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Summary

In this article we define kernel estimator of sojourn time distribution for Semi -
Markov processes and prove its consistency and asymptotic normality. We use
techniques of regenerative processes to prove the results.
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1 Introduction and preliminaries

In this paper, sojourn time distributions for semi-Markov processes are
studied. A semi - Markov process is a continuous - time stochastic process
{Y; : t > 0}, which makes transitions from state to state in accordance
with a Markov chain, but the amount of time spent in each state before
a transition occurs is a random variable depending on the transitions. So
{Y; : t > 0} can be described as a marked process (11,Y1), (Ts,Y2),...,
where {Y},} is the embedded Markov process and {7}, T, ...} are the so-
journ times. As an example, consider a Shock model, a failure model where
a system is studied in a random environment. The system is subject to
a sequence of randomly occurring shocks and each shock causes a ran-
dom amount of damage which accumulate over time. Let {7}, } be the time
points at which shocks occur and let Y; be the accumulated damage level at
time t (Y, = Y(7,)). An interesting problem is related to the distribution
time for the next shock when the damage is at level y.

Let X = {X,, : n=0,1,...} be a Markov chain with state space (S, X).
In what follows we assume S the set R of real numbers and ¥ = B(R),
the Borel o-algebra. Assume that there exists a point A € R such that
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P,(Ta < o0) =1 and EATA < oo. It can be seen in Atuncar (1994) that
if {X,, : n=0,1,...} is a Harris chain then for some ng > 1, {X,n, :
n =0,1,...} is a Markov chain for which a distinguished point A can be
constructed by enlarging the state space. Thus the results of this study
apply to Harris chains.

Let {G(z,.) : « € R} be a family of distribution functions such that
G(z,0) = 0 for all x € R. Let {T), : n = 0,1,...} be a sequence of
independent random variables such that, given {X,, : n =0,1,...},

P(T,<t|{X,:n=0,1,...}) = G(Xp,t) for all ¢ > 0.

These {T,, : n = 0,1,...} are called sojourn times. Let Sy = 0, S, =
STy for n > 1 and let

Y, = X, Sp <t < Spi1,n=0,1,2,...

Since Py(X, = A for somen >1) =1, {X,, : n =0,1,...} hits A in-
finitely often, say at N1, Na,... and so by the strong law of large numbers,
> I'n, = oo with probability 1 and hence S,, — oo with probability 1 and
so Y; is well defined for all ¢. The process {Y; : t > 0} has state space
R and is not Markovian unless G(z,.) is exponential for all x. However,
{Ys, = X,, : n = 0,1,...} is still a Markov chain. Thus {Y; : ¢ > 0}
sampled at t = S,,, n =0,1,2,... is Markov but not for all ¢ > 0. For this
reason it is called a semi-Markov process.

Results for kernel estimators for the stationary density f and the tran-
sition density ¢ of the Markov chain {X,, : n = 0,1,...} were established
in Atuncar (1994).

The main goals in this paper will be to propose estimator for G(x,t)
and prove its properties. We observe the process up to time n. Besides
the information {Xy, Xi,...,X,}, we have {Ty,T1,...,T,—1} where, for
i1=0,1,...,n — 1, T; is the sojourn time in Xj.

Fix z € R\ {A}, the set of the real numbers different than A and
take A, = (x — 0p,x + 0y). During {0,1,...,n} let N1, No,..., Nz be the
times of visits by the process to A,; i.e., for i =1,2,...,L,, Xy, € Ay;
and let T, be the corresponding sojourn times. Given X, Xi,..., Xy;
Tn,:i=1,2,..., L, are independent, but not identically distributed.

Define

Gn(iﬂ,t) = —iI(TNiSt).

n =1

We propose G, (z,t) as an estimator of G(x,t). Using the techniques
of regenerative processes, introduced by Athreya and Ney (1978), we will
prove consistency of Gy, (x,t) in Section 2 and asymptotic normality in Sec-
tion 3. We finish this section with the formal definition of Harris recurrence
and establishing, without proofs, some results from the literature.
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Definition 1.1 A Markov chain {X,,:n=0,1,2,. ..} is called Harris recur-
rent if there exist a set A € X, a probability measure ¢ on A, a real number
€ > 0, and an integer ng > 0 such that

P.(14 < 0) = Py(X,, € A for somen >1)=1Vzx € S, (1.1)
Py(X,, € E) = P") (2, E) > e¢(F) Vo € A. and VE C A. (1.2)

In what follows, we assume ny = 1 and will say (4, €, ¢, 1) recurrent instead
of Harris recurrent.

