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Summary

In several regression problems monotonicity is a key feature of the underlying re-
gression function, although in some cases the observations are not strictly mono-
tonic due to random error. There are some other cases in which the observations
are monotonic by nature. In all such cases the fitted curve should possess this
monotonicity in order to explain the dataset. In the present paper, the dataset
on the development of the world record on men’s 100 m sports is considered for
analysis. Using Bayesian methodology the fittings of the data is described by
two methods, namely using monotone spline and the local regression technique
of O’Hagan (1978). A Bayesian prediction for the future world record is also
considered.

Key Words: Importance sampling; local regression; monotone decreasing func-

tion; monotone spline; Monte Carlo numerical integration.

1 Introduction

Statistical regression and prediction has long been a fundamental prob-
lem in statistics. Quite a large variety of regression techniques have been
proposed and explored in statistical literature, both in the frequentist and
Bayesian view point to explain and model different types of datasets which
arise in different kinds of real life problems. Monotonicity, as we know, is an
important feature of several mathematical functions. Several examples are
available in literature where monotonicity is a key feature of the underlying
regression curves. For example, Box and Cox (1964) considered breaking
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strength of yarns and Ramsay (1988) considered a city gasoline consump-
tion data to describe monotone spline regression. Recently, He and Shi
(1998) considered two examples of which one is the degradation curves for
the roof condition index of EPDM roofs, and the other being a classical ex-
ample of theoretical power curve of any standard test where computations
may be through simulations. In many such examples, although monotonic-
ity is a desirable part of the fitted function, the observations may not be
always monotonic due to random error. But there are situations where the
observations, despite this randomness, are also monotonic. In the present
paper we consider one such example and our focus is to analyze the data
through the Bayesian approach.

The world champion in men’s 100 m sport is called the fastest man on
the earth, and his speed is the greatest speed on this planet. For 100 m
run the record time is the minimum time in which a human being has ever
run 100 m till date. A new record will be a time smaller than the current
world record time. Thus if we consider the world record times over years
corresponding to the time points they were recorded we get a decreasing
sequence of observations.

An interesting job is of course to employ a suitable and appropriate
regression technique for such a kind of data. The problem will be more
difficult if, in addition to the time on which the regression has to be made,
some other covariates come into play. For example, in track and field
the wind speed might be such an important covariate. Running in favour
of wind is an advantage to a runner, and quite obviously his time will be
reduced. But any speed of wind is not permissible to account a performance
to be a new world record. For example, a wind speed of +2 m/s is the
upper permissible limit for such a run, and a performance with the help of
a wind speed greater than that is not considered as a record value.

The plan of the present paper is as follows. In Section 2, we provide a
brief review of the existing literature dealing with the record values. In the
present paper we analyze the world record data on men’s 100 m by using
Bayesian regression techniques for monotone decreasing functions. Two
such cases are considered. In Section 3, we discuss the monotone regression
spline in a Bayesian setting, while in Section 4 the problem is addressed
by local regression. Finally in Section 5 some numerical computations and
comparisons are provided for the 100 m data.

2 A review of literature on records and the pre-

sent data

Statistical analysis on record values have been an interesting problem over
years. Most of the works available in the literature are in the frequentist
view point, and they deal with distribution of the extreme values and
relevant stochastic processes. The theory of record times started with
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the works of Chandler (1952) and Foster and Stuart (1954). A detailed
description of the relevant results are provided in the book by Galambos
(1978). Thorough investigation of the records themselves started with Tata
(1969) and Pickands (1971). Subsequently several results were obtained
including results on extremal processes. In a recent discussion Arnold and
Villasenor (1996) considered the problem of finding the tallest man of the
world and provided some theoretical developments. They considered a
branching process having an associated measured attribute, and studied
the maximal value of the attribute in a given generation and in the entire
process.

In several real life examples on records the observations may not be
homogeneous, there may be so many covariates responsible for the obser-
vations. Extremal processes obtained as limits of independent but not iden-
tically distributed values are introduced and studied by Weisman (1975a,
1975b, 1975c). Regression model with extreme value distribution for the
error terms is considered in Paula and Rojas (1997).

