alternatives in this ontext would be the logis-ti sale g(x) = ln fx=(1� x)g and the log-log sale g(x) = ln f� ln(1� x)g.Suppose �rst that enough observations are available to estimate theprobabilities �ij in (2.1). In this ontext a sample version of the Law ofCategorial Judgment is thereforeg(�̂ij) = � �i � �jqVar (�i � �j) + uij i = 1; : : : ; r j = 1; : : : ;m� 1 (2.2)where �̂ij is the relative umulative frequeny of observations in ategoryCj. The vetors u0i = (ui1; : : : ; uim�1) are independently distributed witha distint variane matrix for eah i. Clearly,�̂ij = p̂i1 + p̂i2 + : : : + p̂ijwhere p̂il represents the proportion of times the referees (sample) lassifystimulus Si into Cl. LetG(�̂) = (G01(�̂1); : : : ; G0r(�̂r))0; �̂0 = (�̂1; : : : ; �̂r)0 (2.3)where G(�̂) is the response vetor, �̂i = (�̂i1; : : : ; �̂im�1)0 and Gi(�̂i) isthe subvetor of G(�̂) formed with the quantities g(�̂ij), j = 1; : : : ;m� 1.The �rst order Taylor's expansion of Gi(�̂i) about the true parameter �i =(pi1; : : : ; pim�1)0 yieldsGi(�̂i) = Gi(�i) + (2.4)0BBBB� g0(�i1) 0 0 : : : 0g0(�i2) g0(�i2) 0 : : : 0... ... ... ... ...g0(�im�1) g0(�im�1) : : : : : : g0(�im�1) 1CCCCA0B� p̂i1 � pi1...p̂im�1 � pim�1 1CAwhere g0(�ij) = p2� exp(g2(�ij)2 )for the probit link funtion,g0(�ij) = 1�ij(1� �j)for the logisti, and g0(�ij) = 1�ij ln(1� �ij)



Souza: The law of ategorial judgment revisited 127for the log-log sale.Let Hi denote the lower triangular matrix in (2.5) and let Vi denotethe variane matrix of �̂i. It is reasonable to assume that in the regressionmodel (2.2) the residual vetor has mean zero and varianeV = diag(H1V1H 01; : : : ;HrVrH 0r) (2.5)whih an be estimated byV̂ = diag(Ĥ1V̂1Ĥ 01; : : : ; ĤrV̂rĤ 0r) (2.6)using the quantities p̂ij and �̂ij to replae pij and �ij, respetively.With the level of generality above, the lassi�ation law that Thurstoneproposes is not identi�able. However, depending on the assumptions re-garding the omponents Var(�i � �j), a solution to the Law of CategorialJudgment is viable. This setion onsiders three distint models whih Tor-genson (1958) labels Models B, C, and D. Models B and C are nonlinear.We begin our disussion with the simplest Model D.2.1 Model DModel D assumes Var(�i � �j) = 1 for any pair (i; j). Thus one obtainsfrom (2.2) E(g(�̂ij)) = �j � �i (2.7)or, in matrix form
E(G(�̂)) =

0BBBBBBBBBBBBBBBBB�
1 0 0 : : : 0 �1 0 : : : 00 1 0 : : : 0 �1 0 : : : 0... ... ... ... ... ... ... ... ...0 : : : 0 0 1 �1 0 : : : 0... ... ... ... ... ... ... ... ...1 0 0 : : : 0 0 0 : : : �10 1 0 : : : 0 0 0 : : : �1... ... ... ... ... ... ... ... ...0 : : : 0 0 1 0 0 : : : �1

1CCCCCCCCCCCCCCCCCA
0BBBBBBBBB�

�1...�m�1�1...�r
1CCCCCCCCCA (2.8)

Model D in (2.7) is not identi�ed sine the design matrix in (2.8) is notof full olumn rank. However all ontrasts involving the �i are estimable.Sine we are primarily interested in pairwise omparisons we may, withoutany loss of generality, impose the onditionXi �i = 0 (2.9)



