系统科学与数学 J. Sys. Sci. & Math. Scis. 5(1)(1985), 34—42

SMALLEST REGULAR GRAPHS WITH GIRTH PAIR (4,5)

SHI RONGHUA
(Mathematics Department, Qinghai Teachers' College, Xining)

1. Introduction

Smallest k-regular graphs with given girth have been intensely studied [3], [4], and smallest k-regular graphs with girth pair (g, h) are studied also [1], [2].

Let G be a connected graph which is not a tree. The odd (even) girth of G is the length of a shortest odd (even) cycle in G. If there is no odd (even) cycle in G, then the odd (even) girth of G is taken as ∞ . Let g be the girth of G which is the smaller of the odd girth and even girth, and let h be the bigger one. Then (g, h) is called the girth pair of G. A k-regular graph with girth pair (g, h) is called a (k; g, h)-graph. The minimum number of vertices of a (k; g, h)-graph is denoted by f(k; g, h).

If three integers k, g, h satisfy the following standard restrictions: (1) $k \ge 3$, (2) $3 \le g < h$, (3) g + h odd, then there exists a (k; g, h)-graph [2].

Harary and Kovács [2] have given f(2s; 4, 5) = 5s and an infinite family of smallest (2s; 4, 5)-graphs. But for f(2s + 1; 4, 5) they gave only $f(2s + 1; 4, 5) \ge 5s + 3$ and (2s + 1; 4, 5)-graphs of order 6s + 2 for every $s \ge 1$. They believed that these graphs are smallest (2s + 1; 4, 5)-graphs. In this paper, we give f(2s + 1; 4, 5) and construct an infinite family of smallest (2s + 1; 4, 5)-graphs for $s \ge 1$.

2. The Function $f_H(2s + 1; 4, 5)$

The minimum number of vertices of a (2s + 1; 4, 5)-graph containing graph H is denoted by $f_H(2s + 1; 4, 5)$, where H is a 3-regular graph of order 8 illustrated in Fig. 1.

Fig.

Theorem 1. $f_H(2s+1;4,5)=p$, where s is a natural number and p the smallest

even integer not less than $\frac{8}{3}$ (2s + 1). Graphs H_{2s+1}^0 , H_{2s+1}^1 and H_{2s+1}^2 are smallest (2s + 1; 4, 5)-graphs containing the graph H (see Fig. 2-4).

Fig. 2

Proof. First, we prove that $f_H(2s+1;4,5) \ge \frac{8}{3}(2s+1)$. Let G be a (2s+1;4,5)-graph containing the graph H. We define the following sets:

$$N_i = N(x_i) \setminus V(H), i = 0, 1, \dots, 7,$$

where $N(x_i) = \{y \in V(G): x_i y \in E(G)\}$, V(G), E(G) are the sets of vertices and edges of G, respectively. Then $|N_i| = 2s - 2$, $i = 0, 1, \dots, 7$. Let $N_{ij} = N_i \cap N_j$, $i \neq j$, $i, j = 0, 1, \dots, 7$. Since G does not contain a triangle, all N_{ij} , except the following sixteen sets, are empty:

$$N_{02}$$
, N_{03} , N_{05} , N_{06} , N_{13} , N_{14} , N_{16} , N_{17} , N_{24} , N_{25} , N_{27} , N_{35} , N_{36} , N_{46} , N_{47} , N_{57} .

Let $N_{ijl} = N_i \cap N_j \cap N_l$, $i \neq j$, $j \neq l$, $i \neq l$, $i, j, l = 0, 1, \dots, 7$. Similarly, all N_{ijl} , except the following eight sets, are empty:

$$N_{025}$$
, N_{035} , N_{036} , N_{136} , N_{146} , N_{147} , N_{247} , N_{257} ,

Moreover, there is no vertex in V(G) adjacent to any four vertices of V(H), since G does not contain a triangle. Thus, the intersection of any four distinct sets among $N_i(i=0,1,\dots,7)$ is empty.

For the sake of convenience we use the subscripts modulo 8.

