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1 Introduction and preliminaries

In this paper, sojourn time distributions for semi-Markov processes are
studied. A semi - Markov process is a continuous - time stochastic process
{Yt : t ≥ 0}, which makes transitions from state to state in accordance
with a Markov chain, but the amount of time spent in each state before
a transition occurs is a random variable depending on the transitions. So
{Yt : t ≥ 0} can be described as a marked process (T1, Y1), (T2, Y2), . . .,
where {Yn} is the embedded Markov process and {T1, T2, . . .} are the so-
journ times. As an example, consider a Shock model, a failure model where
a system is studied in a random environment. The system is subject to
a sequence of randomly occurring shocks and each shock causes a ran-
dom amount of damage which accumulate over time. Let {Tn} be the time
points at which shocks occur and let Yt be the accumulated damage level at
time t (Yn = Y (Tn)). An interesting problem is related to the distribution
time for the next shock when the damage is at level y.

Let X = {Xn : n = 0, 1, . . .} be a Markov chain with state space (S,Σ).
In what follows we assume S the set ℜ of real numbers and Σ = B(ℜ),
the Borel σ-algebra. Assume that there exists a point ∆ ∈ ℜ such that
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Px(T∆ < ∞) = 1 and E∆T∆ < ∞. It can be seen in Atuncar (1994) that
if {Xn : n = 0, 1, . . .} is a Harris chain then for some n0 ≥ 1, {Xnn0 :
n = 0, 1, . . .} is a Markov chain for which a distinguished point ∆ can be
constructed by enlarging the state space. Thus the results of this study
apply to Harris chains.

Let {G(x, .) : x ∈ ℜ} be a family of distribution functions such that
G(x, 0) = 0 for all x ∈ ℜ. Let {Tn : n = 0, 1, . . .} be a sequence of
independent random variables such that, given {Xn : n = 0, 1, . . .},

P (Tn ≤ t | {Xn : n = 0, 1, . . .}) = G(Xn, t) for all t ≥ 0.

These {Tn : n = 0, 1, . . .} are called sojourn times. Let S0 = 0, Sn =
∑n−1

i=0 Ti for n ≥ 1 and let

Yt = Xn Sn ≤ t < Sn+1, n = 0, 1, 2, . . .

Since Px(Xn = ∆ for some n ≥ 1) = 1, {Xn : n = 0, 1, . . .} hits ∆ in-
finitely often, say at N1, N2, . . . and so by the strong law of large numbers,
∑

i TNi
= ∞ with probability 1 and hence Sn → ∞ with probability 1 and

so Yt is well defined for all t. The process {Yt : t ≥ 0} has state space
ℜ and is not Markovian unless G(x, .) is exponential for all x. However,
{YSn = Xn : n = 0, 1, . . .} is still a Markov chain. Thus {Yt : t ≥ 0}
sampled at t = Sn, n = 0, 1, 2, . . . is Markov but not for all t ≥ 0. For this
reason it is called a semi-Markov process.

Results for kernel estimators for the stationary density f and the tran-
sition density t of the Markov chain {Xn : n = 0, 1, . . .} were established
in Atuncar (1994).

The main goals in this paper will be to propose estimator for G(x, t)
and prove its properties. We observe the process up to time n. Besides
the information {X0,X1, . . . ,Xn}, we have {T0, T1, . . . , Tn−1} where, for
i = 0, 1, . . . , n − 1, Ti is the sojourn time in Xi.

Fix x ∈ ℜ \ {∆}, the set of the real numbers different than ∆ and
take An = (x− δn, x + δn). During {0, 1, . . . , n} let N1, N2, . . . , NLn be the
times of visits by the process to An; i.e., for i = 1, 2, . . . , Ln, XNi

∈ An;
and let TNi

be the corresponding sojourn times. Given X0,X1, . . . ,Xn;
TNi

: i = 1, 2, . . . , Ln are independent, but not identically distributed.
Define

Gn(x, t) =
1

Ln

Ln
∑

i=1

I(TNi
≤ t).

