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Summary

A generalization of the STER summation is presented. Relations between pro-
bability generating functions and moments of the generating and generated dis-
tributions are analyzed. It is shown that the Yule distribution is invariant with
respect to the considered summation.
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1 Introduction

The STER distribution, introduced in Bissinger (1965), represents Sums
successively Truncated from the Expectation of the Reciprocal, that is

Qi = A
∞
∑

j=i+1

1

j
Pj , i = 0, 1, 2, . . . ,

where {Pj}
∞
j=0 is the original (parent) probability distribution, {Qi}

∞
i=0 is

the generated (descendant) probability distribution and A is a norming
constant. A slight generalization can be found in Wimmer and Altmann
(2001), where several pairs of parent and descendant distributions from
the generalized hypergeometric family were studied (see also Johnson et
al., 1992, and Wimmer and Altmann, 1999). Several applications of STER
distributions can be found in the literature. Consider the inventory decision
model from Prichard and Eagle (1965): given the demand distribution {Pi}
and a prescribed administrative constant α ∈ (0, 1), it is shown that the
critical stock level Y is such that (Y − 1) represents the (1 − α)-quantile
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of the descendant distribution {Qi}. In the income underreporting model
from Xekalaki (1983) it is pointed out that the true income distribution
is identical to the reported one if and only if it has the Yule distribution.
And the latter is related to the STER distribution (cf. Section 3).

In this note we study some properties of the following generalization of
the STER distributions: for integers k ≥ 0 and l ≥ 1 define

Qi(k, l) = A(k, l)
∞
∑

j=i

1

j + l
Pj+k, i = 0, 1, 2, . . . . (1.1)

In Section 2 we present recursive formulas to compute the probabilities
{Qi(k, l)} and its associated probability generating function and (descend-
ing) factorial moments.

In Section 3 we discuss the invariant distributions (k-displaced Yule
distributions). And the latter is related to the STER summations.

2 Generalized STER summation

Let X be a random variable with distribution {Pi}i≥0 and let Xk,l be a
random variable with distribution {Qi(k, l)}i≥0. We call X the A(k, l)-
parent of Xk,l and Xk,l the A(k, l)-descendant of X. It is easy to see that
if k = l = 1 in (1.1) we obtain the usual STER summation. Also, if the
parent distribution of X is given then the A(k, l)-descendant distribution
is uniquely determined by (1.1). The converse is not true. If k > 0 then

Pi = c (i − k + l) [Qi−k(k, l) − Qi−k+1(k, l)]

holds for some constant c. So we cannot uniquely identify P0, P1, . . . . Due
to this fact, there are (for k > 0) many A(k, l)-parent distributions for a
given A(k, l)-descendant distribution.

Lemma 2.1 The A(k, l)-descendant distribution satisfies for i = 0, 1, 2, . . .

Qi+1(k, l) = Qi(k, l) −
A(k, l)

i + l
Pi+k (2.1)

with

A(k, l) =

(

1 −
k−1
∑

i=0

Pi − (l − 1)
∞
∑

i=k

1

i − k + l
Pi

)−1

. (2.2)

Moreover, the probability generating functions G(t) =
∑∞

i=0 Pit
i and H(t)=

∑∞
i=0 Qi(k, l)ti satisfy

H(t) =
A(k, l)

1 − t

∫ 1

t

(

G(z) −
k−1
∑

i=0

Pi zi − (l − 1)
∞
∑

i=k

1

i − k + l
Pi zi

)

z−k dz.

(2.3)
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Proof. From the definition (1.1) we obtain (2.1). Now let Qi = Qi(k, l)
and we have

1 =
∞
∑

i=0

Qi = A(k, l)
∞
∑

i=0

∞
∑

j=i

Pj+k

j + l
= A(k, l)

∞
∑

i=k

(

i − k + 1

i + k + l

)

Pi.

And (2.2) follows since

∞
∑

i=k

(

i − k + 1

i − k + l

)

Pi =
∞
∑

i=k

(

Pi −
l − 1

i − k + l
Pi

)

.

For 0 < t < 1 write

(1 − t) H(t) = Q0 −
∞
∑

j=0

(Qj+1 − Qj) tj+1.

Using (1.1) and (2.1) we have

(1 − t)H(t) = A(k, l)
∞
∑

j=0

[

1

j + l
Pj+k −

1

j + l
Pj+k tj+1

]

= A(k, l)
∞
∑

j=0

∫ 1

t

j + 1

j + l
Pj+k zj dz

= A(k, l)

∫ 1

0

[

∞
∑

i=k

(

Pi zi −
l − 1

i − k + l
Pi zi

)

]

z−k dz

and (2.3) follows.

The special case (k, l) = (1, 1) of Lemma 2.1 can be found in Johnson
et al. (1992) and is also treated in Wimmer and Altmann (2001).

For a real number x and an integer r ≥ 0 let x(r) = x(x−1) . . . (x−r+1)
denote the r-th descending factorial of x and set x(0) = 1. Let µ(r) and ν(r)

denote the r-th descending factorial moments of X and Xk,l respectively.