128 Brazilian Journal of Probability and Statistis, 16, 2002Under the restrition (2.9) the appopriate estimation proess is re-strited generalized least squares. The goodness of �t of the model maybe assessed using the residual sum of squares and the hi-square test, with(r� 1)(m� 2) degrees of freedom, proposed by Grizzle, Stamer, and Koh(1969).2.2 Model BModel B assumes Var(�i � �j) = Æi. From (2.2) this assumption generatesthe nonlinear regression modelg(�̂ij) = ��i � �jÆi + �ij (2.10)Notie that we must have 2r + m � 3 � r(m � 1); i.e, the number ofparameters should be at most the number of observations. The number ofparameters is adjusted for two identifying restritions:rXi=1 1Æi = r; and rXi=1 �iÆi = 0: (2.11)Conditions in (2.10) are Torgerson (1958) restritions. They general-ize (2.9) imposed in the linear ase. Alternative sets of restritions havebeen suggested in the literature. Torgenson (1958), for example, mimisGulliksen (1954) and imposes Pj �j = 0 and Pj �2j = m� 1. This setiononsiders only the set of restritions (2.11) sine they seem to be morenatural as a generalization of Model D (Æ0is = 1). In some ases, how-ever, Gulliksen's type restritions may be easier to impose. It is worthmentioning that Model B is analogous to Equation 5.4 of MCullagh andNelder (1989, p. 154) with the reparametrization Æi = exp(!i).Let �i = 1=Æi, i = �i=Æi, and� = (�1�1; : : : ; �1�m�1; : : : ; �r�1; : : : ; �r�m�1; 1; : : : ; r)0Then (2.10) an be written equivalently asE(G(�̂)) = [I;A℄� (2.12)where I is the identity of order r(m�1) and A is the vertial onatenationof the r bloks0B� �1 0 : : : 0... ... ...�1 0 : : : 0 1CA ; : : : ;0B� 0 0 : : : �1... ... ...0 0 : : : �1 1CAeah of dimension (m� 1)r.



Souza: The law of ategorial judgment revisited 129One an estimate Model B using generalized restrited nonlinear leastsquares. As before one may assess goodness of �t using the hi-square testof Grizzle, Stamer, and Koh (1969).We may obtain onvenient initial values for the nonlinear estimationmaking Æi = 1 and using Model D estimates for the parameters �i and �j.2.3 Model CModel C postulates that qVar(�i � �j) = �j. From (2.2) this assumptiongenerates the nonlinear regression modelg(�̂ij) = ��i � �j�j + uij (2.13)The following two identifying restritions are required:m�1Xj=1 1�j = m� 1 and m�1Xj=1 �j�j = 0: (2.14)Restritions (2.14) are dual of restritions (2.11).Obviously Model C also generalizes Model D although no restritionsare neessary to be imposed on the sale values �i. Notie that the e�etivenumber of parameters r+2(m�1) should be less then or equal to r(m�1).Let �j = 1=�j and j = �j=�j . Then from (2.10)g(�ij) = ��i�j + j + uijIt follows that (2.13) is equivalent toE(G(�̂)) = [�I;A℄ � (2.15)where � = (�1�1; : : : ; �1�m�1; : : : ; �r�1; : : : ; �r�m�1; 1; : : : ; m�1)0and A is the vertial onatenation of r idential bloks eah being theidentity of order m� 1.We may obtain initial values for the nonlinear estimation of Model Cmaking �j = 1, using for �i the negative of the mean of the ith row ofthe matrix (g(�̂ij)), and using for �j the deviation of the mean of olumnj relative to the overall mean of the matrix.If not enough repliations are available to estimate all �ij one maywant to appeal to maximum likelihood instead of generalized least squares.Suh is the ase when some ells show zero frequenies and the usual linkfuntions and their derivatives are not de�ned at zero. We should warn thereader however that sparse ontigeny tables may pose estimation problemsto both methods. MCullagh and Nelder (1989) refer to sparseness whena large proportion of observed ounts are small, that is, less than 5. These



