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Summary

A recursive algorithm to estimate the false alarm probability in discrete linear
systems is proposed. This algorithm is obtained from a bayesian viewpoint, con-
sidering successive approximations of mixture distributions to obtain the pos-
terior densities of the unknown probability given the observations. Numerical
simulations of the observations of a scalar system have been obtained for differ-
ent values of the false alarm probability; the performance of the algorithm with
these simulated values shows that it is feasible.
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tions.

1 Introduction

Usually, the estimation theory in linear stochastic systems assumes that,
at any time, the state to be estimated is present in the observations. How-
ever, in many practical situations, such as in communication problems or
images processing, there exists a positive probability (false alarm proba-
bility) that the observed data do not contain the signal to be estimated.
These situations are described by systems whose observation equation in-
clude a multiplicative noise component, modeled by a sequence of Bernoulli
random variables. These systems are known as systems with uncertain ob-
servations.
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The state estimation problem in these systems, when the uncertainty
in the observations is described by independent random variables, has been
treated by several authors. For example, Nahi (1969), Hermoso and Linares
(1994, 1995) treated such problem under a state-space model approach, and
Nakamori (1997) addressed the problem assuming that only covariance in-
formation on the signal and noises in the observation equation is available.
In all the cases it is assumed that the false alarm probability at any time is
known. When it is not the case, estimates of it can be considered for adapt-
ing the corresponding estimation algorithms. So, the problem of estimating
the false alarm probability in a system with uncertain observations can be
interesting, not only itself (as, for example, in signal detection problems),
but also in estimation of signals.

In this paper, by assuming a state-space model, we treat the false alarm
probability estimation problem from the observations of the system. Con-
cretely, we consider a discrete-time linear system in which the additive
noises of the state and observation equation are correlated, and the uncer-
tainty is modeled by a sequence of independent Bernoulli random variables;
it is assumed that the probability that the observations contain the state
process is unknown, but fixed throughout the time. In order to estimate
this probability, we use a bayesian approach; specifically, our purpose is to
obtain the Bayes estimators of that, assuming a quadratic loss function.

Due to an ever-increasing computational complexity as a result of the
uncertainty in the observations, the Bayes estimator of the probability
is unfeasible in practice. For this reason, it becomes necessary to find
approximations which are viable from a computational point of view.

First, by using successive approximations of gaussian mixtures, we pro-
pose a method for the computation of the approximations for the poste-
rior densities of the unknown probability, given the observations. These
approximations have also a mixture form and, consequently, their compu-
tation involves an additional complexity, which, obviously, depends on the
selected prior density. We treat the problem by considering a Beta as the
prior distribution and, by means of the new approximations of mixture
distributions, we obtain a recursive algorithm, which allows us to obtain
estimations of the unknown probability with a great computational sim-
plicity. For reference about of the approximations of mixture distributions
and applications (in particular, applications to linear dynamic systems) see
Titterington et al. (1985).

2 System model

Let us consider the following kind of discrete-time linear systems with
uncertain observations
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xk+1 = Akxk + wk, k ≥ 0
zk = ukCkxk + vk, k ≥ 0

where xk is the n × 1 state vector and zk is the m × 1 observation vector
at time k. The additive disturbances {wk; k ≥ 0}, {vk; k ≥ 0} are
n-dimensional and m-dimensional stochastic processes, respectively, and
the multiplicative noise {uk; k ≥ 0} is a scalar stochastic process which
describes the presence or not of the state at the observations. Finally, Ak,
Ck are known deterministic matrices of appropriate dimensions.

In the following, we suppose that all the random vectors which appear
in the system are defined on the same probability space (Ω,A, P ).

We assume that the initial state, x0, and the additive and multiplicative
noises, {wk; k ≥ 0}, {vk; k ≥ 0} and {uk; k ≥ 0}, satisfy the hypotheses
which are detailed below.

H1. x0 is a gaussian vector with zero mean and covariance matrix Σ0.

H2. The noise process
{(

wT
k , vT

k

)T
; k ≥ 0

}
is a gaussian white sequence

with zero means and covariance matrices

(
Qk Sk

ST
k Rk

)
.

H3. {uk; k ≥ 0} is a sequence of independent Bernoulli random variables
with P [uk = 1] = p, for all k ≥ 0.

H4. {uk; k ≥ 0} is independent of (x0, {wk; k ≥ 0}, {vk ; k ≥ 0}).