Table 1

World record data for men’s 100m sport.

Name Record time Date Wind speed

Robert Hayes 10.06 1964-10-15 +1.03
Jim Hines 10.03 1968-08-11 +0.88
James Sanford 10.02 1980-05-11 +1.0
Carl Lewis 10.00 1981-05-16 ±0.0
Carl Lewis 9.97 1983-05-14 +1.48
Mel Lattany 9.96 1984-05-05 +0.06
Carl Lewis 9.93 1987-08-30 +0.95
Carl Lewis 9.92 1988-09-24 +1.1
Leroy Burrell 9.90 1991-06-14 +1.9
Leroy Burrell 9.88 1991-08-25 +1.2
Carl Lewis 9.86 1991-08-25 +1.2
Leroy Burrell 9.85 1994-07-06 +1.2
Donovan Bailey 9.84 1996-07-27 +0.7
Maurice Greene 9.79 1999-06-16 +0.1

We consider the dataset describing the development of 100 m world
record. In the dataset, we have 14 observations from 1964 to 1999 which
are the last 14 developments in men’s 100m sport. Exact dates of the
records are also recorded. In October 15, 1964 Robert Hayes ran in 10.06s
with an wind speed of +1.03m/s, while in June 16, 1999 Maurice Greene
set the new world record of 9.79s and he had +0.1m/s wind speed in his
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favour. 12 other world records within this period has been recorded and
the data comprises the wind speed as a covariate. The data is presented
in Table 1. Monotone regression splines and local regression technique are
used to analyze this data. These are illustrated in the subsequent sections.

3 Monotone spline

It is supposed that there exists a monotone decreasing function g(x) that
summarizes how the response variable y depends on x, that is

yi = g(xi) + εi, (3.1)

for i = 1, 2, . . . , n, where εi represents a Gaussian random noise. Suppose
we observe (xi, yi)∈ R2 for i = 1, 2, . . . , n. Being records, our data are
obviously not independent. However, since we propose a Bayesian model
on g(x), this will create marginal dependency between the observations.
Hence, the Bayesian model can be seen as a way to model dependency into
our setting.

There is several possible choices of function g(x). In this paper, only
two cases are considered, that is: monotone regression splines (cf. Ramsey,
1988) discussed in this section and local regression (cf. O’Hagan, 1978)
provided in Section 4.

3.1 Classical setting

Note that usually the monotone splines are taken to be monotone increas-
ing. However, since the monotone regression splines are bounded, trans-
forming them into monotone decreasing function is easy.

To ease the presentation, let assume that the time domain is [L,U ] and
let L = t1 ≤ t2 ≤ . . . ≤ tm+k = U be a sequence of knots where m is the
number of free parameters and k is the order of the spline (cf. Ramsey,
1988). Furthermore, it is also assumed that

g(L) = 1 and g(U) = 0. (3.2)

Let t
˜

= (t1, t2, . . . , tm+k) and {Jj(x, k, t
˜
)}m+k

j=1 be the sequence of mono-

tone splines. Then

g(xi) =

m+k∑

j=1

Jj(xi, k, t
˜
)θj . (3.3)

Since the Jj(x, k, t
˜
)’s are monotone decreasing functions between 0 and

1, if we impose the constraints θj ≥ 0 for j = 1, 2, . . . ,m + k, the g(x)
function will also be a monotone decreasing function. Furthermore if we

impose that
∑m+k

j=1 θj = 1, then equation (3.2) will also be satisfied. It
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should be noted that if we assume additivity of the covariates effects, this
model can be easily adapted to more than one covariate. For example, if
two covariates are available, equation (3.3) is replaced by

g(x1,i, x2,i) =

m1+k1∑

j=1

Jj(x1,i, k1, t
˜
1)θj +

m2+k2∑

j=1

Jj(x2,i, k2, t
˜
2)θm1+k1+j ,

where t
˜
l are the knots sequence for the lth covariate (l = 1, 2). The

constraints on the θj’s are the same as before, i.e. θj ≥ 0 for j =

1, 2, . . . ,m1 + m2 + k1 + k2 and
∑m1+m2+k1+k2

j=1 θj = 1.
The selection of knots is usually crucial for fitting unconstrained splines.