We denote

$$|N| = \sum_{i=0}^{7} |N_i|, \qquad \alpha = \sum_{\substack{i,j \in [0,1,\cdots,7) \\ i,j \in [0,1,\cdots,7)}} |N_{ij}|,$$

and

$$\beta = \sum_{\substack{i,j,l \in I, l \in I, \\ i,j,l \in I, l \in I, \\ i \in I, l}} |N_{ijl}|.$$

Thus we have

$$|N| = 8(2s - 2) - \alpha + \beta. \tag{1}$$

On the other hand, from $|N_i| = 2s - 2$ $(i = 0, 1, \dots, 7)$, we derive that

$$2s - 2 - \sum_{j \in (i+2,i+3,i+3,i+3)} |N_{ij}| + (|N_{i(i+2)(i+3)}| + |N_{i(i+3)(i+4)}| + |N_{i(i+3)(i+5)}|) \ge 0 \qquad (i = 0, 1, \dots, 7).$$

Thus we have

$$8(2s-2) - 2\alpha + 3\beta \ge 0, (2)$$

Similarly,

$$2s - 2 - (|N_{i(i+2)(i+3)}| + |N_{i(i+3)(i+6)}| + |N_{i(i+3)(i+5)}|) \ge 0$$

$$(i = 0, 1, \dots, 7).$$

Hence

$$8(2s-2) - 3\beta \geqslant 0, (3)$$

From (1), (2) and (3), we derive that

$$|N| \geqslant \frac{8}{3}(2s-2).$$

Hence

$$|V(G)| \ge |V(H)| + |N| \ge 8 + \frac{8}{3}(2s - 2) = \frac{8}{3}(2s + 1).$$
 (4)

Since G is a (2s + 1)-regular graph, the order of G must be even. Therefore we get

$$f_H(2s+1;4,5) \ge p$$
.

Now, let s = 3k + i $(0 \le i \le 2)$. In order to prove

$$f_H(2s+1;4,5)=p$$
,

we construct a (2s + 1; 4, 5)-graph H_{2s+1}^i of order p which contains H as subgraph in the following way.

1. i = 0. So 2s + 1 = 6k + 1, p = 16k + 4 $(k \ge 1)$. We construct $H_{i_{j+1}}^0$ as follows. Let $|V(H_{2i+1}^0)| = 16k + 4$ and $\{A_j: j = 0, 1, \dots, 7\}$ be a partition of $V(H_{i_{j+1}}^0)$, where each A_j is an independent set of $H_{i_{j+1}}^0$, and $|A_0| = |A_1| = |A_1| = |A_1| = 2k$,

 $|A_1| = |A_2| = |A_5| = |A_6| = 2k + 1$ (see Fig. 2). If a set A_i has been joined to A_i by areal line in Fig. 2, then the subgraph of H_{2i+1}^0 induced by $A_i \cup A_i$ is a complete bipartite graph. If a set A_i has been joined to A_i by a dotted line, then the subgraph induced by $A_i \cup A_i$ is a graph obtained from the complete bipartite graph by omitting a 1-factor.

2. i=1. So 2s+1=6k+3, p=16k+8 $(k \ge 0)$. We construct H^1_{2s+1} as follows. Let $|V(H^1_{2s+1})| = 16k+8$ and $\{A_j: j=0,1,\cdots,7\}$ be a partition of $V(H^1_{2s+1})$, where each A_j is an independent set of H^1_{2s+1} , and $|A_j| = 2k+1$ for $j=0,1,\cdots,7$ (see Fig. 3). The meaning of the real line in Fig. 3 is the same as above. Note that if k=0 the graph H^1_3 is the graph H_4 .

3. i = 2. So 2s + 1 = 6k + 5, p = 16k + 14 ($k \ge 0$). We construct H_{2t+1}^2 as follows. Let $|V(H_{2t+1}^2)| = 16k + 14$ and $\{A_j: j = 0, 1, \dots, 7\}$ be a partition of $V(H_{2t+1}^2)$, where each A_i is an independent set of H_{2t+1}^2 , and $|A_2| = |A_4| = 2k + 1$, $|A_j| = 2k + 2$ for $j \in \{0, 1, 3, 4, 5, 7\}$ (see Fig. 4). The meanings of real and dotted lines in Fig. 4 are the same as above.

