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for all v €SU{x}. Thus (2, e)€E for all x¢ B and #¢SU{x}, which gives that
G(SUB) is a complete subgraph. Therefore, for all v €SUEB, de(v) = |SUB| —1 =
n—r+ |[Bl —1=n—r + . Consequenty Gisa complete graph and so G is hami-
ltonian.

It can be checked that the class of sequences in Theorem 2 does not satisfy the condition
given by Chvital.

Put # =1. The valee of ! can be any integer from 1 to r — 2. In particular, let /=
r — 2; then Theorem 1 of [1] is obtained.
r

+ 1
Corollary 2.1. Let

If |i — [ ], ﬂ.‘i:h. we have the Eﬂ]]mlﬁg
E

rTi 1%;‘%{-‘_’;1],
d'-_ Fa [ T ]{f£f5
e +1

n=r—1, r<"i=n
where 7, r and f are integers such that 1%:%:-—-2«::[:—-]—-2. Then any graph
with (d,, **+s d,) as its degree sequence is hamiltonian.
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ON THE DEGREE SEQUENCES ENSURING
THE GRAPHS TO BE HAMILTONIAN

Fan Gencova ano Livr Zuesnonc

Two kinds of graphic degree sequences which ensure the graphs to be hamiltopian are
presented in [1], They do not satisfy the condition given by Chwvdtal™, and one of them does
not satisfy the condition given by Bendy and Chvital™. This paper extends the results of [1].

All graphs considered in the paper will be simple. A graph will be denoted by G =
(V,E), where V represents the set of vertices and E the set of edges. If w and » are
vertices in G, then (w, v) denotes an edge with w and ¢ a5 is end points. The ser of
vertices adjacent to a vertex * € V¥ in G is deaoted by To(x) and dg (x) = |Te(x) | s said
to be the degree of x in G. The subgraph of G generated by subset § of V is denoted by
G(S5). The closure of G is the graph cbtained from G by recussively joining pairs of
nonadjacent vertices, whose degree sum is at least |V7|, umtil no such pair remains.

Lemma 1B, A smple groph i Aemiltonian if end only if its closure is hamiltonion.
A sequence (dy, d3y +-+, ds) of non-negative integers is said ro be graphic if it is @
depres seguence of a graph.

Lemma 2¥. A sequence d, =d; = - = d, is grophic if and omly if >, d; is even

i=1

and
k »
Ddi=kk—1D+ >, min (k, &) for l=k<a—1,
=1 imb41
Theorem 1. Le

4 {r—l, 1="i=r,
! n—r4+r—1, r<i=n
ewhere ny r and ¢ are infepers such rhat

zfazsq:r::’ﬂiﬂ.

Then, (i) the class of sequences (dyo dary v+ o da) are graphic if Y+ 2+ n i cven and
n= -’:—a

(i) Amy graph with (dy, dis =<+ 5 dg) a5 its degree sequence is hamiltonian.

Proof. (i) It can he verified by Lemma 2.

Recetved March £, 1953,
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(ii) Lt G=(V, E) be a graph with (d,, d;, ---, da) as its depree sequence and
la G=(V, E) be the closure of G. Set

S={vid{e)=n—r+t—1, veV}

Noting that r=2 and n> 3r — 2r we sec that delw’) + do(a)=2{(n —r + ¢ —
1)=n for all &’ and &” in 5. This implies that G(S) is a complete subgraph of G.

We consider two cases.
Case 1. G(S5) &5 not a complete subgraph of G.

Put
T="leldss(V)=<n—r—1, veS},

Then T #= & and dys{e)=n —r — 1 forall v€S5—T. Thus

{(a) (w, ¢)€EE for all €T and v€5 — T,

On the other hand, since G(S) is a complete subgraph, dg(u) =do(u) + 1 =n —
rt for all weT. This implies

(b) (uy )€ E for all €T and s€V — S,

Consider the subset of Vv — §

B={z|ldals) =r—t+1, x€V — 5},
We now prove that |B| =+ 1,

Suppose |B| =+ Then |T) = r — ¢ since otherwise (b) givs B=F — § and
|Bl| = |V — §| =r=++ 1. Thus

() |§—T|=n—r— |T| Z2n—2r +,
Pick a vertex # € T. From (a), we haye
[Te(w )NV — 8)| < dglam) — |§—T|=<r—1.