130 Brazilian Journal of Probability and Statistis, 16, 2002instanes as well as the extreme ase of zero frequenies may be solvedpartially by adding small onstants to the ell frequenies. A few methodsof doing this are given in Forthofer and Lehnen (1981).For the maximum likelihood approah this setion assumes the rowtotals mi to be �xed. Let yij denote the frequeny in ell (i; j). The totallog-likelihood for the table isrXi=1 ln� mi!yi1! : : : yim!�+ rXi=1 mXj=1 yij ln(pij) (2.16)where pim = 1�Pm�1j=1 pij for every row i and, for Model B to �x ideas,pi1=g�1��1 � �iÆi � and pij=g�1��j � �iÆi �� g�1��j�1 � �iÆi � ; (2.17)j = 2; : : : ;m� 1.We seek to maximize the quantityPri=1Pmj=1 yij ln(pij) in (2.16), whihfrom now on we refer simply as the log-likelihood, with respet to �i, Æi,and �j, subjet to (2.17) and Torgenson's restritions.Standard maximum likelihood theory applies to estimation and hypoth-esis testing and the analysis of deviane (MCullagh and Nelder, 1989) isthe key to the assessment of goodness of �t and to �nd the best model, ifany, �tting the data.3 The lassial approah to the law of ategorialjudgmentThe lassial estimation approah to the Law of Categorial Judgment isrestrited to �nding solutions to the set of equations (2.1) for the unknownparameters when one replaes �ij with �̂ij, under the assumptions underly-ing Models D, B or C. The approah is basially derived from the methodof moments. One omputes these estimates as follow. Suppose that thereare no zero frequenies in any ell and let Z = (ẑij) be the matrix withthe probit, or any other link funtion, values ẑij = g(�̂ij). Let �zi: and ~zi:denote the mean and the standard error of row i respetively. Let �z:j and~z:j denote these same quantities for olumn j. Let d be the standard errorof the olumn means �z:j , let e be the standard error of the row means �zi:,and let �z:: be the overall mean of Z.For Model D, the solution for (2.1) subjet to (2.9) is given by�̂i = ��zi: + �z::; �̂j = �z:j : (3.1)This solution also minimizes the residual sum of squares for model (2.8)assuming ordinary least squares.



Souza: The law of ategorial judgment revisited 131For Model B, the solution for (2.1) subjet to (2.11) is given by�̂j = �z:j; Æ̂i = d=~zi:; �̂i = �z:: � Æ̂i�zi: (3.2)Notie that when 2r +m� 3 = r(m� 1) the generalized least squaresestimates will oinide with the method of moments solution sine theresidual sum of squares funtion will be zero when evaluated at the methodof moments estimates.The method of moments estimates for Model C are dual of those ofModel B. They arê�j = e=~z:j; �̂i = ��zi:; �̂j = ��z:: + �̂j�z:j (3.3)When r + 2(m � 1) = r(m � 1) generalized least squares and methodof moments estimates will be equal.Varianes for the method of moments estimates (3.1), (3.2), and (3.3)an be omputed using the fat that the estimates are all funtions of G(�̂)with G(:) as in (2.3). If one uses the �rst order Taylor's series expansionof the estimates about the true values zij = g(�ij), the variane matrixestimates are given by expressions of the form LV̂ L0 where L is a matrixwith eah row de�ned by a gradient vetor and V̂ as in (2.5). Let � be thepopulation parameter vetor orresponding to �̂ of (2.3). For Model D, Lhas rows ��̂i=��0 and ��̂j=��0. The typial elements of these gradients are��̂i�z�l = ( � r�1r(m�1) if i = �1r(m�1) if i 6= � (3.4)and ��̂j�z�l = ( 1r if j = l0 if j 6= l (3.5)respetively. For Model B, L has rows ��̂i=��0, �Æ̂i=��0 and ��̂j=��0. Thetypial elements of these vetors are��̂i�z�l = 8<: 1r(m�1) � Æ̂im�1 � �zi: h �z:l��z::r(m�2)d~zi: � d(zil��zi:)(m�2)(~zi:)3 i if � = i1r(m�1) � �zi: �z:l��z::r(m�2)d~zi: if � 6= i (3.6)�Æ̂i�z�l = ( �z:l��z::r(m�2)d~zi: � d(zil��zi:)(m�2)(~zi:)3 if � = i�z:l��z::r(m�2)~zi: if � 6= i (3.7)and ��̂j�z�l = ( 1r if j = l0 if j 6= l (3.8)