Lemma 1.2 (Regeneration Lemma) If X is (4,¢, ¢, 1) recurrent, then
there exists a random time N such that P,(N < oo0) =1 and

a(m,n,k) = Px(Xn EA,Xn_H €A1,...,Xn+k EAk,N:n)
_ P(N= n)/APy(X1 € AL,..., Xy € Ap)d(dy).

That is, the evolution of the process for n > N is independent of X1, Xo,
..., Xny_1 and N and has the same distribution as X where Xy is dis-
tributed according to ¢. Thus N is a random time such that the pre-N and
post-N evolution are independent and the post-N process has a distribution
independent of Xo, ..., XNn—_1.

Corollary 1.3 If X is (A,e€,¢,1) recurrent, then there exists a sequence
of random times {N;;i = 1,2,...} such that for any x, under Py, Xn, have
distribution ¢ on A, and the random tours {Xn,1;: 7 =0,1,2,..., Niy1 —
N;—1; Nj11—N;} are independent, identically distributed, and independent
Of Nl .

The regeneration lemma can be used to show the existence of a station-
ary measure for Harris recurrent chains.

Theorem 1.4 Let Ni be the regeneration time as in Lemma 1.2. Define
v(E) = Ey2NII(X; € B). (1.3)

Then v is a stationary measure for X, and it is unique up to a multiplicative
constant.
Since v(S) = E4N1, v is finite if and only if E43N1 < o0.

Corollary 1.5 A stationary probability distribution w(.) for X exists if

and only if E4Ny < 0o, and in this case, m(E) = Z((g))

Proofs are in Athreya and Ney (1978).
Another characterization of the stationary measure v is given by the
following theorem.
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Theorem 1.6 Let g be any bounded measurable function.

(a) For a Harris recurrent chain, a measure v satisfies (1.3) if and only
if

[Ladv = B2l g(X). (1.4)
(b) Define Tg(x) = EmE;V:ll_lg(Xj). Then
oSN 900 = [ fawlde) +2 [ g(@)(Tg)(a)v(dafLs)

Let A be a real number. For Theorems 1.7 and 1.8, define

T inf{k>0: X, = A}
T = inf{k>TV : X = A}

Suppose TA deﬁned and define
TV = inf{k>TU Y X, = A}

Theorem 1.7 Let {X,, : n=0,1,...} be a real-valued Markov chain with
stationary transition function. Assume that for any x € R, Px(TE) <
o) =1 and VarA(TE))

E
Let m(A) = AZ’ e} for any Borel set A in R. Assume that
Ea T( )

is absolutely continuous w.r.t Lebesque measure on R\ {A}. Let f be the
corresponding density. Let 6, > 0 and p,(z) = 2n6 > i=01a,(X;) where

Ap = (x — Onyx + 6n). If 0, — 0 and nd, — oo, then for almost all x and
for every initial distribution,

pn(x) —  f(x) in probability.
Proofs are in Atuncar (1994).
Theorem 1.8 Let {X,,:n=0,1,...} be a Harris chain with a recurrence

point A. Let \ = EATA and 0 =Vara(Ta). Let K, be the random
number of visits to A by the chain during {0,1,2,...,n}. That is K,, =
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i0l(X;=A). Then the family
{n—T( "= 1,2,...} is tight and

% — % a.e. as n — 0o, (1.6)
K, 1. 4 o2
\/5(7 - X) — N(0, ﬁ) (1.7)

Assertions (1.6) and (1.7) follow from the discrete version of Proposition
1.4, Chapter IV and Proposition 4.3, Chapter VI in Asmussen (1987). The
first assertion is also derivable from the same material.

2 Consistency of G,(z,t)

The main result of this section is Theorem 2.3 establishing weak consistency
of Gp(x,t).