We propose Gn(x, t) as an estimator of G(x, t). Using the techniques
of regenerative processes, introduced by Athreya and Ney (1978), we will
prove consistency of Gn(x, t) in Section 2 and asymptotic normality in Sec-
tion 3. We finish this section with the formal definition of Harris recurrence
and establishing, without proofs, some results from the literature.
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Definition 1.1 A Markov chain {Xn:n=0,1,2,. . . } is called Harris recur-
rent if there exist a set A ∈ Σ, a probability measure φ on A, a real number
ǫ > 0, and an integer n0 > 0 such that

Px(τA < ∞) = Px(Xn ∈ A for some n ≥ 1) = 1 ∀x ∈ S, (1.1)

Px(Xn0 ∈ E) = P (n0)(x,E) ≥ ǫφ(E) ∀x ∈ A. and ∀E ⊂ A. (1.2)

In what follows, we assume n0 = 1 and will say (A, ǫ, φ, 1) recurrent instead
of Harris recurrent.

Lemma 1.2 (Regeneration Lemma) If X is (A, ǫ, φ, 1) recurrent, then
there exists a random time N such that Px(N < ∞) = 1 and

a(x, n, k)
def
= Px(Xn ∈ A,Xn+1 ∈ A1, . . . ,Xn+k ∈ Ak, N = n)

= Px(N = n)

∫

A
Py(X1 ∈ A1, . . . ,Xk ∈ Ak)φ(dy).

That is, the evolution of the process for n ≥ N is independent of X1, X2,
. . ., XN−1 and N and has the same distribution as X where X0 is dis-
tributed according to φ. Thus N is a random time such that the pre-N and
post-N evolution are independent and the post-N process has a distribution
independent of X0, . . . ,XN−1.

Corollary 1.3 If X is (A, ǫ, φ, 1) recurrent, then there exists a sequence
of random times {Ni; i = 1, 2, . . .} such that for any x, under Px, XNi

have
distribution φ on A, and the random tours {XNi+j : j = 0, 1, 2, . . . , Ni+1 −
Ni−1;Ni+1−Ni} are independent, identically distributed, and independent
of N1.

The regeneration lemma can be used to show the existence of a station-
ary measure for Harris recurrent chains.

Theorem 1.4 Let N1 be the regeneration time as in Lemma 1.2. Define

ν(E) = EφΣN1−1
i=0 I(Xi ∈ E). (1.3)

Then ν is a stationary measure for X, and it is unique up to a multiplicative
constant.
Since ν(S) = EφN1, ν is finite if and only if EφN1 < ∞.

Corollary 1.5 A stationary probability distribution π(.) for X exists if

and only if EφN1 < ∞, and in this case, π(E) = ν(E)
ν(S) .

Proofs are in Athreya and Ney (1978).
Another characterization of the stationary measure ν is given by the

following theorem.
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Theorem 1.6 Let g be any bounded measurable function.

(a) For a Harris recurrent chain, a measure ν satisfies (1.3) if and only
if

∫

S
gdν = EφΣN1−1

i=0 g(Xi). (1.4)

(b) Define Tg(x) = ExΣN1−1
j=1 g(Xj). Then

Eφ(ΣN1−1
j=0 g(Xj))

2 =

∫

S
g2(x)ν(dx) + 2

∫

S
g(x)(Tg)(x)ν(dx).(1.5)

Let ∆ be a real number. For Theorems 1.7 and 1.8, define

T
(1)
∆ = inf{k > 0 : Xk = ∆}

T
(2)
∆ = inf{k > T

(1)
∆ : Xk = ∆}

Suppose T
(i−1)
∆ defined and define

T
(i)
∆ = inf{k > T

(i−1)
∆ : Xk = ∆}

Theorem 1.7 Let {Xn : n = 0, 1, . . .} be a real-valued Markov chain with

stationary transition function. Assume that for any x ∈ ℜ, Px(T
(1)
∆ <

∞) = 1 and V ar∆(T
(1)
∆ ) < ∞.