However, according to He and Shi (1998), the monotonicity constraints
make the selection of knots easier because it eliminates sharp changes in
the curve. He and Shi (1998) proposed the following method to select the
knots t

˜
.

1. Start with t1 = . . . = tk = L, tk+j = x[j/m] for j = 1, 2, . . . ,m, and
tm+k+1 = . . . = tm+2k = U where x[p] denotes the p×100% percentile
of x1, x2, . . . , xn.

2. Let θ
˜

= (θ1, θ2, . . . , θm+k). Solve

min
θ
˜

n∑

i=1


yi −




m+k∑

j=1

Jj(xi, k, t
˜
)θj







2

, (3.4)

under the constraints θj ≥ 0 for j = 1, 2, . . . , (m+k) and
∑m+k

j=1 θj =

1. Let θ̂1, θ̂2, . . . , θ̂m+k be the solution of equation (3.4).

3. Compute

IC(m) = log




n∑

i=1


yi −




m+k∑

j=1

Jj(xi, k, t
˜
)θ̂j






2
 +

2(m + 2k + 2)

n
.

4. Choose m to be the smallest minimizer of IC(m).

Note that, in practice, m should not be bigger than n. In fact, asymptotic
theory shows that m should be in the order of n1/5 (cf. He and Shi, 1998).
The IC(m) function proposed in He and Shi (1998) is a variation of the
information criterion used by Kooperberg and Stone (1992) and it acts as
penalty for models with large number of coefficients.
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Application of this method is discussed in Section 5. In this appli-
cation, we have used the monotone regression spline of order 2. Using
Ramsey (1988), they are given by

Jj(x, 2, t
˜
) =





1 if x < tj,

1 − (x−tj)
2

∏
2
l=1

(tj+l−tj)
if tj ≤ x < tj+1,

(x−tj+2)2∏
2
l=1

(tj+2−tj+l−1)
if tj+1 ≤ x < tj+2,

0 if x ≥ tj+2.

Note that due to the nature of the functions Jj ’s, some rescaling of the
observations has to be done. A “theoretical” minimum for the yi’s needs
also to be elicit (see Section 5). According to Ramsey (1988), the Jj splines
can be expressed in terms of B-splines. Hence the equation (3.3) can also
be written using integrated B-splines. The method given in this paper can
also be used with any monotone spline.

3.2 Bayesian setting

Let us again consider the model given in equations (3.1) and (3.3) with the
same constraints on the θj’s, that is

θ
˜
∈ Sm+k =



θ

˜
| θj ≥ 0∀j = 1, 2, . . . ,m + k and

m+k∑

j=1

θj = 1



 .

A natural prior for θ
˜

which will satisfy the above constraints is the
Dirichlet density with parameters α

˜
= (α1, α2, . . . , αm+k), denoted by θ

˜
∼

D(α
˜
) and given by

π(θ
˜
) =





Γ(
∑m+k

j=1
αj)∏m+k

j=1
Γ(αj )

∏m+k
j=1 θ

αj−1
j if θ

˜
∈ Sm+k,

0 otherwise.

In equation (3.1), the random error εi are supposed to be Gaussian,
that is εi ∼ N(0, σ2), independent for i = 1, 2, . . . , n. Hence, the likelihood
function is given by

f(ε
˜
| σ2) = f(y

˜
| θ

˜
, σ2)

=
n∏

i=1

1√
2πσ2

exp



− 1

2σ2


yi −

m+k∑

j=1

Jj(xi, k, t
˜
)θj




2
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=
1

(2πσ2)n/2
exp



− 1

2σ2

n∑

i=1


yi −

m+k∑

j=1

Jj(xi, k, t
˜
)θj




2
 .