Lemma 2.1 Let {k, : n = 1,2,...} be a sequence of integers such that
kv Lo, 0<a<oo. Fori=1,2,..., kn, define

n

G
A 1
bni = Y 55 |G(X,1) = Gz, )|I(X; € An).
j=r "
1
If limgn_@/ —|G(y,t) — G(x,t)| f(y)dy = 0, then
|x—y|<dn 25n
_ 1 k’!L
n = > &ni— 0 in probability.
" =1

Proof: Since {§,; :i=1,2,...} arei.i.d, see for example Asmussen (1987),

and Ea&n1 — 0 by hypothesis, Ea,, — 0 and since &, > 0, the result
follows. u

Lemma 2.2 Let {K,, : n = 1,2,...} be a sequence of integer random

variables such that % — « with probability 1 for some 0 < o < co. Under
the hypothesis of Lemma 2.1,

Kn

1
K_E &ni — O in probability.
=1
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Proof: Let € >0, 0 > 0 and let A(n,a,¢) = {n(a—¢€) < K, <n(a+e¢€)}

1 Kn 1 Ky 1 Ky
A[‘Kn;§‘>] A Kﬂ;f > 0| + Pa Kﬂ;f <
= ap1t+ ap2 (SaY)-
1 K, 1 K,
anIZPA lK_ Zgnz > 07‘4(”7@76) +PA K_Zénz > Q,AC(’I’L,O(, E)‘| :
" =1 " =1

Since % — «a w.p. 1; the second term converges to zero. Now,

F K
Pa . ;é’m >0, A(n, a, e)]
[ 1 [n(ate)]+1
< PA T . gnz > G,A(’I’L,Oé, E)
[n(o = €)] ;
i [n(a+e€)]+1
n(a+e€)]+1 1
= P, ni 97“4 s Xy .
A n(a—¢€ [nla+e)]+1 ; Eni > (n, 2, €)
Since lim¢_,glim,,— oo % =1 as n — oo, the last probability con-
verges to zero by Lemma 2.1. Similarly it is proved that o, — 0. |

Theorem 2.3 Fiz x € R\ {A}. Let f(x) > 0. Let 6, — 0. If

tim [ G0 - Gl )y =

000 J|z—y|<6n 20n
%/ f(y)dy — f(x), and nd, — oo as n — oo, then
n An

Gn(z,t) — G(z,t) in probability.

Remark 2.4 The first condition means that the averages of |G(y,t) —
G(z,t)|, weighted by f, are small on small intervals centered at x. z is a
kind of Lebesgue point. In particular, if G(.,t) is continuous at x this con-
dition holds. If f is locally integrable in (R, B(R)) with respect to Lebesgue
measure, the second condition holds by Lebesgue density theorem.
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Proof: Recall that Ny, Ns,..., Ny are times of visits to A4,, and

n

1 &
n i
1 &
= L_ [’[(TNj < t) - G(XNj7t)]
n i
1 &
#3160, ) - G, 0] + Gl )

=1

- ﬂnl + 6712 + G(l’,t).

<.
|

It was proved in Atuncar (1994) that if %/ f(y)dy — f(z) then
n A,

pn(x) = 2%” — f(x) in probability. So, L, — oo in probability if f(z) > 0.

Besides that, conditioned on {X,, : n=0,1,...}, ([(Tn; <t) — G(Xn;,, 1))
are independent random variables with mean zero. Then [, converges
to zero in probability. Next we will prove that (,2 converges to zero in
probability:

1 Ly, 1 n

L— Y [G(Xn;,t) = G(a,1)] < L— Y O1G(X5,1) = Gz, (X € An)
7M1

1 A

= L_ Z ’G(vat) - G(‘Tat)‘[(X] € An)

) T 1
+L_ Z ‘G(vat) - G(xvt)’I(X] € An)

n TX)

+LL S G(X,t) — Gla, ) I(X; € A,)

™ (Kn)
T

= Bna1 + B2z + Bn23 (say).