Lemma 2.2 If µ(r) and ν(r) exist for all r ≥ 1 then

ν(r) =
A(k, l)

n + 1

{

r
∑

i=0

(

r

i

)

(−k)(i) µ(r−i) −
k−1
∑

i=0

(i − k)(r) Pi

−(l − 1)
∞
∑

i=k

(i − k)(r)
i − k + l

Pi

}

. (2.4)



4 Brazilian Journal of Probability and Statistics, 16, 2002

Proof. Let J(t) =
∑∞

i=0 µ(i)ti/i! and L(t) =
∑∞

i=0 ν(i)t
i/i! be the factorial

moment generating function of X and Xk,l. Using the fact that L(t) =
H(1 + t) and (2.3) we have

t L(t) = A(k, l)

∫ 1+t

1

[

G(z)

zk
−

k−1
∑

i=0

Pi zi−k − (l − 1)
∞
∑

i=k

zi−k

i − k + l
Pi

]

dz.

(2.5)

Since µ(r) = ∂r

∂tr
J(t)

∣

∣

∣

t=0
, ν(r) = ∂r

∂tr
L(t)

∣

∣

∣

t=0
and J(t) = G(1 + t) we can

differentiate (2.5) r + 1 times and evaluate at t = 0 to obtain (2.4).

By taking r = 1 in (2.4) we get

E(Xk,l) =
A(k, l)

2

[

E(X) − k −
k−1
∑

i=0

(i − k) Pi − (l − 1)
∞
∑

i=k

i − k

i − k + l
Pi

]

.

3 Invariant distributions

For an integer r ≥ 0 let x(r) = x(x + 1) · · · (x + r − 1) be the r-th factorial
of x and set x(0) = 1. We say that X has the r-displaced Yule distribution
if

Pi =
b (r + 1)(i−r)

(b + r + 1)(i−r+1)
, b > 0, i = r, r + 1, . . . . (3.1)

Let X
(r)
k,l denote a random variable with the r-displaced A(k, l)-descendant

distribution of X, that is, P (X
(r)
k,l = i) = Qi−r if i = r, r + 1, . . . and

P (X
(r)
k,l = i) = 0, otherwise.

Theorem 3.1 For k ≥ 1 we have X = X
(k−1)
k,k if and only if X has the

(k − 1)-displaced Yule distribution.

Proof. The case k = 1 is trivial. Let k ≥ 2. If X = X
(k−1)
k,k then Pi = 0

for i = 0, 1, . . . , k − 2 and

Pi+1 = Pi −
A(k, k)

i + 1
Pi+1 for i = k − 1, k, . . . .

It is easy to see that for i = 0, 1, 2, . . .

Pk+i = Pk−1
k(i+1)

(k + A(k, k))(i+1)
.
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From Erdélyi (1953) we have the formula

∞
∑

i=0

(r + 1)(i)

(i + r + 2)(i)
=

c + r + 1

c
, c, r > 0, (3.2)

and we obtain

1 =
∞
∑

i=1

Pi = Pk−1

∞
∑

i=0

k(i)

(k + A(k, k))(i)
= Pk−1

k + A(k, k) − 1

A(k, k) − 1
.

It follows that for i = k − 1, k, . . . we have

Pi =
(A(k, k) − 1) k(i−k+1)

(k + A(k, k) − 1)(i−k+2)
,

which is the (k − 1)-displaced Yule distribution.
Now let X with the (k − 1)-displaced Yule distribution (3.1) with r =

k − 1. Using Lemma 2.1 and (3.2) we can determine the value of A(k, k),

(A(k, k))−1 = 1 − Pk−1 − (k − 1)
∞
∑

i=k

1

i
Pi

= 1 −
b

b + k

∞
∑

i=0

(k − 1)(i)

(b + k + 1)(i)
=

1

b + 1
.

It remains to show that for i = k − 1, k, . . .

P (X
(k−1)
k,k = i) = Ri =

b k(i−k+1)

(b + k)(i−k+2)
.

We will prove it by induction. For i = k − 1 we have

Rk−1 = Q0 = A(k, k)
∞
∑

i=k

1

i
Pi = b (b + 1)

∞
∑

i=k

k(i−k+1)

i(b + k)(i−k+2)

=
b(b + 1)

(b + k)(b + k + 1)

∞
∑

i=0

k(i)

(b + k + 2)(i)
=

b

b + k
.

Consequently,

Ri+1 = Qi−k+2 = Ri −
A(k, k)

i + 1
Pi+1

=
b k(i−k+1)

(b + k)(i−k+2)
−

(b + 1) b k(i−k+2)

(i + 1)(b + k)(i−k+3)
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=
b (b + i + 2) k(i−k+1) − b (b + 1) k(i−k+1)

(b + k)(i−k+3)

=
b k(i−k+2)

(b + k)(i−k+3)
,

which means that X
(k−1)
k,k has the (k − 1)-displaced Yule distribution.

The invariance of the Yule distribution with respect to the A(1, 1)-
summation and its extension to the r-displaced case can be found in Xe-
kalaki (1983).
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