Since
∑m+k

j=1 θj = 1, the exponent of the previous equation can be written
as:

n∑

i=1


yi −

m+k∑

j=1

Jj(xi, k, t
˜
)θj




2

=
n∑

i=1




m+k∑

j=1

θjyi −
m+k∑

j=1

Jj(xi, k, t
˜
)θj




2

=
n∑

i=1




m+k∑

j=1

θjzij




2

,

where zij = yi − Jj(xi, k, t
˜
). Hence

n∑

i=1


yi −

m+k∑

j=1

Jj(xi, k, t
˜
)θj




2

=
n∑

i=1




m+k∑

j=1

θ2
j z

2
ij + 2

∑

l>j

θjθlzijzil




=

n∑

i=1

θ
˜
tAiθ

˜
,

where Ai is a (m + k)× (m + k) matrix whose (j, l) component is given by

(Ai)jl = zijzil

= (yi − Jj(xi, k, t
˜
)) (yi − Jl(xi, k, t

˜
)) .

Consequently, the likelihood function is given by

f(y
˜
| θ

˜
, σ2) = f(z

˜
| θ

˜
, σ2)

=
1

(2πσ2)n/2
exp

{
− n

2σ2
θ
˜
tAθ

˜

}
,
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where A = n−1
∑n

i=1 Ai. In this context, σ2 is considered to be a nuisance
parameter and it should be integrated out. As prior on σ2, an inverse
gamma with parameter γ and β, denoted by σ2 ∼ IΓ(γ, β) is chosen. If
there is no prior information available on σ2, we choose β = 0 and γ ∈
{0, 1/2, 1}. (These choices correspond respectively to the constant prior
(c.f. Berger, 1985, Section 4.9), the Jeffreys’ prior and the left invariant
Haar’s prior.) The marginal posterior density of θ

˜
is given in the next

theorem.

Theorem 1. Let

yi =
m+k∑

j=1

Jj(xi | k, t
˜
)θj + ǫi,

where ǫi ∼ N(0, σ2), independent for i = 1, 2, . . . , n. If θ
˜
∼ D(α

˜
) and

σ2 ∼ IΓ(γ, β), then the posterior density of θ
˜

is

π(θ
˜
| y

˜
) ∝

∏m+k
j=1 θ

αj−1
j

(
2
nβ + θ

˜
tAθ

˜

)n
2
+γ

.

The proof of this theorem can be obtained using straightforward calcu-
lation and so it is omitted.

Consequently if one uses the squared error loss, the posterior means
and covariances are given by

E[θj | y
˜
] =

I(e
˜
j)

I(0
˜
)

,

Cov(θj, θl | y
˜
) =

I(e
˜
j + e

˜
l)

I(0
˜
)

−
(

I(e
˜
j)

I(0
˜
)

)
×

(
I(e

˜
l)

I(0
˜
)

)
,

for j, l = 1, 2, . . . ,m+ k where e
˜
j denotes a vector of 0 with a 1 only at the

j coordinate and

I(a
˜
) =

∫
· · ·

∫

Sm+k

∏m+k
j=1 θ

aj+αj−1
j

(
2
nβ + θ

˜
tAθ

˜

)n
2
+γ

dθ1 . . . dθm+k. (3.5)

This integral cannot be evaluated analytically but it can be computed
easily using Monte Carlo with importance sampling integration technique
or Gibbs sampling. In Section 5, we use the Monte Carlo technique with
the prior D(α

˜
) as importance sampling function. Note that to generate a

random vector from a Dirichlet density, we can do the following :

i) Uj ∼ Γ(αj , 1) independent for j = 1, 2, . . . ,m + k,

ii) θj =
Uj∑m+k

l=1
Ul

.