Let π(A) =
E∆

∑T
(1)
∆

−1

j=0 IA(Xj)

E∆T
(1)
∆

for any Borel set A in R. Assume that π

is absolutely continuous w.r.t Lebesgue measure on ℜ \ {∆}. Let f be the
corresponding density. Let δn > 0 and pn(x) = 1

2nδn

∑n
j=0 IAn(Xj) where

An = (x − δn, x + δn). If δn → 0 and nδn → ∞, then for almost all x and
for every initial distribution,

pn(x) → f(x) in probability.

Proofs are in Atuncar (1994).

Theorem 1.8 Let {Xn:n=0,1,. . . } be a Harris chain with a recurrence
point ∆. Let λ = E∆T∆ and σ2 =Var∆(T∆). Let Kn be the random
number of visits to ∆ by the chain during {0, 1, 2, . . . , n}. That is Kn =
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∑n
j=0 I(Xj = ∆). Then the family

{n − T
(Kn)
∆ : n = 1, 2, . . .} is tight and

Kn

n
→ 1

λ
a.e. as n → ∞, (1.6)

√
n(

Kn

n
− 1

λ
)

d→ N(0,
σ2

λ3
). (1.7)

Assertions (1.6) and (1.7) follow from the discrete version of Proposition
1.4, Chapter IV and Proposition 4.3, Chapter VI in Asmussen (1987). The
first assertion is also derivable from the same material.

2 Consistency of Gn(x, t)

The main result of this section is Theorem 2.3 establishing weak consistency
of Gn(x, t).

Lemma 2.1 Let {kn : n = 1, 2, . . .} be a sequence of integers such that
kn

n
→ α, 0 < α < ∞. For i = 1, 2, . . . , kn, define

ξni =

T
(i+1)
∆ −1
∑

j=T
(i)
∆

1

2δn
|G(Xj , t) − G(x, t)|I(Xj ∈ An).

If limδn→0

∫

|x−y|<δn

1

2δn

|G(y, t) − G(x, t)|f(y)dy = 0, then

ξn ≡ 1

kn

kn
∑

i=1

ξni→ 0 in probability.

Proof: Since {ξni : i = 1, 2, . . .} are i.i.d, see for example Asmussen (1987),
and E∆ξn1 → 0 by hypothesis, E∆ξn → 0 and since ξn ≥ 0, the result
follows.

Lemma 2.2 Let {Kn : n = 1, 2, . . .} be a sequence of integer random
variables such that Kn

n
→ α with probability 1 for some 0 < α < ∞. Under

the hypothesis of Lemma 2.1,

1

Kn

Kn
∑

i=1

ξni → 0 in probability.
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Proof: Let ǫ > 0, θ > 0 and let A(n, α, ǫ) = {n(α − ǫ) < Kn < n(α + ǫ)}

P∆

[

| 1

Kn

Kn
∑

i=1

ξni| > θ

]

= P∆

[

1

Kn

Kn
∑

i=1

ξni > θ

]

+ P∆

[

1

Kn

Kn
∑

i=1

ξni < −θ

]

= αn1 + αn2 (say).

αn1 =P∆

[

1

Kn

Kn
∑

i=1

ξni > θ,A(n, α, ǫ)

]

+P∆

[

1

Kn

Kn
∑

i=1

ξni > θ,Ac(n, α, ǫ)

]

.

Since Kn

n
→ α w.p. 1; the second term converges to zero. Now,

P∆

[

1

Kn

Kn
∑

i=1

ξni > θ,A(n, α, ǫ)

]

≤ P∆





1

[n(α − ǫ)]

[n(α+ǫ)]+1
∑

i=1

ξni > θ,A(n, α, ǫ)





= P∆





[n(α + ǫ)] + 1

[n(α − ǫ]

1

[n(α + ǫ)] + 1

[n(α+ǫ)]+1
∑

i=1

ξni > θ,A(n, α, ǫ)



 .

