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Summary

We study the existence of percolation in the model constructed by a superposition
of a countable number of so-called Poisson sticks models. We prove that if there
is no percolation in initial model and the rescaling parameter is large enough
then there is no percolation in this multiscale model.
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1 Introduction and result

In the recent years many authors have studied probabilistic models of the
following type. First, some random subset of R

d is constructed. Then, an
independent copy of this set is rescaled and is in some sense superposi-
tioned with the original random set; this procedure is performed a count-
able number of times. The first model of this type, known as Mandelbrot’s
model or random Cantor set, was introduced by Mandelbrot (1974) and
subsequently extensively studied by many authors, see Chayes et al. (1988),
Chayes, Chayes (1989), Chayes et al. (1991), Chayes et al. (1997), Falconer,
Grimmett (1992), Menshikov et al. (2001a, 2002) and references therein. A
continuous model of this type, namely multiscale Poisson Boolean model,
was considered first in Section 8.1 of Meester, Roy (1996) and then studied
by Menshikov et al. (2001a, 2002). In this note we study the so-called mul-
tiscale Poisson sticks model, which can be viewed as a continuous analogue
of multiscale bond percolation introduced in Menshikov et al. (2001b).

The Poisson sticks model is described as follows. Consider a Poisson
field X on R

2 with rate λ. At each point of this field we place a segment
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Figure 1: Poisson sticks

(stick) of random length l and of random direction θ centered at this point,
where l and θ are independent (see Fig. 1). The lengths and directions of
different sticks are independent and identically distributed (i.i.d.). We say
that percolation occurs if the set of the sticks contains an infinite connected
component (cluster), i.e. there is an infinite sequence of the distinct points
of the Poisson field {x1, x2, . . .} such that the stick placed at xi intersects
the stick placed in xi+1. By definition, θ ∈ [0, π) a.s. and we suppose also
that the support of θ has at least two points (otherwise, if all the sticks
have the same orientation, the percolation never occurs).

Throughout this paper we assume that there exists L < ∞ such that
l ≤ L a.s. In this case (cf. Roy, 1991) there exists λcr such that there is
no percolation (i.e., all clusters are finite a.s.) for λ < λcr, and for λ > λcr

there exists an infinite cluster a.s.
It is also possible to consider this problem in d-dimensional space, where

sticks are substituted by pieces of hyperplanes, but here we will study only
2-dimensional case.

The multiscale model is defined in the following way. According to what
was written in the first paragraph of this section, we are going to consider
a superposition of a countable number of percolation models, where each of
those is a rescaling of an independent copy of the model described above.
For i = 1, 2, . . . we call the i-th model from this construction by level-i
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model, and it is described as follows. Fix R > 1. In the level-i model the
rate of the Poisson field is λR2i, the lengths of the sticks are distributed
as lR−i. The distribution of random directions θ is the same for all levels.
The models of different levels are independent. In other words, the level-i
model can be obtained in the following way. Take an independent copy
of the initial model and apply the homothetic transformation x 7→ R−ix.
This shows that if the initial model is in the subcritical regime, then the
level-i model is also in it.

In the sequel we will refer to the initial model as level-0 model. Let
U (i) be the union of all level-i sticks. The objective is to study if there
is percolation in the set U = ∪∞

i=0U
(i), that is, if U contains a continuous

path γ : R 7→ U , such that γ is not contained in any finite box.
The main result of the paper is the following

Theorem 1 If λ < λcr then there exists R0 such that for any R > R0
there is no percolation in the set U (recall that λcr is the critical intensity
for the level-0 model).

2 Proof of Theorem 1

Choose the origin as the center of one of the sticks. Note that the Poisson
field conditioned to 0 ∈ X apart from the point in the origin is also the
Poisson field with the same rate. Denote by U (0)(0) the cluster which
contains 0.

Let Un = ∪n
i=0U

(i). To prove Theorem 1, it is sufficient to show that
for sufficiently large m the probability of the existence of a path from 0 to
a sphere with radius m in Un is uniformly small in n (see Menshikov et al.,
2001a). So we fix n and consider percolation in Un.

For λ < λcr we have (cf. Roy, 1991) E|U (0)(0)| < ∞, where |U (0)(0)|
denotes the number of sticks in U (0)(0), that is, the expected size of the
cluster is finite. Moreover, from this it is not hard to get that for any
bounded set A ⊂ R

2, the expected size of all clusters which intersect A is
finite as well.