Since L, — oo in probability, G,21 converges to zero in probability. Also
(Kn)

Bna3 converges to zero in probability because n_zﬁ does by tightness of

(n— Tg{”)).
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Now,

Tt

ﬁn22 =

K, Kn
n

e Z S Le - G, e a,)
Jj=

(l) n

K 2n
n

2t zsm

Therefore, by Theorem 1.8, Theorem 1.7, and Lemma 2.2, 3,22 converges
to zero in probability. |

3 Asymptotic normality of G,(z,t)

The main result of this section is Theorem 3.5.

Lemma 3.1 Fori=1,2,...; define

. T -1
\Ijni — E Z(.) G(vat)(l _G(Xj7t))I(Xj € A”)
7=Tx

Let % /A E,TAf(u)du and 6% /A f(u)du be bounded in n. Then

1

EA(Wpy — EaWp)® = O(a).
Proof: Consider ¥,,, as defined above.
7M1
Ba¥l = ggFs T G000 - 60010 € A)
ji;“) 17 -1
2(152EA jz% kzjjﬂa X;,6)(1 - G(X;,1)G(Xp, 1)

(1= G(Xp, ) I(X; € Ap)I(Xy € Ap)
= Up+Up (say).
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A Lo _ 2
=95, a, 25 G2, 1)(1 — G(u, 1)) (u)du
A
< 2
1
= 0(;):
Next,
) (-1
v o= Ba Y GUGH -GG OIX; € Ay
n =0

T -1

< 5 /. gGm H(1 G(u,t»Eu(TS’—l)f(u)du
< @/An &EuTAf(u)du
- 0(5)

Lemma 3.2 Assume the hypotheses of Theorem 2.3. Let {k, : n = 1,2,

..} be a sequence of integers such that k” — a with 0 < a < oco. Let
5 — 0 and nd,, — oo. Then,

1

. Z Ui — AM(2)G(z,t)(1 — G(x,t)) in probability.
=1
Proof:
1 kn 1 kn
— Z 2 (Uni = Bal;) + EaWn1.
ni=1 Fen i=1

By Theorem 1.6, EAV,; = )\/ G(y, t)(1 — G(y,t)) f(y)dy and under
the hypotheses of Theorem 2.3, thls mtegral converges to Af(z)G(x,t)(1—
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G(z,t)). So, it is enough to prove that é S (Ui — EaUy;) — 0 in
probability:

k
1 & 1
PA(k‘_ Z(‘If — EaWyi) >€) < WEA(‘I'M — EpAVn)?
) "
1
= 0O(; 5 )

Similarly, it is proved that PA(% ngl(\lf — EAV,;) < —€) = O(ﬁ)
Since k,d,, — oo, the proof is complete.

Lemma 3.3 Consider {K, : n = 1,2,...} a sequence of integer random

variables such that % — «a with probability 1 for some 0 < a < oo and
assume the hypotheses of Lemma 3.2. Then,

Kn

1
K, ; U, — M(2)G(z,t)(1 - G(x,1)) in probability.

The proof is similar to the proof of Lemma 2.2.

Lemma 3.4 Under hypotheses of Lemma 3.1 and Lemma 3.2,
1 &
L_n ZO G(XNj s t)(l - G(XN]‘ ) t)) - G($7 t)(l - G(ﬂj‘, t))
j:

in probability.

Proof: Notice that

1 &n
=3 G(Xn, 1) (1 — G(X )
L,
n j=0
1 n
= 72 G(X;0)(1 = G(X;,0))I(X; € An)
D)
mé, K, 1 K1 "2
= TR Y e Y GIXL O - GXLO)IX; € Ay)
n no;—1 n (%)
]:TA

S
|
”

+— > GX; (1= G(X;,t)(X; € Ay)
j=0
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1 n
+— Y G(X; (1 - G(X,))I(X; € Ay)
" j=T{Kn)

= Va1t VYn2 + Yns. -(SaY)

By earlier arguments, v,2 and 7,3 converge to zero in probability. Also, by

Theorem 1.7, Theorem 1.8, and Lemma 3.3 it follows that ~,; converges

to G(z,t)(1 — G(z,t)) in probability, concluding the proof. [ |
Now we establish asymptotic normality of G (x,t)

Theorem 3.5 Assume the following hypotheses:

(i) é /A f(y)dy is bounded in n,
(i) 7= [ 16,1 = Gl 017 )y — o,

(iii) %/ E,TA f(u)du bounded in n,
n A,

(iv) 6, — 0, nd, — 00 as n — oo.
Assume also that:

(v) There exist « > 0 and for each t, a Cy such that |G(y,t) — G(z,t)| <
Cilx — y|?>Te for y near x,

(vi) ndE — 0 for some 1 < p <5+ 2a.