(cf. Lange, 1998).
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4 Local regression

In this section, we propose an alternative to the spline introduced in
O’Hagan (1978). Let us consider the standard linear model

yi = f
˜

t(x
˜

i)β
˜
(x
˜

i) + εi, (4.1)

where εi ∼ N(0, σ2) independent for i = 1, 2, . . . , n, f
˜
(x
˜
) is a q × 1

vector of known functions of independent variables x
˜

and β
˜

is a q × 1
unknown parameters. Since it is supposed that the yi are observations
from a decreasing function, the functions f

˜
will be taken to be decreasing.

In the first subsection no constraint is put on the β
˜

vector, and hence the
approach of O’Hagan (1978) is applied directly. In the second subsection we
will put nonnegativity constraints on β

˜
forcing the local regression function

to be decreasing.

4.1 Unconstrained local regression

In order to provide an adequate approximation to the regression function lo-
cally, it is assumed that β

˜
(x
˜
) and β

˜
(x
˜
∗) are highly correlated when ‖x

˜
−x

˜
∗‖

is “small”, where ‖·‖ represents a norm of a vector. As in O’Hagan (1978),
we assume that the prior information about β

˜
(x
˜
) is the same for all values

of x
˜
. In particular, we assume that

E[β
˜
(x
˜
)] = b

˜
0 ∀x

˜
,

and
Cov(β

˜
(x
˜
), β

˜
(x
˜
∗) | b

˜
0) = ρ(‖x

˜
− x

˜
∗‖)B0,

where ρ(d) is a monotonic decreasing function of d ∈ [0,∞) and ρ(0) = 1
and B0 is a known q × q symmetric positive definite matrix. If b

˜
0 is not

known, O’Hagan (1978) recommend to estimate it by

b̂
˜
0 =

(
GtA−1G

)−1
GtA−1y

˜
, (4.2)

where

G = (f
˜
(x
˜
1), f

˜
(x
˜
2), . . . , f

˜
(x
˜

n))t,

A = σ2In + C,

C = (cij)i,j∈{1,2,...,n},

cij = ρ(‖x
˜

i − x
˜

j‖)f
˜

t(x
˜

i)B0f
˜
(x
˜

j),

and In denotes the identity matrix of order n. Assuming the normality for
β
˜
(x
˜
) and using equation (4.2), the posterior mean is

β̂
˜
(x) = St(x

˜
)A−1y

˜
+ Qt(x

˜
)b̂
˜
0, (4.3)
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where

S(x
˜
) =




ρ(‖x
˜
− x

˜
1‖)f

˜
t(x

˜
1)B0

ρ(‖x
˜
− x

˜
2‖)f

˜
t(x

˜
2)B0

...
ρ(‖x

˜
− x

˜
n‖)f

˜
t(x

˜
n)B0


 ,

Q(x
˜
) = Iq − GtA−1S(x

˜
),

and the posterior covariance matrix is given by

Cov(β
˜
(x
˜
), β

˜
(x
˜
∗) | y

˜
) = B1(x

˜
, x

˜
∗) + Qt(x

˜
)
(
GtA−1G

)−1
Q(x

˜
∗), (4.4)

where
B1(x

˜
, x

˜
∗) = ρ(‖x

˜
− x

˜
∗‖)B0 − St(x

˜
)A−1S(x

˜
∗).

4.2 Constrained local regression

If we assume that the yi’s are observations from a decreasing but unknown
function. The main difference between O’Hagan (1978) and this paper is
that it is known that the yi’s are from a monotone function. In order
to use the methodology discussed in the previous subsection, one has to
put constraints on the β(x)’s coefficients. Hence, if the model given by
equation (4.1) is valid, we can suppose that the f

˜
(x
˜
) function is a decreasing

function and that the β
˜
(x
˜
)’s coefficients are nonnegative. Consequently, the

β(x)’s coefficients cannot be estimated directly using equation (4.3) since
there is no guarantee that this equation will be nonnegative. The Bayes
rule for β

˜
(x
˜
) under the squared error loss is therefore given by

β̂
˜
(x
˜
) =

∫ ∞

0
· · ·

∫ ∞

0
β
˜

π(β
˜
| x

˜
, y

˜
)dβ1 . . . dβq, (4.5)

where π(β
˜
| x

˜
, y
˜
) is a Gaussian process on R

q
+ = [0,∞)q with mean func-

tion given by equation (4.3) and covariance kernel given by equation (4.4).
Note that the integral given in equation (4.5) cannot be evaluated analyti-
cally but it can be computed easily using Monte Carlo numerical integral.
Application of this procedure is discussed in Section 5.