It is obvious that the graphs H_{2s+1}^0, H_{2s+1}^1 and H_{2s+1}^2 are (2s+1; 4,5)-graphs of order p. This completes the proof of Theorem 1.

We see that $s \le 2$ or s = 4, and p is just equal to the smallest even integer not less than 5s + 3. It is shown that f(3; 4, 5) = 8, f(5; 4, 5) = 14 and f(9; 4, 5) = 24. It is interesting that p = 6s + 2 for $s \le 3$. But p is less than 6s + 2 for $s \ge 4$.

Thus, we assume below that $s \ge 3$ ($s \ne 4$).

3. Graphs G_{2r+1}^0 and G_{2r+1}^1

If s = 2k, $k \ge 2$ being an integer, then 2s + 1 = 4k + 1. Now we construct the graph G_{2s+1}^0 as follows. Let $|V(G_{2s+1}^0)| = 10k + 6$ and $\{A_0, A_1, A_2, A_3, A_4, B_0, B_1, B_2, B_3, B_4\}$ be a partition of $V(G_{2s+1}^0)$. Each A_i (or B_i) is an independent set of G_{2s+1}^0 , and $|A_0| = |B_0| = |B_1| = |B_4| = k$, $|B_2| = |B_3| = |A_1| = \cdots = |A_4| = k + 1$ (see Fig. 5). The meanings of real and dotted lines in Fig. 5 are the same as above.

If s = 2k + 1, $k \ge 1$ being an integer, then 2s + 1 = 4k + 3. We construct the graph G_{2s+1}^1 as follows. Let $|V(G_{2s+1}^1)| = 10k + 10$ and $\{A_0, A_1, A_2, A_3, A_4, B_0, B_1, B_2, B_3, B_4\}$ be a partition of $V(G_{2s+1}^1)$, where each A_i (or B_i) is an independent set of

 G_{2s+1}^1 , and $|A_i| - |B_i| - k + 1$ $(i = 0, 1, \dots, 4)$ (see Fig. 6). The meanings of real and dotted lines in Fig. 6 are the same as above.

It is obvious that the graphs G_{2s+1}^0 , G_{2s+1}^1 are (2s+1; 4, 5)-graphs. Therefore we get immediately the following lemma:

Lemma 1. If $s \ge 3$ is odd, then

$$f(2s+1;4,5) \le 5s+5$$
.

If s ≥ 3 is even, then

$$f(2s+1;4,5) \leq 5s+6$$
.

4. THE FUNCTION f(2s + 1; 4, 5)

Let G be a (2s + 1; 4, 5)-graph and $C^5 = x_0x_1x_2x_3x_4x_0$ be a cycle of length 5 in G. We define the following sets:

$$V = V(G), C = \{x_0, x_1, x_2, x_3, x_4\}, N_i = N(x_i) \setminus C, (i = 0, 1, \dots, 4),$$

$$A_i = N_{i-1} \cap N_{i+1} \ (i = 0, 1, \dots, 4), N = \bigcup_{i=0}^{4} N_i \text{ and } A = \bigcup_{i=0}^{4} A_i.$$

Note that the subscripts are reduced modulo 5.

Since G does not contain a triangle, each A_i is an independent set of G, and $A_i \cap A_i = \emptyset$ $(i \neq j, i, j = 0, 1, \dots, 4)$ (see Fig. 7).