H5. For all k, (wk, vk) is independent of (x0, w0, . . . , wk−1, v0, . . . , vk−1).

3 Problem statement

In the above system, we suppose that the false alarm probability 1−p, fixed
throughout the time (H3), is unknown. So, the proposed problem is to
provide a recursive algorithm for the estimation of the unknown parameter
p. For this purpose, we assume a bayesian approach and, then, we treat
the problem of finding the Bayes estimator of p, given a specific prior
density and assuming a quadratic loss function; that is, our aim is to obtain
pk = E

{
p/Zk

}
, where Zk = {z0, . . . , zk}.

Clearly, to solve this problem we need to obtain the posterior density
given the observations, for the selected prior density.

If we denote by f
(
p/Z−1

)
the prior density for p, and by f

(
p/Zk

)
, k ≥

0, the posterior density given {z0, . . . , zk}, from the Bayes theorem it fol-
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lows that

f
(
p/Zk

)
=

f
(
zk/p, Zk−1

)
f
(
p/Zk−1

)
∫

f
(
zk/p, Zk−1

)
f
(
p/Zk−1

)
dp

, k ≥ 0

where f
(
zk/p, Zk−1

)
=pf1

(
zk/Z

k−1
)
+(1−p)f0

(
zk/Z

k−1
)

with fi

(
zk/Z

k−1
)

= f
(
zk/uk = i, Zk−1

)
, fi

(
z0/Z

−1
)

= f (z0/u0 = i), i = 0, 1.

From the expression of f
(
zk/p, Zk−1

)
, it is easy to prove that the de-

nominator of the posterior density, density for zk conditional on {z0, . . .,
zk−1}, is given by

f
(
zk/Z

k−1
)

= pk−1f1

(
zk/Z

k−1
)

+ (1 − pk−1)f0

(
zk/Z

k−1
)

, k ≥ 0

and then,

f
(
p/Zk

)
=

[
pf1

(
zk/Z

k−1
)

+ (1 − p)f0

(
zk/Z

k−1
)]

f
(
p/Zk−1

)

pk−1f1

(
zk/Z

k−1
)

+ (1 − pk−1)f0

(
zk/Z

k−1
) , k ≥ 0.

Hence, the recursive computation of the posterior density f
(
p/Zk

)
re-

quires obtaining fi

(
zk/Z

k−1
)
, for i = 0, 1.

By reason of the hypotheses on the system, it is clear that f0

(
zk/Z

k−1
)

is the density of the gaussian distribution N (0, Rk). However, the com-
putation of f1

(
zk/Z

k−1
)

grows in complexity as k increases, as a result of
the uncertainty in the observations {z0, . . . , zk−1}.

To solve this problem, we propose to seek approximations, f̃1

(
zk/Z

k−1
)
,

which avoid this ever-increasing computational complexity. These approxi-
mations will provide, in their turn, approximations for the posterior density,

f̃
(
p/Zk

)
, and for the Bayes estimators of p, p̃k =

∫
pf̃
(
p/Zk

)
dp. This

task will be carried out in the next section.

4 Estimators of the false alarm probability

The problem stated in the above section will be approached by approxi-
mating mixtures of gaussian distributions by gaussian distributions with
the corresponding parameters. Next, we outline the procedure.
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Estimator of p given Z0

For k = 0, it is clear that f1

(
z0/Z

−1
)

is the density of the gaussian

distribution N
(
0, C0Σ0C

T
0 + R0

)
; this provides the density f

(
p/Z0

)
di-

rectly and, hence, p0 can be exactly calculated when the prior distribution
is specified.

Estimator of p given Z1

From the system equations, it is also clear that f1

(
z1/Z

0
)

is determined

by f
(
x0, w0, z0/Z

−1
)

and

f
(
x0, w0, z0/Z

−1
)

= p−1f1

(
x0, w0, z0/Z

−1
)

+ (1 − p−1)f0

(
x0, w0, z0/Z

−1
)

where fi

(
x0, w0, z0/Z

−1
)

= f (x0, w0, z0/u0 = i), for i = 0, 1, is the density
of the gaussian distribution

N






0
0
0


 ,




Σ0 0 iΣ0C
T
0

0 Q0 S0

iC0Σ0 ST
0 iC0Σ0C

T
0 + R0




 .