Since limǫ→0 limn→∞
[n(α+ǫ)]+1
[n(α−ǫ)] = 1 as n → ∞, the last probability con-

verges to zero by Lemma 2.1. Similarly it is proved that αn2 → 0.

Theorem 2.3 Fix x ∈ R \ {∆}. Let f(x) > 0. Let δn → 0. If

lim
δn→0

∫

|x−y|<δn

1

2δn

|G(y, t) − G(x, t)|f(y)dy = 0,

1
2δn

∫

An

f(y)dy → f(x), and nδn → ∞ as n → ∞, then

Gn(x, t) → G(x, t) in probability.

Remark 2.4 The first condition means that the averages of |G(y, t) −
G(x, t)|, weighted by f , are small on small intervals centered at x. x is a
kind of Lebesgue point. In particular, if G(., t) is continuous at x this con-
dition holds. If f is locally integrable in (ℜ, B(ℜ)) with respect to Lebesgue
measure, the second condition holds by Lebesgue density theorem.
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Proof: Recall that N1, N2, . . . , NLn are times of visits to An and

Gn(x, t) =
1

Ln

Ln
∑

j=1

I(TNj
≤ t)

=
1

Ln

Ln
∑

j=1

[I(TNj
≤ t) − G(XNj

, t)]

+
1

Ln

Ln
∑

j=1

[G(XNj
, t) − G(x, t)] + G(x, t)

= βn1 + βn2 + G(x, t).

It was proved in Atuncar (1994) that if 1
2δn

∫

An

f(y)dy → f(x) then

pn(x) = Ln

2nδn
→ f(x) in probability. So, Ln → ∞ in probability if f(x) > 0.

Besides that, conditioned on {Xn : n = 0, 1, . . .}, (I(TNj
≤ t) − G(XNj

, t))
are independent random variables with mean zero. Then βn1 converges
to zero in probability. Next we will prove that βn2 converges to zero in
probability:

1

Ln

Ln
∑

j=1

[G(XNj
, t) − G(x, t)] ≤ 1

Ln

n
∑

j=0

|G(Xj , t) − G(x, t)|I(Xj ∈ An)

=
1

Ln

T
(1)
∆

−1
∑

j=0

|G(Xj , t) − G(x, t)|I(Xj ∈ An)

+
1

Ln

T
(Kn)
∆ −1
∑

T
(1)
∆

|G(Xj , t) − G(x, t)|I(Xj ∈ An)

+
1

Ln

n
∑

T
(Kn)
∆

|G(Xj , t) − G(x, t)|I(Xj ∈ An)

= βn21 + βn22 + βn23 (say).

Since Ln → ∞ in probability, βn21 converges to zero in probability. Also

βn23 converges to zero in probability because
n−T

(Kn)
∆

Ln
does by tightness of

(n − T
(Kn)
∆ ).
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Now,

βn22 =
Kn

n

2nδn

Ln

1

Kn

Kn
∑

i=1

T
(i+1)
∆ −1
∑

j=T
(i)
∆

1

2δn
|G(Xj , t) − G(x, t)|I(Xj ∈ An)

=
Kn

n

2nδn

Ln

1

Kn

Kn
∑

i=1

ξni.

Therefore, by Theorem 1.8, Theorem 1.7, and Lemma 2.2, βn22 converges
to zero in probability.

3 Asymptotic normality of Gn(x, t)

The main result of this section is Theorem 3.5.

Lemma 3.1 For i = 1, 2, . . .; define

Ψni =
1

2δn

T
(i+1)
∆ −1
∑

j=T
(i)
∆

G(Xj , t)(1 − G(Xj , t))I(Xj ∈ An).

Let 1
δn

∫

An

EuT∆f(u)du and 1
δn

∫

An

f(u)du be bounded in n. Then

E∆(Ψn1 − E∆Ψn1)
2 = O(

1

δn
).

Proof: Consider Ψn1 as defined above.