Fig. 7

Obviously, we have

$$|N| = 5(2s - 1) - |A|, \tag{5.1}$$

$$|N \setminus A| = 2(5s - |A|) - 5,$$
 (5.2)

$$|N_0| = 2i - 1 \ge |A_1| + |A_1|, \tag{6.1}$$

$$|N_1| = 2i - 1 \ge |A_0| + |A_1|, \tag{6.2}$$

$$|N_2| = 2s - 1 \ge |A_1| + |A_2|, \tag{6.3}$$

$$|N_3| = 2s - 1 \ge |A_1| + |A_4|, \tag{6.4}$$

$$|N_4| = 2s - 1 \ge |A_1| + |A_0|. \tag{6.5}$$

Lemma 2. Let G be a (2s + 1; 4, 5)-graph and |V(G)| < 5s + 5. Then $5s - 3 \ge |A| \ge 5s - 4$, $|V \setminus (A \cup C)| \le 3$. Furthermore, if |A| = 5s - 3, then $|N \setminus A| = 1$; if |A| = 5s - 4, then $|N \setminus A| = 3$.

Proof. From (6.1)-(6.5) we obtain that $10s-5 \ge 2|A|$. So $5s-3 \ge |A|$. On the other hand, if $|A| \le 5s-5$, from (5.1) we have

$$|V| \ge |C| + |N| = 5 + \frac{1}{2} (10(2s - 1) - 2|A|) \ge 5s + 5,$$

which contradicts the assumption of the lemma. Hence

$$5s-3 \ge |A| \ge 5s-4$$
.

The rest of the lemma follows by (5.2) immediately.

By Lemma 2 we get immediately that $f(2s + 1; 4, 5) \ge 5s + 3$.

Lemma 3. Let G be a (2s+1;4,5)-graph with |V(G)| < 5s+5, and $u \in V(G) \setminus (A \cup C)$. Then there are at most two non-empty sets among the sets $N(u) \cap A_i$, $i = 0, 1, \dots, 4$. Furthermore, $N(u) \cap A_i \neq \emptyset$ implies $N(u) \cap A_{i+1} = \emptyset$, $i = 0, 1, \dots, 4$.

Proof. If the lemma is not true, we distinguish the following two cases.

Case 1. There is an index l, $0 \le l \le 4$, such that $N(u) \cap A_l \ne \emptyset$, $N(u) \cap A_{l-2} \ne \emptyset$ and $N(u) \cap A_{l+2} \ne \emptyset$. Suppose the vertices u_l, u_{l-2} , and u_{l+2} belong to the sets $N(u) \cap A_l$, $N(u) \cap A_{l-2}$ and $N(u) \cap A_{l+2}$, respectively. We see that the subgraph of G induced by the set $\{u, u_{l+2}, x_{l-2}, x_{l-1}, u_l, x_{l+1}, x_{l+2}, u_{l-2}\}$ is the graph H, illustrated in Fig. 1. Form Theorem 1, we get $|V| \ge p$. But this is impossible, since $p \ge 5s + 5$ for $s \ge 3$ $(s \ne 4)$.

Case 2. There is an index $l, 0 \le l \le 4$, such that $N(u) \cap A_{l-1} \ne \emptyset$, $N(u) \cap A_l \ne \emptyset$ and $N(u) \cap A_{l+1} \ne \emptyset$. By case 1 we see that other two sets $N(u) \cap A_i = \emptyset$, i = l - 2, l + 2. Since G does not contain a triangle, we have $N(u) \cap C = \emptyset$. From $|V \setminus (A \cup C)| \le 3$, we can suppose that $|N(u) \cap (V \setminus (A \cup C))| = t$ $(0 \le t \le 2)$. Since d(u) = 2s + 1, we have

$$|N(u) \cap A_l| + |N(u) \cap A_{l-1}| + |N(u) \cap A_{l+1}| = 2s + 1 - t.$$

We consider the following two subcases.

Subcase 1.
$$|N(u) \cap A_l| \ge \frac{1}{2} (2s + 1 - t)$$
.

Suppose $x \in N(u) \cap A_{l-1}$. Since G does not contain a triangle, $N(x) \cap (N(u) \cap A_l) = \emptyset$. We see that

$$|N(x) \cap (A \cup C)| \leq 2 + |A_1| + |A_{t-2}| - |N(u) \cap A_t|$$

$$\leq 2 + (2s - 1) - \frac{1}{2}(2s + 1 - t)$$

$$= s + \frac{1}{2}(1 + t).$$

Hence,

$$|N(x) \cap (V \setminus (A \cup C))| \ge 2s + 1 - s - \frac{1}{2}(1 + t)$$

= $s + \frac{1}{2}(1 - t)$.