132 Brazilian Journal of Probability and Statistis, 16, 2002respetively. For Model C, L has rows ��̂i=��0, ��̂j=��0 and ��̂j=��0. Thetypial elements of these vetors are��̂i�z�l = ( � 1m�1 if � = i0 if � 6= i (3.9)��̂j�z�l = ( ~z:l(�z�:��z::)(r�1)(m�1)e(~z:l)2 � e(z�l��z:l)(n�1)(~z:l)3 if j = l� �z�:��z::(r�1)(m�1)e~z:j if j 6= l (3.10)and��̂j�z�l = 8<: � 1r(m�1) + �̂lr � �z:l h �z�:��z::(r�1)(m�1)e~z:l + e(z�l��z:l)(r�1)(~z:l)3 i if j = l��z:l �z�:��z::(r�1)(m�1)e~z:j � 1r(m�1) if j 6= l(3.11)No formal statistial testing appears in the lassial approah. Themeasure of goodness of �t suggested in appliations relates to the abilityof the models to reprodue the observed ell probabilities p̂ij . It is givenby the mean absolute deviationmad = 1rmXij j ~pij � p̂ij j (3.12)where ~pij is a model based estimate.3.1 Computational aspetsOne an ompute generalized least squares for both the linear (Model D)and nonlinear ases (Models B and C) in SAS1 (Statistial Analysis Sys-tem) using PROC IML and PROC MODEL or PROC NLIN. Firstly oneomputes the Cholesky deomposition of V̂ �1 determining a matrix R suhthat V̂ �1 = R0R. Then one uses R to rotate the model toRG(�̂) = RX� +Ruwhere X is the design matrix in (2.8), (2.12) or (2.3) depending on themodel under study. With the vetor of transformed responses RG(�̂) andthe new design matrix RX we may invoke PROC MODEL or PROC NLINto �t the regression, using restrit statements in ase of PROC MODELand imposing restritions to the model equation in ase of PROC NLIN.One begins with Model D. This will provide onvenient starting valuesfor Model B. If one is using PROC MODEL, standard errors will needadjustments sine the residual mean squares is not unit. PROC NLIN1A maro SAS (%Thusrt) for this purpose is available from the author.



Souza: The law of ategorial judgment revisited 133allows the option SIGMASQ=1 and will provide orret standard errors atthe ost of additional omputations to determine standard errors for theparameters left out of the model in the proess of imposing restritions.For maximum likelihood estimation one noties �rst that the funtion to bemaximized is negative and therefore we may �nd its maximum minimizingits symmetri. Thus if we de�ne the model response as being the squareroot of twie the negative of the log-likelihood for eah row (stimulus) andzero as the response variable, then the quantity to be minimized is preiselythe residual sum of squares for the orresponding nonlinear model. One anthen use PROC NLIN to ompute this minimum residual sum of squareswith the options SIGMASQ=1 and METHOD=NEWTON.More powerful and also more onvenient than PROC NLIN to obtainmaximum likelihood estimates in SAS is PROC NLMIXED. For PROCNLMIXED the same null response variable should be used with the obje-tive funtion being the likelihood funtion itself.The maximum likelihood estimation for the linear version of the Law ofCategorial Judgment is a partiular ase of the more general linear modelsthat PROC GENMOD an handle. See the doumentation of SAS-STATversion 8. The parametrization PROC GENMOD uses is the same as inMCullagh and Nelder (1989, Chapter 5) and it di�ers from (2.9) but willprodue the same ontrast estimates.For the method of moments estimates formulas (3.1)-(3.3) and (3.4)-(3.11) an also be omputed without muh e�ort in PROC IML.4 An exampleThe ontingeny table de�ned in Table 1 shows frequenies of responses toordinal ategories 1, 2, 3, 4, and 5 of 5 stimuli, A, B, C, D and E. Thetable is taken from Torgenson (1958, p.211).Table 1Frequenies of responses to stimuliStimuli/Response 1 2 3 4 5 TotalA 100 38 49 11 2 200B 84 27 47 23 19 200C 13 32 110 39 6 200D 62 14 32 23 69 200E 4 9 49 58 80 200Total 263 120 287 176 176 1000We perform our analysis of the data in Table 1 �tting Models B, C andD with the probit link funtion and using method of moments, generalized