E∆Ψ2
n1 =

1

4δ2
n

E∆

T
(1)
∆ −1
∑

j=0

G2(Xj , t)(1 − G(Xj , t))
2I(Xj ∈ An)

+
1

2δ2
n

E∆

T
(1)
∆ −1
∑

j=0

T
(1)
∆ −1
∑

k=j+1

G(Xj , t)(1 − G(Xj , t))G(Xk , t)

(1 − G(Xk, t))I(Xj ∈ An)I(Xk ∈ An)

= un + vn (say).
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un =
λ

2δn

∫

An

1

2δn

G2(u, t)(1 − G(u, t))2f(u)du

≤ λ

64δn

∫

An

1

δn
f(u)du

= O(
1

δn

).

Next,

vn =
1

δn
E∆

T
(1)
∆

−1
∑

j=0

G(Xj , t)(1 − G(Xj , t))I(Xj ∈ An)

EXj

T
(1)
∆ −1
∑

K=1

1

2δn
G(Xk, t)(1 − G(Xk, t))I(Xk ∈ An)

≤ λ

δn

∫

An

1

2δn
G(u, t)(1 − G(u, t))Eu(T

(1)
∆ − 1)f(u)du

≤ λ

8δn

∫

An

1

δn
EuT∆f(u)du

= O(
1

δn
).

Lemma 3.2 Assume the hypotheses of Theorem 2.3. Let {kn : n = 1, 2,

. . .} be a sequence of integers such that kn

n
→ α with 0 < α < ∞. Let

δn → 0 and nδn → ∞. Then,

1

kn

kn
∑

i=1

Ψni → λf(x)G(x, t)(1 − G(x, t)) in probability.

Proof:

1

kn

kn
∑

i=1

Ψni =
1

kn

kn
∑

i=1

(Ψni − E∆Ψni) + E∆Ψn1.

By Theorem 1.6, E∆Ψn1 = λ

∫

An

1

2δn
G(y, t)(1 − G(y, t))f(y)dy and under

the hypotheses of Theorem 2.3, this integral converges to λf(x)G(x, t)(1−
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G(x, t)). So, it is enough to prove that 1
kn

∑kn

i=1(Ψni − E∆Ψni) → 0 in
probability:

P∆(
1

kn

kn
∑

i=1

(Ψ − E∆Ψni) > ǫ) ≤ 1

ǫ2kn

E∆(Ψn1 − E∆Ψn1)
2

= O(
1

knδn

).

Similarly, it is proved that P∆( 1
kn

∑kn
i=1(Ψ − E∆Ψni) < −ǫ) = O( 1

knδn
).

Since knδn → ∞, the proof is complete.

Lemma 3.3 Consider {Kn : n = 1, 2, . . .} a sequence of integer random
variables such that Kn

n
→ α with probability 1 for some 0 < α < ∞ and

assume the hypotheses of Lemma 3.2. Then,

1

Kn

Kn
∑

i=1

Ψni → λf(x)G(x, t)(1 − G(x, t)) in probability.

The proof is similar to the proof of Lemma 2.2.

Lemma 3.4 Under hypotheses of Lemma 3.1 and Lemma 3.2,

1

Ln

Ln
∑

j=0

G(XNj
, t)(1 − G(XNj

, t)) → G(x, t)(1 − G(x, t))

in probability.

Proof: Notice that

1

Ln

Ln
∑

j=0

G(XNj
, t)(1 − G(XNj

, t))

=
1

Ln

n
∑

j=0

G(Xj , t)(1 − G(Xj , t))I(Xj ∈ An)

=
2nδn

Ln

Kn

n

1

Kn

Kn
∑

i=1

1

2δn

T
(1+1)
∆ −1
∑

j=T
(i)
∆

G(Xj , t)(1 − G(Xj , t))I(Xj ∈ An)

+
1

Ln

T
(1)
∆ −1
∑

j=0

G(Xj , t)(1 − G(Xj , t))I(Xj ∈ An)
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+
1

Ln

n
∑

j=T
(Kn)
∆

G(Xj , t)(1 − G(Xj , t))I(Xj ∈ An)

= γn1 + γn2 + γn3. .(say)

By earlier arguments, γn2 and γn3 converge to zero in probability. Also, by
Theorem 1.7, Theorem 1.8, and Lemma 3.3 it follows that γn1 converges
to G(x, t)(1 − G(x, t)) in probability, concluding the proof.