Then, we approximate f
(
x0, w0, z0/Z

−1
)

(mixture of gaussian distribu-
tions) by a single gaussian distribution whose mean and covariance matrix
are equal to those of the mixture, that is,

N






0
0
0


 ,




Σ0 0 p−1Σ0C
T
0

0 Q0 S0

p−1C0Σ0 ST
0 Π0






with Π0 = p−1C0Σ0C
T
0 + R0.

This approximated distribution provides the distribution of (x0, w0)
given Z0,

N

((
K0z0

S0Π
−1
0 z0

)
,

(
Σ0/0 −K0S

T
0

−S0K
T
0 Q0 − S0Π

−1
0 ST

0

))

with K0 = p−1Σ0C
T
0 Π−1

0 and Σ0/0 = Σ0 − K0Π0K
T
0 .

From this distribution and using the system equations, we obtain that

f̃1

(
z1/Z

0
)

is the density of the distribution N
(
C1x̂1/0, C1Σ1/0C

T
1 + R1

)
,

where

x̂1/0 =
(
A0K0 + S0Π

−1
0

)
z0

Σ1/0 = A0Σ0/0A
T
0 + Q0 − S0Π

−1
0 ST

0 − A0K0S
T
0 − S0K

T
0 AT

0 .
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Finally, the replacement of f̃1

(
z1/Z

0
)

in the expression of f
(
p/Z1

)
,

together with f
(
p/Z0

)
, provides an approximation, f̃

(
p/Z1

)
, and, from

it, we obtain p̃1.
In the following step, we start from the distribution for (x1, w1, z1)

conditional on Z0, which, by reason of the above approximation is also
approximated by

f̃
(
x1, w1, z1/Z

0
)

= p0f1

(
x1, w1, z1/Z

0
)

+ (1 − p0)f0

(
x1, w1, z1/Z

0
)

where fi

(
x1, w1, z1/Z

0
)

= f
(
x1, w1, z1/u1 = i, Z0

)
, for i = 0, 1, is the

density of the gaussian distribution

N






x̂1/0

0
iC1x̂1/0


 ,




Σ1/0 0 iΣ1/0C
T
1

0 Q1 S1

iC1Σ1/0 ST
1 iC1Σ1/0C

T
1 + R1




 .

Hence, in this step, we also start from a distribution which is mixture
of two gaussian distributions. This fact remains true in the posterior steps.

Estimator of p given Zk+1

The proposed procedure provides a recursive method for obtaining the

densities f̃1

(
zk+1/Z

k
)
. In fact, let us assume that, for an arbitrary k ≥ 1,

f
(
xk, wk, zk/Z

k−1
)

is approximated by

f̃
(
xk, wk, zk/Z

k−1
)

= p̃k−1f̃1

(
xk, wk, zk/Z

k−1
)

+(1 − p̃k−1)f̃0

(
xk, wk, zk/Z

k−1
)

where f̃i

(
xk, wk, zk/Z

k−1
)
, approximation of f

(
xk, wk, zk/uk = i, Zk−1

)

for i = 0, 1, is the density of the gaussian distribution

N






x̂k/k−1

0
iCkx̂k/k−1


 ,




Σk/k−1 0 iΣk/k−1C
T
k

0 Qk Sk

iCkΣk/k−1 ST
k iCkΣk/k−1C

T
k + Rk




 .

As in the first step, we approximate this mixture by the density of the
gaussian distribution

N






x̂k/k−1

0
p̃k−1Ckx̂k/k−1


 ,




Σk/k−1 0 p̃k−1Σk/k−1C
T
k

0 Qk Sk

p̃k−1CkΣk/k−1 ST
k Πk
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where Πk = p̃k−1CkΣk/k−1C
T
k + Rk + p̃k−1(1 − p̃k−1)Ckx̂k/k−1x̂

T
k/k−1C

T
k .

So, the distribution of (xk, wk) given Zk is approximated by a single
gaussian distribution

N

((
x̂k/k−1 + Kk

[
zk − p̃k−1Ckx̂k/k−1

]

SkΠ
−1
k

[
zk − p̃k−1Ckx̂k/k−1

]
)

,

(
Σk/k −KkS

T
k

−SkK
T
k Qk − SkΠ

−1
k ST

k

))

with Kk = p̃k−1Σk/k−1C
T
k Π−1

k and Σk/k = Σk/k−1 − KkΠkK
T
k .