134 Brazilian Journal of Probability and Statistis, 16, 2002least squares and maximum likelihood estimation. The probit provides thebest �t, although one annot rejet the alternatives logisti and log-log.Table 2 shows the values of the mean absolute deviation (mad) for eah ofthe estimation methods. Clearly Model B provides a superior �t than Mod-els C and D. For Model B, method of moments, generalized least squaresand maximum likelihood are essentially equivalent. The latter methodsare only slightly superior to the method of moments. Formal tests of spe-i�ations an be performed with generalized least squares and maximumlikelihood. Table 3 shows the proper statistis to this end. Model B isthe only model not rejeted by the hi-square test of Grizzle, Stamer, andKoh (1969) whih applies to the generalized least squares residual sum ofsquares. These results are in lose agreement with Table 2. It is interest-ing to report in terms of maximum likelihood estimation that the Pearson'sgeneralized hi-square for Model B is 0,179 and that overdispersion is notpresent. Also Model B is the only model with an aeptable deviane value.Table 2Goodness of �t statistis - mad, for method of moments,maximum likelihood (ML), and generalized least squares(GLS). Method/Model D B CMoments 0.064 0.002 0.074ML 0,062 0.001 0.058GLS 0,065 0.001 0.060Table 3Generalized least squares (GLS) and maximum likelihoodgoodness of �t statistis.Model DF GLS Residual SS �Pij yij ln(pij) DevianeD 12 170.514 1413.316 174.840B 8 0.160 1325.978 0.164C 9 159.369 1412.012 172.232Estimation results for Model B are shown in Table 4. As expeted, thesmallest standard errors are for generalized least squares and maximumlikelihood estimates.The primary interest in the analysis of the data in Table1 1 is to rankstimuli A, B, C, D and E. From the sale values estimates �̂i in Table 4 we



Souza: The law of ategorial judgment revisited 135see that the indued order is E > D > C > B > A. Table 5 shows ontrastsbetween pair of stimuli and serves the purpose of assessing the existeneof real di�erenes in this ordering. The quantities reported were derivedfor Model B generalized least squares estimates. At the 5% level the onlynonsigni�ant di�erene is D-C. The ontrast B-A is a boundary ase.Table 4Model B method of moments (MM), maximum likelihood (ML),and generalized least squares (GLS) estimates. Values in paren-thesis are standard errors.Parameter MM ML GLS�̂1 -0.853 -0.847 -0.847(0.058) (0.053) (0.053)�̂2 -0.388 -0.388 -0.388(0.046) (0.045) (0.045)�̂3 0.536 0.537 0.537(0.047) (0.046) (0.046)�̂4 1.234 1.225 1.225(0.073) (0.064) (0.064)Æ̂1 0.898 0.908 0.909(0.082) (0.068) (0.068)Æ̂2 1.381 1.370 1.370(0.114) (0.107) (0.107)Æ̂3 0.614 0.611 0.611(0.033) (0.030) (0.030)Æ̂4 2.322 2.314 2.315(0.242) (0.234) (0.234)Æ̂5 0.906 0.909 0.909(0.069) (0.064) (0.064)�̂1 -0.841 -0.844 -0.844(0.184) (0.079) (0.079)�̂2 -0.577 -0.572 -0.571(0.178) (0.104) (0.104)�̂3 0.076 0.075 0.075(0.066) (0.047) (0.047)�̂4 0.308 0.305 0.304(0.405) (0.170) (0.170)�̂5 0.995 0.993 0.993(0.091) (0.076) (0.076)