Now we establish asymptotic normality of Gn(x, t)

Theorem 3.5 Assume the following hypotheses:

(i) 1
δn

∫

An

f(y)dy is bounded in n,

(ii) 1
2δn

∫

An

|G(y, t) − G(x, t)|f(y)dy → 0,

(iii) 1
δn

∫

An

EuT∆f(u)du bounded in n,

(iv) δn → 0, nδn → ∞ as n → ∞.
Assume also that:

(v) There exist α > 0 and for each t, a Ct such that |G(y, t)−G(x, t)| ≤
Ct|x − y|2+α for y near x,

(vi) nδp
n → 0 for some 1 < p ≤ 5 + 2α.

Let

Zn =

1
Ln

∑Ln
j=1(I(TXNj

≤ t) − G(x, t))
√

1
L2

n

∑Ln

j=1 G(XNj
, t)(1 − G(XNj

, t))

Then, Zn
d→ N(0, 1).

We write

Zn =

1
Ln

∑Ln
j=1(I(TXNj

≤ t) − G(XNj
, t))

√

1
L2

n

∑Ln

j=1 G(XNj
, t)(1 − G(XNj

, t))

+
1

Ln

∑Ln

j=1(G(XNj
, t) − G(x, t))

√

1
L2

n

∑Ln

j=1 G(XNj
, t)(1 − G(XNj

, t))

= Zn1 + Zn2 (say).
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To prove Theorem 3.5, first we will prove Lemma 3.7 and Lemma 3.8
below. For Lemma 3.7 we need the following result from Chung (1974),
pp. 199.

Lemma 3.6 Let {θnj, 1 ≤ j ≤ kn, 1 ≤ n} be a double array of complex
numbers satisfying the following conditions as n → ∞ :

(i) max{|θnj | : 1 ≤ j ≤ kn} → 0;

(ii)
∑kn

j=1 |θnj| ≤ M < ∞, where M does not depend on n;

(iii)
∑kn

j=1 θnj → θ, where θ is a (finite)complex number.

Then we have
kn
∏

j=1

(1 + θnj) → exp(θ).

Lemma 3.7 Let D = σ(X0,X1, . . .) be the σ-algebra generated by {X0,
X1, . . .}. Let φn(θ) = E∆ [exp(iθZn1) | D]. Then for each θ in ℜ, φn(θ) →
exp(−1

2θ2) in probability.

Proof: Let δnj =I(TXNj
≤ t), pnj =G(XNj

, t), wn =
√

∑Ln
j=1 pnj(1 − pnj).

For every θ in ℜ,

φn(θ) = E∆



exp(
iθ

wn

Ln
∑

j=1

(δnj − pnj)) | D





=
Ln
∏

j=1

E∆

[

exp(
iθ

wn
(δnj − pnj)) | D

]

(by conditional independence of δnj). Let a(θ, n, j) = 1 + θnj where θnj =

E∆

[

exp( iθ
wn

(δnj − pnj)) − 1 | D
]

.

Since E∆ [(δnj − pnj) | D] = 0,

θnj = E∆

[

{exp(
iθ

wn

(δnj − pnj)) − 1 − iθ

wn

(δnj − pnj)} | D

]

= E∆

[

{exp(
iθ

wn
(δnj − pnj)) − 1 − iθ

wn
(δnj − pnj)

−1

2
(

iθ

wn

)2(δnj − pnj)
2} | D

]

− θ2

2w2
n

pnj(1 − pnj).
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Since | exp(it) − 1 − it| ≤ t2

2! and |exp(it) − 1 − it − (it)2

2! | ≤ |t|3
3! for t real

(See Feller (1971), pp 512), we have that

|θnj| ≤ θ2pnj(1 − pnj)

2w2
n

.