In the same way as above, since G does not contain a triangle, we get

$$|V\setminus (A\cup C)| \ge s + \frac{1}{2}(1-t) + t = s + \frac{1}{2}(1+t) \ge 4.$$

Therefore, $|V| \ge 5s + 5$, which is a contradiction.

Subcase 2.
$$|N(u) \cap A_{l-1}| + |N(u) \cap A_{l+1}| \ge \frac{1}{2} (2s + 1 - t)$$
.

Now we suppose $x \in N(u) \cap A_I$, and consider N(x). Then the result can be proved similarly as above.

Thus, we get immediately that there are at most two nonempty sets in the sets $N(u) \cap A_i$, $i = 0, 1, \dots, 4$.

Finally, if there is an index l, $0 \le l \le 4$, such that $N(u) \cap A_l \ne \emptyset$ and $N(u) \cap A_{l+1} \ne \emptyset$, then we can also derive a contradiction in a similar way.

This completes the proof of Lemma 3.

Theorem 2. If $s \ge 3$ ($s \ne 4$) is an integer, then $f(2s + 1; 4, 5) \ge 5s + 5$.

Proof. We assume that f(2s + 1; 4, 5) < 5s + 5. Let G be a (2s + 1; 4, 5)-graph with |V(G)| < 5s + 5. From Lemma 2 we have either |A| = 5s - 3 or |A| = 5s - 4

Case 1. |A| = 5s - 3.

From Lemma 2, $|N\setminus A| = 1$. Let $x \in N\setminus A$, $xx_0 \in E(G)$ without loss of generality. Now (6.1) becomes $2s - 2 = |A_4| + |A_1|$, and (6.2)—(6.5) become equalities. Hence we get that $|A_0| = |A_1| = |A_4| = s - 1$, $|A_2| = |A_3| = s$. Since |V(G)| < 5s + 5, we have $|V\setminus A \cup C| \le 2$.

If $|V\setminus (A\cup C)|=1$, then x is just the only vertex in $V\setminus (A\cup C)$. Since $xx_0\in E(G)$ and G does not contain a triangle, $N(x)\cap A_1=\emptyset$, $N(x)\cap A_4=\emptyset$. From Lemma 3, we have either $N(x)\cap A_2=\emptyset$ or $N(x)\cap A_3=\emptyset$. In either case, we always have $|N(x)|\leqslant 1+|A_1|+s=2s$. This contradicts that G is a (2s+1)-regular graph.

If $|V\setminus (A\cup C)| = 2$, let $\{v, x\} = V\setminus (A\cup C)$. Then $v \in N\cup C$, $N(v)\cap C = \emptyset$. Hence $|N(v)\cap A| \ge 2s$; otherwise, d(v) < 2s + 1. But by Lemma 3 we have $|N(v)\cap A| \le 2s - 1$, a contradiction.

Case 2. |A| = 5s - 4.

In this case, $|N \setminus A| = 3$. Let $B = N \setminus A = \{u, v, w\}$. Since |V| < 5s + 5, there must be |V| = 5s + 4, and $\{A, B, C\}$ is a partition of V.

Similarly to Case 1, we can see that the induced subgraph G(B) has not any isolated

vertex; otherwise the degree of the isolated vertex of G(B) would be less than 2s + 1. Moreover, G(B) obviously is not a complete graph. Hence G(B) is a path, and we let G(B) = uvw. Furthermore, without loss of generality, we can suppose that $v \in N(x_0)$, namely $x_0v \in E(G)$. Assume $ux_i \in E(G)$, $wx_i \in E(G)$, $1 \le i \le j \le 4$, and consider the following two subcases respectively.

Subcase 1. i = j.