Let
i (I(Txy, <t) = G(z,1))

\/_Q'Z GXNv )( _G(XNj7t))

Then, Z, % N(0,1).
We write

I i (L(Txy, <) = G(Xw;, 1))
\/L2Z 1 G(XnN;, )(1 = G(Xn;,t))
LLZ] 1(G(Xn;,t) — G(x,1))

\/_TZ GXN’ )( _G(Xvat))
= Zn1+ Zno (say).

Z, =
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To prove Theorem 3.5, first we will prove Lemma 3.7 and Lemma 3.8
below. For Lemma 3.7 we need the following result from Chung (1974),
pp. 199.

Lemma 3.6 Let {0,;,1 < j < k,,1 < n} be a double array of complex
numbers satisfying the following conditions as n — oo :

(1) max{|0,;| :1<j<k,} —0;
(1) Z?Zl 0n;] < M < oo, where M does not depend on n;
(i) Z?gl 0n; — 0, where 8 is a (finite)complex number.

Then we have

H 1 + Hnj - eXp(H)

Lemma 3.7 Let D = o(Xy, X1,...) be the o-algebra generated by {Xo,
X1, ...}. Let ¢, (0) = Ea [exp(i0Z,1) | D]. Then for each 0 in R, ¢, (6) —

exp(——@z) in probability.

Proof: Let §,; —I(TXN <t), prj=G(Xn;, 1) wn—\/zj 1 Pnj (1 — pnj).
For every 6 in R,

i v
$n(0) = En |exp(— Y (0nj —pnj)) | D
n i
Ly
= HEA {eXp( il (5nj _pnj)) | D]
7j=1

(by conditional independence of 6,;). Let a(6,n,j) = 1+ 6,; where 6,,; =
En [eXp(i_i(énj _pnj)) — 1] D}
Since Ea [(0n; — pnj) | D] =0,

i 10
Onj = Ea[{exp(=-(60; = pus)) — 1= 2-(00s ~ pu)} | D
i i60
= Ea [{exp(—(énj = Pnj)) = 1= = (0nj — Pnj)
10 0>

—§(w )?(0nj — pny)*} | D| — anj(l — Pnj)-
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Since |exp(it) — 1 —it| < & ~ and lexp(it) — 1 — it — ) | < |3—‘,3 for t real
(See Feller (1971), pp 512), we have that

0°pnj(1 — pnj)
2w2 '

A

|9nj| =

Thus ZJL;I 10| < % and maz{|6p;]: 1 <j < Ly} < %g-

From Lemma 3.4, g—i — G(z,t)(1 — G(z,t) in probability and since
L, — oo in probability as well, max{|6,;| : 1 < j < L,} — 0 in probability
under conditioning by D.

Also

j;lenj Ty = ;EA {exp(w—n@nj —pnj) —1— w_((snj ~ nj)

n

1, 40
=56y~ pus)?} 1 D).
Then
o |9| 3 3
IZHW < 3. Z )" En |( [ — Pnj)” | D}
9 3 n
< | | =Y Ena [ —pnj)? | D}
n] 1
(since |55 — pnj\2 < 2)
10
<
- 3w,

Since w,, — oo in probability, ]ZL” Onj + %] — 0 in probability under
conditioning by D.