Thus
∑Ln

j=1 |θnj| ≤ θ2

2 and max{|θnj | : 1 ≤ j ≤ Ln} ≤ θ2

8w2
n
.

From Lemma 3.4, w2
n

Ln
→ G(x, t)(1 − G(x, t) in probability and since

Ln → ∞ in probability as well, max{|θnj | : 1 ≤ j ≤ Ln} → 0 in probability
under conditioning by D.

Also

Ln
∑

j=1

θnj +
θ2

2
=

Ln
∑

j=1

E∆

[

{exp(
iθ

wn

(δnj − pnj) − 1 − iθ

wn

(δnj − pnj)

−1

2
(

iθ

wn
)2(δnj − pnj)

2} | D

]

.

Then

|
Ln
∑

j=1

θnj +
θ2

2
| ≤ 1

3!

Ln
∑

j=1

(
|θ|
wn

)3E∆

[

(δnj − pnj)
3 | D

]

≤ 2
|θ|3
3!w3

n

Ln
∑

j=1

E∆

[

(δnj − pnj)
2 | D

]

(since |δnj − pnj|2 ≤ 2)

≤ 1

3

|θ|3
wn

.

Since wn → ∞ in probability, |∑Ln

j=1 θnj + θ2

2 | → 0 in probability under
conditioning by D.

For any subsequence n
′

there exists a further subsequence n
′′

such that
along that, with probability one: max{|θnj | : 1 ≤ j ≤ Ln} → 0,

∑Ln
j=1 θnj +

θ2

2 → 0, and
∑Ln

j=1 |θnj| ≤ θ2

2 ; and so by Lemma 3.6, φn(θ) → exp(− θ2

2 )

w.p. 1 along that subsequence n
′′

. This being true for every subsequence
n

′

, the result follows.

Lemma 3.8 Assume conditions (v) and (vi) in Theorem 3.5. Then Zn2 →
0 in probability, where Zn2, defined in Theorem 3.5, is

Zn2 =

1√
Ln

∑Ln

j=1(G(XNj
, t) − G(x, t))

√

1
Ln

∑Ln
j=1 G(XNj

, t)(1 − G(XNj
, t))

.
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Proof: By Lemma 3.4, it is enough to prove that the numerator converges
to zero in probability. To do this observe that

1√
Ln

Ln
∑

j=1

(G(XNj
, t)−G(x, t))=

1√
Ln

n
∑

j=0

(G(Xj , t)−G(x, t))I(Xj ∈ An)

=
1√
Ln

T
(1)
∆ −1
∑

j=0

(G(Xj , t) − G(x, t))I(Xj ∈ An)

+
1√
Ln

n
∑

j=T
Kn
∆

(G(Xj , t) − G(x, t))I(Xj ∈ An)

+
1√
Ln

T
(Kn)
∆ −1
∑

j=T
(1)
∆

(G(Xj , t) − G(x, t))I(Xj ∈ An)

= bn1 + bn2 + bn3 (say).

By earlier arguments, bn1 + bn2 converges to zero in probability. Next,

bn3 =
1√
Ln

T
(Kn)
∆

−1
∑

j=T
(1)
∆

(G(Xj , t) − G(x, t))I(Xj ∈ An)

=

√

2nδnf(x)√
Ln

√

2nδnf(x)

f(x)

Kn

n

1

Kn

T
(Kn)
∆

−1
∑

j=T
(1)
∆

1

2δn

(G(Xj , t)

−G(x, t))I(Xj ∈ An).