136 Brazilian Journal of Probability and Statistis, 16, 2002Table 5Pairwise ontrasts �̂i��̂� for generalized least squares ModelB estimates.Contrast Estimate Std error zB-A 0.273 0.137 1.993C-A 0.919 0.093 9.882D-A 1.148 0.198 5.798E-A 1.837 0.110 16.700C-B 0.646 0.121 5.339D-B 0.875 0.213 4.108E-B 1.564 0.135 11.585D-C 0.229 0.188 1.218E-C 0.918 0.091 10.088E-D 0.689 0.196 3.5155 Measuring stimuli intensityUsually one would study di�erenes in intensity between two impulses Siand Sj examining for signi�ane the ontrast �̂i � �̂j. This is the ideabehind the saling proess suggested by Thurstone - to transform an ordinalsale indued by the referees pereption into an interval sale that allowsomparisons among stimuli. In some appliations a further analysis maybe neessary. It may be of interest to measure the relative importaneof the stimuli through a set of weights summing up to one. This wouldmake the analysis omparable in many regards to Saaty's (1994) AnalytiHyerarhy Proess whih uses relative weights to rank stimuli. Workingwith weights reeting the relative importane of eah variable in a set,aording to the pereptions of a group of referees, is a onvenient way toassess a ombined measure of performane when the stimuli are de�nedby variables omprising the performane dimension. An example in thisregard is provided in Souza and �Avila (2000) where a set of weights isde�ned with the purpose to speify a ombined measure of output for theprodution proess of a researh institution.Motivated by Model D under the assumption that the psyhologialontinuum is a projetion of a log-normal distribution, we de�ne the rela-tive importane of stimulus i asri = exp(�i)nP�=1 exp(��) (5.1)It is seen from (5.1) that the ratios of relative importane ri=rj will bea monotoni transformation of the sale ontrasts �i � �j and therefore



Souza: The law of ategorial judgment revisited 137their inferenes are equivalent.Notie that under the assumption of a log-normal projetion, that is,assuming that log(�i) � N(�i; �2) and log(�j) � N(�j; �2) the ri are therelative ratios of the means of the random variables �i. In terms of theprobabilities �ij and assuming the moment equations (2.1), the weights rian expressed as follows:exp(�g(�ij))rP�=1 exp(�g(��j)) for Model Dexp(�Æig(�ij))rP�=1 exp(�Æ�g(��j)) for Model Bexp(��jg(�ij))rP�=1 exp(��jg(��j)) for Model C (5.2)
The formulas shown in (5.2) are partiularly appealing for the logistiresponse funtion when they beome simple funtions of odds ratios whatprovides a further motivation for its use as a measure of stimuli relativeintensity. Notie that in any ase the ratios are the same for every j.1� �ij�ijrX�=1 1� ��j��j ! for Model D 1� �ij�ij !ÆirX�=1 1� ��j��j !Æ� for Model B 1� �ij�ij !�jrX�=1 1� ��j��j !�j for Model C

(5.3)
From (5.3) we see that, for Model D, the larger ri the more likely is to



138 Brazilian Journal of Probability and Statistis, 16, 2002lassify Si into the higher response ategories, inreasing its importane.For Models B and Models C basially the same onlusion applies withlikelyness being weighted by proper sale onstants.The varianes of the relative importane r̂i are easily omputed ex-panding the estimates in Taylor series. They are given by the quantitiesl0iVar(�̂)li where li has omponents li� ; � = 1; : : : ; r given byli� = ( r̂i(1� r̂i) if � = i�r̂ir̂� if � 6= i (5.4)Table 6 shows the relative intensity of the stimuli (5.1) together withstandard errors derived from (33). The message is the same onveyed by theestimates �̂i. If the stimuli were performane variables the weights ouldbe used to de�ne a ombined measure of performane taking into aountthe relative importane of eah variable aording to the pereption of thepopulation sampled.Table 6Intensities ri = exp�i=P� exp�� for Model B using gener-alized least squares estimates.Intensity Std Err0.070 0.0060.092 0.0110.176 0.0120.221 0.0320.441 0.0276 ConlusionsThe Law of Categorial Judgment derived from the work of Thurstone(1927) was revisited. The lassial method of moments solution to this setof equations was disussed and proper standard errors omputed for theseestimators under general assumptions for the underlying distribution inthe psyhologial ontinuum. Two major drawbaks of the lassial theoryare the asymptoti ineÆieny of the estimates and the lak of a properstatistial framework allowing the test of Thurstone's formulations. In thisontext more adequate instruments of analysis were suggested with the useof maximum likelihood estimates and generalized least squares.A measure of relative importane was proposed to assess the intensityof eah stimulus. These values serve the purpose to de�ne weights summingto one that an be used to de�ne a ombined measure of performane insome appliations.
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