As a consequence, taking into account the system equations, the ap-

proximation f̃1

(
zk+1/Z

k
)

is the density of the gaussian distribution

N (Ck+1x̂k+1/k, Ck+1Σk+1/kC
T
k+1 + Rk+1),

where

x̂k+1/k = Akx̂k/k−1 +
(
AkKk + SkΠ

−1
k

) [
zk − p̃k−1Ckx̂k/k−1

]

Σk+1/k = AkΣk/kA
T
k + Qk − SkΠ

−1
k ST

k − AkKkS
T
k − SkK

T
k AT

k .

The approximation f̃1

(
zk+1/Z

k
)

provides f̃
(
p/Zk+1

)
and, from this,

we obtain p̃k+1.

This procedure provides a method for the computation of f̃
(
p/Zk

)
and

the estimator p̃k. However, its application presents an additional difficulty,
due to the fact that this posterior density also has a mixture form,

f̃
(
p/Zk

)
= δk

pf̃
(
p/Zk−1

)

p̃k−1
+ (1 − δk)

(1 − p)f̃
(
p/Zk−1

)

1 − p̃k−1

with

δk =
p̃k−1f̃1

(
zk/Z

k−1
)

p̃k−1f̃1

(
zk/Zk−1

)
+ (1 − p̃k−1) f0

(
zk/Zk−1

)

Obviously, the difficulty at the computation depends on the selected
prior distribution. In the following section, by considering a Beta as the
prior distribution, we propose a new approximation for the Bayes estima-
tors of p.

5 Estimators approximation

Since p is the parameter of the Bernoulli random variables {uk; k ≥ 0}, let
us specify a Beta as prior distribution of p. This is justified if we take into
account that the Beta family is conjugate for the sampling of the Bernoulli
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distribution; so, if the variables uk were observable and the estimation
of p were made from them, with a β (α0, β0) as prior distribution, the
Bayes estimator of p given {u0, . . . , uk}, would be the mean value of the

distribution β

(
α0 +

k∑

i=0

ui, β0 +

k∑

i=0

(1 − ui)

)
.

In our case, if f(p/Z−1) ≡ β (α0, β0), the prior estimator is p−1 =
α0(α0 + β0)

−1, and the posterior density is given by the following mixture

f
(
p/Z0

)
= δ0β (α0 + 1, β0) + (1 − δ0) β (α0, β0 + 1)

where

δ0 =
p−1f1

(
z0/Z

−1
)

p−1f1 (z0/Z−1) + (1 − p−1)f0 (z0/Z−1)
.

So, as a result of the mixture form of f
(
p/Z0

)
, and since each posterior

density is mixture of two distributions, the density f̃
(
p/Zk

)
will be a

mixture of 2k+1 distributions.
In order to avoid the computational complexity, we propose to approx-

imate f
(
p/Z0

)
by f̂

(
p/Z0

)
, the density of the distribution β(α0 + δ0, β0

+1− δ0). This approximation is justified by the argument explained at the
beginning of this section, taking into account that δ0 = E{u0/Z

0} and,
also, from the fact that the mean values of the approximation and the true
distribution (which provides the Bayes estimator) are the same.

For the subsequent steps we proceed in an analogous way; so, if

f̂
(
p/Zk−1

)
= β

(
α0 +

k−1∑

i=0

δ̂i, β0 +

k−1∑

i=0

(
1 − δ̂i

))

where

δ̂i =
p̂i−1f̂1

(
zi/Z

i−1
)

p̂i−1f̂1 (zi/Zi−1) + (1 − p̂i−1) f0 (zi/Zi−1)
; i = 1, . . . , k − 1

the posterior distribution of p given Zk will be mixture of two Beta dis-

tributions, with mixture parameter δ̂k, and will be approximated by the
distribution

β

(
α0 +

k∑

i=0

δ̂i, β0 +

k∑

i=0

(
1 − δ̂i

))
.

So, the estimator of p given the observations {z0, . . . , zk} will be

p̂k =

α0 +

k∑

i=0

δ̂i

α0 + β0 + k + 1
.
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The main advantage of these approximations is that the estimators can
be obtained by the following recursive relation

p̂k = p̂k−1 −
1

α0 + β0 + k + 1

[
p̂k−1 − δ̂k

]
, k ≥ 0

p̂−1 =
α0

α0 + β0

which provides an easy method to obtain estimations of p.