By Theorem 1.7 and Theorem 1.8, it is enough to prove that

√

2nδn
1

Kn

T
(Kn)
∆

−1
∑

j=T
(1)
∆

1

2δn
(G(Xj , t) − G(x, t))I(Xj ∈ An) → 0

in probability.
Consider first Kn as non random. To go to the case in which Kn is

random we follow the procedure used earlier. Let

ξni =

T
(i+1)
∆

−1
∑

j=T
(i)
∆

1

2δn

(G(Xj , t) − G(x, t))I(Xj ∈ An).
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Then,

P∆

[

√

2nδn|
1

Kn

Kn
∑

i=1

ξni| > ǫ

]

≤
2nδnE∆( 1

Kn

∑Kn

i=1 ξni)
2

ǫ2

=
2nδn

ǫ2

[

1

Kn
E∆ξ2

n1 +
Kn(Kn − 1)

2K2
n

E∆ξn1E∆ξn2

]

= O(δnE∆ξ2
n1) + O(nδn(E∆ξn1)

2).

where

E∆ξ2
n1 =

1

4δ2
n

E∆

T
(1)
∆

−1
∑

j=0

(G(Xj , t) − G(x, t))2I(Xj ∈ An)

+
1

4δ2
n

E∆

T
(1)
∆ −1
∑

j=0

T
(1)
∆ −1
∑

k=j+1

(G(Xj , t) − G(x, t))(G(Xk , t) − G(x, t))

I(Xj ∈ An)I(Xk ∈ An)

= bn31 + bn32 (say).

Notice that

bn31 =
1

2δn
λ

∫

|x−y|<δn

1

2δn
(G(y, t) − G(x, t))2f(y)dy

≤ λCt

2δn
δ4+2α
n

∫

|x−y|<δn

f(y)dy

= O(δ4+2α
n ).

By Theorem 1.6,

bn32 = E∆

T
(1)
∆

−1
∑

j=0

1

2δn
(G(Xj , t) − G(x, t))I(Xj ∈ An)EXj

T
(1)
∆ −1
∑

k=1

1

2δn
(G(Xk, t) − G(x, t))I(Xk ∈ An)

= λ

∫

|x−y|<δn

1

2δn






(G(y, t) − G(x, t))Ey

T
(1)
∆ −1
∑

k=1

1

2δn
(G(Xk, t)
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−G(x, t))I(Xk ∈ An)

]

f(y)dy

≤ λCt

2
δ3+2α
n

∫

|x−y|<δn

1

2δn

Ey(T
(1)
∆ − 1)f(y)dy

= O(δ3+2α
n ).

Hence, E∆ξ2
n1 = O(δ3+2α

n ). Also we have that

|E∆ξn1| = λ

∫

|x−y|<δn

1

2δn
|G(y, t) − G(x, t)|f(y)dy

≤ λCt

2δn

∫

|x−y|<δn

δ2+α
n f(y)dy

= O(δ2+α
n ) (since f is bounded).

Therefore, P∆

[√
2nδn| 1

Kn

∑Kn
i=1 ξni| > ǫ

]

= O(nδ5+2α
n ).

Proof of Theorem 3.5: For θ in R,

E(exp(iθZn1)) = E(E∆(exp(iθZn1 | D))

= E(φn(θ)).

By Lemma 3.7 and the bounded convergence theorem, the last expectation

converges to exp(− θ2

2 ). Thus Zn1
d→ N(0, 1).

By Lemma 3.8, Zn2 → 0 in probability. So by Slutsky’s theorem,

Zn = Zn1 + Zn2
d→ N(0, 1).

Remark 3.9 Notice that Zn is pivotal for G(x, t) since the limit law of Zn

is N(0, 1) and is independent of all parameters. Thus, Zn could be used to
obtain confidence intervals for G(x, t).

Remark 3.10 In the hypotheses of Theorem 3.5 (i), (ii), and (iii) hold
for almost all x by Lebesgue density theorem. E∆T 2

∆ < ∞ is necessary for
(iii).

4 Conclusions and further research

We have proved Consistency and Asymptotic Normality of Gn(x, t), the
naive estimator of the sojourn time distribution for Semi - Markov pro-
cesses. As we know, the naive estimator for the density function in the
i. i. d. case it can be improved defining a more general kernel estimator.
We believe that the estimator defined in this paper can also be improved
following the ideas from the i.i.d. case and we are working in that direction.
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