Definition 1 Let A ⊂ R
2. For fixed ε > 0, the ε-expansion of A is defined

as
Eε(A) = {y : there exists x ∈ A such that ‖x − y‖ ≤ ε},

where ‖ · ‖ denotes the Euclidean norm.

Consider the modification of the level-0 model in which the sticks are ε-
expanded. Let λε be the critical rate in this model. Clearly, λε ≤ λcr.

The key to the proof of Theorem 1 is the following
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Theorem 2 If λ < λcr then there exists ε such that λ < λε.

Proof. We construct the cluster using the generation method (cf. Hall,
1985, Meester, Roy, 1996, Menshikov et al., 1986). Let G0 be a one-element
set which contains the stick centered at the origin, we call it the zero
generation. The first generation G1 is the set of all sticks (except that of G0)
which intersect the ball with radius L centered at the origin (i.e., the idea
is to ”majorize” the initial stick, so that the construction below does not
depend on its orientation). Now, suppose that the first k ≥ 1 generations
G1, . . . ,Gk are already constructed. If Gk = ∅, then by definition Gk′ = ∅
for all k′ > k. Otherwise, (k + 1)-th generation Gk+1 is formed by those
sticks which intersect the sticks from Gk and do not belong to ∪k

i=1Gi.
Since λ < λcr, then, using the fact that

∞
∑

i=1

E|Gi| < ∞,

it is clear that there exist k0 and δ, 0 < δ < 1, such that E|Gk0
| ≤ 1 − δ.

Note that Gk0
contains only sticks which are totally inside the sphere

centered at 0 with radius 2(k0+1)L; denote this sphere by Sk0
. Let ξ be the

total number of sticks inside Sk0
. Clearly, ξ < ∞ a.s. and also Eξ < ∞.

Denote by η the minimal distance between clusters in Sk0
in the model

where the initial stick is substituted by the ball with radius L centered at
the origin, with the convention that if there is only one cluster in Sk0

then
η = ∞.

Let Hε

k0
be the set of ε-expanded sticks in k0-th generation of the ε-

expanded model, constructed in the same way.
It can be easily seen that

|Hε

k0
| ≤

{

|Gk0
|, if η > 2ε,

ξ, if η ≤ 2ε.
(2.1)

Using that

E|Gk0
| =

∞
∑

i=1

E(|Gk0
|
∣

∣ ξ = i)P{ξ = i} ≤ 1 − δ,

and by (2.1), we obtain

E(|Hε

k0
|
∣

∣ ξ = i) ≤ E(|Gk0
|
∣

∣ ξ = i) + iP{η ≤ 2ε | ξ = i}.



Popov and Vachkovskaia: A note on percolation of Poisson sticks 63

Thus we have

E|Hε

k0
| ≤ E|Gk0

| +
∞

∑

i=1

iP{η ≤ 2ε | ξ = i}P{ξ = i}

≤ E|Gk0
| +

M
∑

i=1

iP{η ≤ 2ε | ξ = i}P{ξ = i}

+

∞
∑

i=M+1

iP{η ≤ 2ε | ξ = i}P{ξ = i}

≤ E|Gk0
| + MP{η ≤ 2ε} +

∞
∑

i=M+1

iP{ξ = i}.

First, choose M so that
∑∞

i=M+1 iP{ξ = i} < δ/3, then, choose ε such
that MP{η ≤ 2ε} < δ/3. Therefore, one gets that there exists β, 0 <
β < 1, such that E|Hε

k0
| < β. Then, as in Hall (1985), we remark that

the Poisson process has “lack of memory” property, which means that if X
is homogeneous Poisson process and x1, . . . , xm are arbitrary fixed points,
then the conditional distribution of X \ {x1, . . . , xm} given that points of
X occur at x1, . . . , xm is the same as the unconditional distribution of X .
Since, by construction, the inequality E|Hε

k0
| < β holds for any orientation

of the initial stick, we can use the lack of the memory property to get that
the expectation of the total number of sticks in generations k0, 2k0, . . . is
less than β+β2+β3+. . . < ∞, so there is no percolation in the ε-expanded
model, that is, λ < λε.

Now, choose ε such that λ < λε < λcr. From this moment on, we
basically follow the proof of Theorems 1.1 and 1.2 in Menshikov et al.
(2001a). For arbitrary n ≥ 1, let V (i) = Eε(U

(i)), i = 0, . . . , n. Consider
the partition of R

2 into the squares with side εR−i/
√

2 which we call level-i
squares. We now define passable sets P0, . . . , Pn and good sets G0, . . . , Gn.

