HAMILTONIAN PROPERTY IN THE SQUARE OF A CONNECTED GRAPH

SHI RONG-HUA

(Department of Mathematics, Qinghai Normal University, Xining)

SUN RONG-GUO

(Scientific and technological Society of Qinghai, Xining)

NIAN KONG

(Department of Mathematics, Qinghai People's College, Xining)

1. Introduction

In this article, all graphs are finite, undirected, without loops or multiple edges; most of the graph-theory terminology used here can be found in standard texts.

The subdivision graph of $K_{1,3}$ is denoted by $S(K_{1,3})$ (see Fig. 1).

Fig. 1 The graphs S(K1.5) and Y

A graph G is (H_i, \dots, H_k) -free $(k \ge 1)$, if G contains no induced subgraph isomorphic to H_i , for any $i = 1, \dots, k$. If k = 1, we simply say G is H_i -free.

Various Hamiltonian-like properties are investigated in the square of graphs. The main results are the following.

Theorem A^[1]. If G is a graph, then G^2 is Hamiltonian if and only if G^2 is vertex pancyclic.

Theorem B^[2]. If G is a 2-connected graph, then G^2 is Hamiltonian.

Theorem C⁽³⁾. For any tree T, T^2 is Hamiltonian if and only if T is $S(K_{1,3})$ -free.

Thus, it is of interest to study Hamiltonian properties in the square of a connected graph G, where G is not a tree and not 2-connected. New results are following on the

Received January 8, 1985.

class.

Theorem D^(q). If G is a connected $K_{1,3}$ -free graph, then G^{1} is vertex pancyclic.

Gould and Jacobson extended the result of Matthews. They obtained

Theorem E^[5]. If G is a connected Y-free graph, then G^2 is vertex pancyclic, where the forbidden subgraph Y is shown in Fig. 1.

Theorem F^[5]. If G is a connected $(K_{1,4}, S(K_{1,3}), F, W)$ -free graph of order $n \ge 3$, then G^2 is vertex pancyclic, where forbidden subgraphs F and W are shown in Fig. 2.

Fig. 2 The forbidden subgraphs F and W

The above results lead Gould and Jacobson to conclude the following conjectures [5].

Conjecture 1. If G is a connected $S(K_{1,3})$ -free graph, then G^2 is vertex pancyclic.

Conjecture 2. If G is a connected $(S(K_{1,5}), K_{1,4})$ -free graph, then G^2 is vertex pancyclic.

It is obvious that if Conjecture 1 is proved, then Conjecture 2 is true, too.

In this article we prove Conjecture 1; by Theorem C, it is best possible in general.

2. MAIN RESULTS

We begin with a useful lemma.

Lemma. Let G be a connected graph, but not a tree and not 2-connected. Then there exists a cutpoint v of G such that $d_G(v) \ge 3$.

Proof. It is obvious.

Theorem. If G is a connected $S(K_{1,3})$ -free graph, then it is vertex pancyclic, where $|V(G)| \ge 3$.

Proof. We proceed by induction on the order of the graph.

From Theorem C, our theorem is verified for any connected $S(K_{1,3})$ -free graph G, $|V(G)| \le 7$. Suppose our theorem is true for graphs whose order is less than n, n > 7 being a natural number, and let G be a connected $S(K_{1,3})$ -free graph and |V(G)| = n. By Theorems B and C, we can suppose, without loss of generality, that G is not 2-connected and not a tree. From Theorem A, it suffices to show G^2 is Hamiltonian.

By the lemma, there exists a cutpoint ν in graph G such that $d_G(\nu) \ge 3$. We denote $N(\nu) = \{\nu_1, \nu_2, \dots, \nu_k\}, k \ge 3$.

Now consider a spanning tree T of G containing all edges from v to the vertices of N(v). Let G_i be the subgraph of G induced by v and vertices of the branch of T containing $v_i (i = 1, 2, \dots, k)$. By the choice of the cutpoint v, we have $|V(G_i)| \leq |V(G)| - 2 = n - 2(i = 1, 2, \dots, k)$.

Since v is a cutpoint, there exists at least one vertex $v_i \in N(v)$ for each $v_i \in N(v)$, $1 \le i, j \le k$, such that v_i and v_i belong to two components of G - v, respectively. First we consider the subgraph G_i^* of G induced by the set $V(G_i) \cup \{v_i\} (i = 1, 2, \dots, k)$. It is clear that $|V(G_i^*)| = |V(G_i)| + 1 \le n - 1$, and G_i^* is a connected $S(K_{i,i})$ -free graph. So, by the induction hypothesis, the graph $(G_i^*)^2$ contains a Hamiltonian circuit C_i^* . Note that the degree of vertex v_i in $(G_i^*)^2$ is 2, and the vertex v_i is only adjacent to two vertices v and v_i . Hence there exists a Hamiltonian path P_i' from v to v_i in graph G_i^2 . Let w_i be the vertex which is adjacent to v on the Hamiltonian path P_i' of G_i^2 . If $|V(G_i)| > 2$, then $vw_i \in E(G^2)$ and $vw_i \in E(G)$, namely $d_G(w_i, v) = 2$, $v_iw_i \in E(G)$. If $|V(G_i)| = 2$, then $v_i = w_i$, and G_i^2 is merely traceable.

Thus we prove that if $|V(G_i)| > 2$, then the graph $G_i^2 - v$ contains a Hamiltonian path P_i from the vertex v_i to a vertex w_i , where $d_G(v, w_i) = 2$; that is $w_i \in N(v_i)$ ($i = 1, 2, \dots, k$). Denote $P_i = v_i, \dots, w_i$ ($i = 1, 2, \dots, k$). If $|V(G_i)| = 2$, then P_i is only a point, and $v_i = w_i$.