If i = j = 1, then (6.1) becomes $2s - 2 = |A_4| + |A_1|$, (6.2) becomes $2s - 3 = |A_0| + |A_2|$ and (6.3)—(6.5) become equalities. Hence, we have $|A_0| = |A_1| = s - 2$, $|A_2| = s - 1$, $|A_3| = s + 1$ and $|A_4| = s$. From Lemma 3, the vertices u and w need be joined to each vertex of $A_1 \cup A_3$; otherwise their degrees would be less than 2s + 1. Thus, the vertex v can only be adjacent to the vertices of $A_0 \cup A_2$; otherwise G contains a triangle. Hence $|N(v)| \le 3 + |A_1| + |A_3| = 2s$, which is impossible.

If i = j = 2, 3, or 4, we can prove it in a similar way.

Subcase 2. $1 \le i < j \le 4$.

We take i = 1, j = 2; other cases can be proved similarly. If i = 1, j = 2, then (6.1) becomes $2s - 2 = |A_4| + |A_1|$, (6.2) becomes $2s - 2 = |A_0| + |A_2|$, (6.3) becomes $2s - 2 = |A_1| + |A_3|$, (6.4) and (6.5) become equalities. Hence we have $|A_0| = |A_3| = s - 1$, $|A_2| = s - 2$, $|A_3| = |A_4| = s$. From Lemma 3, we have either $N(u) \subseteq \{x_1, v\} \cup A_1 \cup A_3$, or $N(u) \subseteq \{x_1, v\} \cup A_1 \cup A_4$. In either case, we have the following result:

$$|N(u)| \le 2 + s - 2 + s = 2s$$

It contradicts that G is a (2s + 1)-regular graph.

This completes the proof of Theorem 2.

From above, together with Harary-Kovács' result [2], we get immediately the following main result:

Theorem 3. (1) f(2s; 4, 5) = 5s, where s > 1 is an integer, the graphs G_{2s} (Fig. 8) are smallest graphs.

Fig. 5

(2) f(3; 4, 5) = 8, the graph H is a smallest; f(5; 4, 5) = 14, the graph H_2^3 is a smallest; f(9; 4, 5) = 24, the graph H_2^1 is a smallest.

- (3) f(2s+1;4,5)=5s+5, where $s \ge 3$ is an odd number, the graphs G_{2s+1}^1 are smallest. Furthermore, when $s \ge 9$, each smallest (2s+1;4,5)-graph does not contain the graph H.
- (4) f(2s+1;4,5)=5s+6, where $s \ge 6$ is an even number, the graphs G_{2s+1}^0 are smallest. Furthermore, when $s \ge 12$, each smallest (2s+1;4,5)-graph does not contain the graph H.

5. Acknowledgment

The author is very grateful to Professor Tian Feng of the Institute of systems Science, Academia Sinica for his guidance.

REFERENCES

- Harary, F. and Kovács, P., Smallest graphs with given girth pair, Carribb, J. Math. 1(1982), 24—
 26.
- [2] Harary, F. and Kovács, P., Regular graphs with given girth pair, J. of Graph Theory 7(1983), 209—218.
- [3] Chartrand, G., Gould, R. J. and Kapoor, S. F., Fraphs with prescribed degree sets and girth, Period. Math. Hungar. (To appear.)
- [4] Erdös, P. and Sachs, H., Reguläre Graphen gegebener Taillenrreite mit minimalar Knotenzahl. Wiss Z. Martin-Luther-Univ. Halle-Wittenberg Natur. Natur. Reihe. XII (1963), 251—258.

围长对是(4,5)的最小正则图

施容华

(青海师范学院数学系,西宁)

摘 要

我们把围长对是(g, h)的 k-正则图称为(k; g, h)-图;(k; g, h)-图的顶点的最少数目用 f(k;g,h) 表示。本文证明了

$$f(2s+1;4,5) = \begin{cases} 8, & s-1, \\ 14, & s=2, \\ 24, & s=4, \\ 5s+5, & s$$
 是奇数, $s \ge 3, \\ 5s+6, & s$ 是偶数, $s \ge 6. \end{cases}$

我们还构造了最小(2s+1;4,5)-图, $s \ge 1$ 的无限族。这样,我们就完全解决了 Harary 和 Kovács⁽²⁾ 提出的问题 1.