6 Numerical example

We consider the following scalar system

xk+1 = 0.5xk + wk, k ≥ 0
zk = ukxk + vk, k ≥ 0

where the initial state, x0, is a random variable with distribution N (0, 1),

and
{
(wk, vk)

T ; k ≥ 0
}

is a gaussian white sequence with zero means and

covariance matrices
(

E
{
w2

k

}
E {wkvk}

E {wkvk} E
{
v2
k

}
)

=

(
19/3 −19/9
−19/9 19/3

)
, k ≥ 0.

The multiplicative noise {uk; k ≥ 0} is a sequence of independent Bernoulli
variables with unknown parameter p.

In order to test the effectiveness of the proposed estimators, we have
obtained numerical simulations for the observations of this system, con-
sidering different values of the parameter p; specifically, p = 1/4, p =
1/2 and p = 3/4.

In each case, we have performed one hundred iterations of the proposed
algorithm by assuming that the prior distribution of the parameter p is a

Beta distribution β
(√

1 + 19
3 ,
√

19
3

)
; these parameters specify the stan-

dard deviation of the first observation when the false alarm probability is
zero and one, respectively, and their quotient is the signal plus noise-to-
noise ratio at the first observation. So, we have chosen the parameters

taking into account that p̂−1 =
α0

α0 + β0
is an increasing function of

α0

β0
.

The successive estimations of p, obtained by using the observations
simulated with each value of the false alarm probability, are displayed in
the below table and figures. A slow but clear decreasing and increasing
tendency of the estimations can be noticed in the extreme cases, p = 1/4
and p = 3/4, respectively. In the case p = 1/2, we observe that the
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estimations are stabilized about the true parameter value. This is due to
the fact that the prior estimation is very close to this value.

Table 1

Estimations of p with prior distribution β
(√

1 + 19
3 ,
√

19
3

)

p = 1/4 p = 1/2 p = 3/4

0.51831723324638 0.51831723324638 0.51831723324638
0.51537459841362 0.51849459535199 0.51582408954547
0.50697186992435 0.53232497295275 0.56614192451664
0.53281837909697 0.54677559593503 0.55750046166646
0.52162208776814 0.53640230540166 0.55627415406129
0.51137081848336 0.52918576968116 0.54618263087425
0.50444868431272 0.53038698985860 0.53977703131954
0.49589963533815 0.52631709855551 0.53251052778447
0.48969963701413 0.52529539431987 0.56591004795231
0.48241461397994 0.51813996350773 0.55850530838332
0.47650225536945 0.51126243890472 0.55781536025395
0.47060131946910 0.52560969952050 0.55215781576029
0.47261096162675 0.51951568027991 0.54965501359023
0.46707097406715 0.51447553089033 0.54847736443736
0.46858231671134 0.51043408111051 0.54300749627540
0.46477173705491 0.50526614838821 0.54353750695478
0.46188604562814 0.51574778478497 0.54132684275379
0.45768066890013 0.52114595059111 0.54086162768936
0.46373728255425 0.51677276228482 0.53987010004842
0.46368497744269 0.51427306402818 0.53886514789470
0.46005798351903 0.51347787014840 0.54126207262092
0.45723742102163 0.51231645636639 0.54217252676857
0.45419977525343 0.51331602702717 0.53975637818390
0.45264711984599 0.51006210059039 0.53604880055837
0.45113060932491 0.50947591275222 0.53351328969618
0.45060013698069 0.50764917678509 0.53182275846705
0.45106816617602 0.50552212987869 0.52914488502297
0.45629627408432 0.51717417379169 0.52766099271959
0.45323368663999 0.51878900144625 0.53533390382609
0.45136563244343 0.51573184561503 0.53259902687039
0.45076538643869 0.51281811227351 0.53105678130386



Caballero, Hermoso and Linares: An estimation algorithm for the false alarm 215

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1

Estimations of p = 0.25
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Figure 2

Estimations of p = 0.5

7 Conclusions

In this paper, we consider a system with uncertain observations in which
the additive noises are correlated and the false alarm probability is un-
known. We propose a recursive estimation algorithm for that probability,
based on the successive observations of the system. For our purpose, we
use a bayesian approach, by specifying a Beta prior distribution for the un-
known parameter and considering a quadratic loss function. By means of
successive approximations of mixture distributions, we obtain a recursive
algorithm which provides approximations for the Bayes estimators of the
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Figure 3

Estimations of p = 0.75

parameter. These estimators can be used for adapting the state estimation
algorithms.
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