For any subsequence n’ there exists a further subsequence n” such that
along that, with probability one: max{|6,;|: 1< j < L,} — 0, ngl Onj+

2 2
& — 0, and S5 |0n] < %
w.p. 1 along that subsequence n”. This being true for every subsequence

n’, the result follows. u

and so by Lemma 3.6, ¢,(0) — exp(—%)

Lemma 3.8 Assume conditions (v) and (vi) in Theorem 3.5. Then Z,5 —
0 in probability, where Z,9, defined in Theorem 8.5, is

= Y (G(X N, 1) = Gla, 1))

Zn2 '
B S G, (1 - (X 1)
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Proof: By Lemma 3.4, it is enough to prove that the numerator converges
to zero in probability. To do this observe that

n

1
s 26X, =Gl )= =36 )= Gl I (X € Ao

VL. 5
= (G(Xj,1) = G(z,1)I(X; € Ap)
L, =
1 n
b 3 (GX0) ~ Gl )I(X; € 4,)
n j:TK"
Z G(X;,t) — Gz, ) (X; € Ap)
n (1)
— bnl + bn2 + bn3 (SaY)-

By earlier arguments, b,1 + b,2 converges to zero in probability. Next,

1 A
e = = 3 (G040 - Gl )X € 4)
_ V2n0nf(x) V20, f(2) Kp 1 2 L(G(X» £)
B VL, f(x) n K, 265, 7

—G(z,t)I(X; € Ayp).
By Theorem 1.7 and Theorem 1.8, it is enough to prove that

V2n Z G(Xj,t) — Gz, t)[(Xj € Ap) — 0
_T<1>
in probability.

Consider first K,, as non random. To go to the case in which K, is
random we follow the procedure used earlier. Let

(i+1)
{1

1
bni = j:zT:@ 25, (G(Xj, 1) = Gz, ))[(X; € An).
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Then,
Pa [\/2715 | — ngy > e]
< n
< 2
2n5 K, (K,
2 {K Agnl + (2K2 )EAgnlEAérﬁ
= O((SnEAé’nl) + O(nd,(Eaén)?).
where
L 7M1
EAgr%l = @EA ZO (G(Xj’t) - G(x>t))2I(Xj € An)
n j=
7171
QEA Z Z — G(z,1))(G(X, 1) —
45
Jj=0 k=j+1
I(X; € Ap)I(Xy € An)
= bpz1 + bpgo (Say).

Notice that

1 1
bai = —A /
31 20n  Jjz—y|<d, 20n

IN

= 0(6,7).
By Theorem 1.6,

("1
bpza = Ea Z 25 G(Xj,t) —

)\Ct 442,
5+a/
%, i, f(y)

- (G(y,t) —

dy

G(x,1))* f(y)dy

G, )I(X; € A)Ex,

83

G(x,t))
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—G(x, ) (X € An)] f(y)dy

ACt 319 / 1 @
< o RN .
-2 o le—y|<6n 20n y(Ta )f(y)dy

= 057,

Hence, Ea&2, = O(63129). Also we have that

Bagul = A[ o160 - Gl 0l )y

T—y|<on 20y,

Act 2
—_— (5n+°‘ d
20 Jiosics, f(y)dy

= 02" (since f is bounded).

Therefore, Pa [\/2n5n|K%L S &l > e} = O(néd+2e), [ |
Proof of Theorem 3.5: For 0 in R,
E(exp(i60Z,1)) = E(Ea(exp(i0Zn,1 | D))
= E(¢n(0)).
By Lemma 3.7 and the bounded convergence theorem, the last expectation
converges to ea:p(—%). Thus Z,; 5 N(0,1).
By Lemma 3.8, Z,o — 0 in probability. So by Slutsky’s theorem,
Zn = 1 + Zna 5 N(0,1). m
Remark 3.9 Notice that Z, is pivotal for G(z,t) since the limit law of Z,,

is N(0,1) and is independent of all parameters. Thus, Z,, could be used to
obtain confidence intervals for G(x,t).

Remark 3.10 In the hypotheses of Theorem 3.5 (i), (ii), and (iii) hold
for almost all z by Lebesgue density theorem. EAT3 < oo is necessary for

4 Conclusions and further research

We have proved Consistency and Asymptotic Normality of Gy, (z,t), the
naive estimator of the sojourn time distribution for Semi - Markov pro-
cesses. As we know, the naive estimator for the density function in the
i. i. d. case it can be improved defining a more general kernel estimator.
We believe that the estimator defined in this paper can also be improved
following the ideas from the i.i.d. case and we are working in that direction.
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