5 Example and comparison

We first standardize the time (x1) in a new scale which corresponds to
0.0792 and 3.5605 for the two time points when the first and last world
record of our list were recorded. First we fit just an exponential model to
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our data using ordinary least squares (OLS) omitting the first two obser-
vations. The fitted model is thus

ŷOLS = exp(2.32222 − 0.0114204x1).

Figure 1 provides a plot of the fitted OLS curve and the observed points.
In the figure yy stands for the y values. Note that this regression is not
intended to model the data as much as to give a lower bound needed to
standardise the observations. The first two observations were omitted in
order to obtain a better fit by the least squared method. Using x1 = 14
(after standardization) which corresponds somewhere in 2100 A.D., the
limiting value for this model is 8.791 s. If we want to predict the world
record around 2020 A.D., we have x1 = 5.6236 in the standardized scale,
and we obtain the predicted world record by the exponential model is
9.563903. Later we will compare these values with the corresponding values
by O’Hagan method.

1 2 3 4 5
x1

9.6

9.7

9.8

9.9

10.1

10.2

yy

Figure 1

Fitted OLS curve and the observed points.

We use the second one (i.e. x1 = 5.6236 and y = 9.563903) in the spline
and then compare the spline and the O’Hagan methods. As discussed in
Section 3, the values corresponding to x1 (time), x2 (wind speed) and y
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are transformed within the range [0, 1]. An S-Plus program was used to fit
the monotone spline using 2500 iterations.

To choose the number of knots we apply the technique of He and
She (1998). For the given data we have IC(1) = −1.322203, IC(2) =
1.662231, IC(3) = −0.337568, IC(4) = −0.633286, IC(5) = −1.501385,
IC(6) = −1.049112 and IC(7) = −1.250209. Thus we choose m = 5, as it
minimizes the IC-values.

Fitting the data in a spline with m = 5 we observe that the sum of
squares of the classical and Bayesian residuals are respectively 0.046291
and 0.033341. With m = 5, the limiting value for the world record in year
2020 is equal to 9.575415 s. Figure 2 provides a graphical representation
of the spline technique.

To compute β̂ (cf. equation (4.5)) Monte Carlo technique is used using
truncated normal random variable density on R+

q as importance sampling

function. Let SSE =
∑n

i=1(yi−f(x
˜

i)β̂)2 and SSE0 =
∑n

i=1(yi−f(x
˜

i)̂b0)
2

where b̂0 is given by equation (4.2). Using 1000 iterations, we obtain
SSE = 0.01727 and SSE0 = 0.0090533. Figure 3 provides a graphical
representation for the O’Hagan technique. Note that, the constrained lo-
cal regression provide a better fit than the constrained spline as shown by
their SSE.

o o oo oo oo ooo o o
o

x1

yy
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xxxxx

x
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x

-0
.1

0
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Figure 2: Spline. o=observed, +=classical spline, x=Bayesian spline

By the O’Hagan model, the predicted record at x1 = 14 (somewhere
in 2100 A.D.) is 8.788 s, and the predicted record at x1 = 5.6236 (in 2020



Angers and Biswas: Estimation of monotone function for data on records 37

A.D.) is 9.575415 s. Note that these limiting values are pretty close to the
corresponding values obtained by OLS method and the spline technique.
Hence both techniques predict approximately the same value for the world
record in 2020. However, before to use the spline technique, we need to
find a “theoretical” limiting value.
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Figure 3: O’Hagan’s method. o=obs; c=OLS, *=O’Hagan, x=Pos, +=B0
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