Definition 2 Let Gn := U (n). For i < n level-i square is passable iff
it intersects a connected component of diameter greater than 2εR−i from
Gi+1. The set Pi is defined to be the set of all passable level-i squares. The
set Gi is defined as Gi := Pi ∪ V (i) (see Fig. 2, the dashed squares are
passable).

Lemma 1 Percolation in Un implies percolation in G0.

Proof. It is enough to prove that

percolation in ∪n
i=0U

(i) implies percolation in Gk ∪ ⋃

k−1
i=0 V (i), (2.2)
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Figure 2: Good and passable sets

k = n, n − 1, . . . , 0.
For k = n we get Gn = U (n), so (2.2) holds. Suppose that (2.2) holds

for k + 1 and let us prove it for k. We need to show that percolation in

Gk+1∪
⋃

k

i=0 V (i) implies percolation in Gk∪
⋃

k−1
i=0 V (i). Consider an infinite

continuous path γ in Gk+1 ∪ V (0) . . . ∪ V (k). The intersection

(

Gk+1 \
(

k
⋃

i=0

U (i)
))

∩ γ

can be decomposed into at most countable number of continuous pieces
γ1, γ2, . . . Take any γ′ from this sequence and suppose that its extremal
points belong to U (i1) and U (i2), i1, i2 ≤ k. Then, two cases are possible,
either γ′ ⊂ V (i1) ∪ V (i2), or γ′ ⊂ Pk. In both cases we get

γ′ ⊂ Pk ∪
k

⋃

i=0

V (i) = Gk ∪
k−1
⋃

i=0

V (i),

which proves the induction step, and so Lemma 1 holds.

Define also the models W (i) which use the Poisson point process with
density λ′R2i, λ < λ′ < λε and ε-expanded sticks with length lR−i and
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direction θ independent of all other models. When λ′ < λε, there is no
percolation in W (i) for any i = 0, . . . , n.

Lemma 2 For R large enough, Gi can be dominated by W (i) (i.e., it is

possible to construct a coupling in such a way that Gi ⊂ W (i) a.s.).

Proof. We prove this lemma by induction. By definition, Gn is dominated
by W (n). Suppose that the lemma holds for k + 1 and let us prove it
for k. Fix some K ∈ Pk. Using the fact that the size of the cluster
has exponential tail in the subcritical phase, analogously to formulas (3)
and (5) in Menshikov et al. (2001a) one can show that

P{K is passable} → 0, R → ∞ (2.3)

uniformly in k. The idea is that if K is passable, then there exists a path of
length at least cR in Gk+1, where c is a positive constant and the length of
the path is the number of squares in it. Since, by the induction assumption,
Gk+1 is dominated by W (k+1) (which is in the subcritical phase), (2.3)
follows.

Let identify the level-k squares with the points of Z
2 and consider the

random field {ηk(x)}x∈Z2 , where

ηk(x) = 1{the square corresponding to x is passable}
The state of a square depends only on the states of the squares inside some
finite region, so the result of Liggett et al. (1997) can be used. Thus, the
random field {ηk(x)}x∈Z2 can be dominated by Bernoulli (i.e. independent)
random field {ξk(x)}x∈Z2 with parameter σ(R). That is, it is possible to
couple the two random fields in such a way that ηk(x) ≤ ξk(x) a.s. for all
x ∈ Z

2. Since the probability that a square is passable is small for enough
large R, the parameter σ(R) can be made arbitrarily close to 0 choosing R
again large enough. The choice of R depends only on ε and λ′, but not on
n.

Note that there exists α > 0 such that the Bernoulli random field of
level-k squares (i.e., the field of squares such that ξk(x) = 1 for correspond-
ing x) can be dominated by εR−k-extended Poisson sticks with density
αR2k, length lR−k and direction θ. Indeed, we can claim that the square
is selected if it contains a center of a stick (note that the square’s side is
chosen in a way that the square is completely covered by the expanded
stick). Since σ(R) is close to 0, one concludes that α can be chosen to be
close to 0 as well. Take R such that λ + α < λ′. So, the good level-k set is
dominated by W (k).

Since G0 is dominated by W (0), and W (0) is in subcritical phase, there
is no percolation in G0. So, by Lemma 1 there is no percolation in Un, and
thus, since the choice of R does not depend on n, there is no percolation
in U . Theorem 1 is completely proved.
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