Denote $M = \{w_i : 1 \leq i \leq k\}$.

Now we consider the graph $G^2-\nu$. Let A be a minimal set of paths in graph $G^2-\nu$ which satisfies

- (1) Each path Pi belongs to set A(i = 1, 2, ..., k).
- (2) If $w_i \in M$ is one end of a path $Q \in A$ and there exists a vertex $v_i \in N(v)$ such that v_i is adjacent to w_i in $G^2 v$, then the path $Qw_iv_iP_i$ belongs to the set A, where P_i and Q are pairwise disjoint.
- (3) If a path $Q \in A$ and $w_i \in M$ is one end of the path Q, and $w_i \in M$ is adjacent to w_i in the graph $G^2 v$, then the path $Qw_iw_i \ \overline{P}_i$ belongs to the set A, where \overline{P}_i is the reverse of the path P_i , and the path P_i and Q are pairwise disjoint.
- (4) If a path $Q \in A$ and its two ends belong to N(v), then the path $Qv_iv_iP_i$ belongs to the set A, where P_i and Q are pairwise disjoint.

From the definition of set A, we have the following properties:

Property (a). $A \neq \emptyset$.

Property (b). If a path $Q \in A$, x and y are two ends of Q, respectively, then $\{x,y\}\subseteq N(v)\cup M$.

Property (c). If a path $Q \in A$, x' and y are two ends of Q, respectively, and suppose $y \in M$, then we claim that $x \in N(v)$.

Property (d). If $Q \in A$ and $v_i \notin V(Q)$, $v_i \in N(v)$, then $V(P_i) \cap V(Q) = \emptyset$; if $v_i \in V(Q)$, then $V(P_i) \subseteq V(Q)$.

Let Q1 be a longest path of the set A.

It is clear that the path Q_1 is not a spanning path of $G^2 - \nu$; otherwise, the theorem is true.

By Property (d), there exists path $Q \in A$ in graph $G^2 - (\{v\} \cup V(Q_1))$. Let A_1 be the subset of A in graph $G^2 - (\{v\} \cup V(Q_1))$; then $A_1 \neq \emptyset$. So we can say that Q_2 is the longest path of set A_1 .

Now, if $V(Q_1) \cup V(Q_2) = V(G) \setminus \{v\}$. It is obvious that G^2 is Hamiltonian by Properties (b) and (c). Otherwise, there exists a longest path $Q_3 \in A$ in graph $G^2 - (\{v\} \cup V(Q_1) \cup V(Q_2))$. We will prove this is impossible.

Note, by definition, that:

- (1) The length of each path $Q_i(i-1,2,3)$ is at least 1, namely, $|V(Q_i)| \ge 2$.
- (2) There exists one end belonging to M in each path $Q_i(i=1,2,3)$, since every path Q_i is maximal.

Without loss of generality, suppose w_i is an end of Q_i , and v_i is the vertex which is adjacent to w_i in graph $G_i(i=1,2,3)$.

Now, we consider the subgraph H of G induced by set $\{v, v_1, w_1, v_2, w_2, v_3, w_3\}$. If $v_1v_2 \in E(G)$, then the path $Q_1w_1v_2P_2 \in A$ is longer than Q_1 ; this is impossible. So $v_1v_2 \in E(G)$. Similarly, $v_1v_3 \in E(G)$ and $v_2v_3 \in E(G)$.

If $v_1w_2 \in E(G)$, then w_1w_2 is an edge of graph $G^2 - v$, and the path $Q_1w_1w_2\overline{P}_2 \in A$ is longer than Q_1 ; this is impossible. So v_1w_2 is not an edge of graph G; similarly, $v_iw_j \in E(G)$, $i \neq j$, $1 \leq i$, $j \leq 3$.

Finaly, $w_1w_2 \in E(G)$ is likewise impossible; similarly, w_1w_3 and w_2w_3 are not edges of G.

From above, the induced subgraph H is isomorphic to $S(K_{1,3})$. This is impossible, and so G^2 is Hamiltonian.

The proof is complete.

3. Conclusion

Finally, we note that Gould and Jacobson made a mistake in the proof of Theorem F (namely, Theorem 3 in [5]). Suffice it to say that G_i is the graph in Fig. 3.

Fig. 3 The graph G;

ACKNOWLEDGMENT The authors are very grateful to Professor Tian Feng for his guidance.

REFERENCES

- Fleischner, H., In the square of graph, Hamiltonicity and pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concepts, Monatsh. Math., 82(1976), 125-149.
- [2] Fleischner, H., The square of every two-connected graph is Hamiltonian, J. C. T., Ser. B, 16B(1974), 29-34.
- [3] Harary and Schwenk, Trees with Hamiltonian square, Math. Ematika, 18(1971), 138-140.
- [4] Matthews, M. and D. Sumner, Hamiltonian results in K1,3-free graphs, J. G. T., 8(1984), 139-146.
- [5] Gould, J., and S. Jacobson, Forbidden subgraphs and Hamiltonian properties in the square of a conected graph, J. G. T., 8(1984), 147-154.

平方图的汉米尔顿性

施容华 孙荣国 年 煜 (青海师范大学数学系) (青海省科学技术协会) (青海民族学院数学系)

摘 要

一个图G的平方图(记作G),是在G中把所有距离为2的点对用边相邻接而形成的图。本文主要结果是:

定理. 如果 G 是连通, 无 S(K,,,) 导出子图的图, 则 G 是顶点泛图图。

这样, Gould 和 Jacobson 提出的两个猜想得到证明。结合这一方向上已有的工作,平方图的汉米尔顿问题基本上得到满意的解决。