Heoco there exists a vertex x3€ ¥ — § such that #€Mz(w,). By (b), de(s) =r — 2+ 1,
which means that (e, ¢) € E for all 65— T. On the other hand, there exists a vertex
o, € §—T such that #El:(x,), since the given condition gives n — 2r + ¢ = r — # = dz(x,)
and () implies |§ — T| = dg(x,). Consequently, dar,) = n — r 4 #, which means {r,
v, )€ E for all x€V — 5. Therefore if y€ (V¥ — 8) — Ig(e)N(V — 8), then dg(y) =
dgly)+ 1l =r—=1r+1,ie. yeB. Tt follows that B2(V — 8§) — Fa{ep ) N — 5)
But |To(e) MV — 8)| = d(ee) —dasy(es) =rand s0 |B| = |V —§| —e=2+1,
which is contrary to the assumption. The contradiction shows that |B| = ¢+ 1,

By the definiticn of B, it is not difficult to see thar G(S5UB) is a complete subgraph.
Thus for all reSUB,

de(e) = |SUBl —1=n—r+ |Bl —1=n—r+1

which gives immediately that (x, v)}€E for al w€SUB and €V — (SUB). This
implies that G is a complete graph. By Lemma 1, G is hamiltonian.

Case 2. G({S8) is a complete subgraph of G.
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In this cass, pick a vertex x, ¢ IV — 5. [Evidently there exists a vertex x, € § such that
(x,, x.)EE. We construct a new graph G* = (V, E¥), where E* = EUU{{x, =.)}.
Nete that dg#{(x,) = r — ¢+ 1. By a proof similar to that in Case 1 (#; plays the same
role 28 x; there), we can show that G* is hamilonian and then the construction of G* implies
that G has a hamilionian chain P jeining x, to x,. Without loss of generality we may assume
that

Py a3+ *Xpqy* Xay

where ;€ VV for 1 ==i==n= |V].

We will show that & is hamiltonian.

Suppose G is nonhamiltonian and let

F'iz) = {21 (xnus 2 E, 2,6 V}

Then (x;, x,)EE for all =, € I'(x,): otherwise & is hamiltonian. On the other hand, since
IT(x,)| = r — ¢ and delx,) = n — r + r—1, we have that if r/€I'"(x )}, then it must be
adjacent to x,. So we can obtain that

{a) r.;e I'(x,) if and only if (x;. 7.)EE.

As G(S) is a complete subgraph and r.€ §, x, must be adjacent to every vertex of §
in G. By (a), T'(+. )V — 5. For the sake of convenience, pur m == r — ¢ and

J“‘l(:l--:l.j - {’:i,! IF,! . Ia'ﬂ,
where | =4, <= f3 == vre <S4 ==m— 1,

Pick a vertex 2, € '(x,) and assume (r;, 2,)€ E. When L1k <<i;, if (xgp,
z,) € E we have a hamiltonian eycle: 2 - 2 y= = cfhp ~ Ha = Taoy 0t Euug t Byt g CoE
Thus (xp4ss *4)EE and x5y € T'(x) by {(2). Furthermore, & <4 and 4, =1# k41
gives that xy4, € {5, %, ***» ¥;l, which implies x4 € {"'-}—1"""1’;-1}' When ; =<
k=mn, if (x5_1, .t',.) £ E, similarly we have a hamiltonian cyeler #;; - 2 y- -5 * x4 -
R T LY Thus (xy_y, r,)EE and 24, € T'(x,) by (a). But f; < & and

20 Xy € {*'Ig: Eijpa? ’“m} which implies x; € {If #13 Figda T ’l,..+:|.} It follows
from the discussions a]:imrc that

X £ {-ra',.—l:l Tty A Fighaa 777 -"'i,.,—l-i]'

for all "'tEr(-"- ). This means I'(x; ) {Ix —py "t aTens Fidas ""r-‘-'a',,,,H.}- But |r(-’«'i;}|=’
r—gm s el s s z.,,u}l and so

r(-"if} = {*},—; s "5 F :Iij--l L :-'F--L:l "t xi_l-:}

which implies {.rj:., z; +1) € E for all i €I'(2,). On the other hand, x,_4, is also adjacenmt
to x; 4 on the chain Pand sodp(s, o) = IT'(x)| +1=r—2+1, implying x;_4, € 5.
But I'(x)CV — 8 and [I'(x)| =r —e=e+ 1 gives doslrin) =de(xi0) —
IT(s,)| = a — r — 2, contradicting that G(.S'J is a complete subgraph. The contradiction
shows that & 18 hamiltoman.

Put r —¢=4k. We obtain the following reformulation of Theorem 1.
Theorem 1'. Le
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d“{i, l=i=k-+1,
Cola—k—1, ki =i=n,

m— ¥

I n,k and ¢ are integers and 1 =< <<k <= » then any graph with (d,, d3, -+,

do) as its depree sequence is hamiltonian.
Put r=4% — 1 in Theorem 1. We have the following immediate consequence.
Corollary 1.1. Let

) n—k—1, 2k<i<n,
If n and k are integers and 2 = k < z _l_ 1 sthen any graph with (dy,- - ,d,) as its degree

sequence ix hamilionian.

From case 2 of the proof in Theorem 1, we see that the closure of G i not a complete
graph, ie. G does not satisfy the condition given by Bondy ond Chvdtal™.

Theorem 2. Let
r— 1, i=i=l,
di=qr, l=i=r,
n—r—1, r<i=n

where ny ry | and ¢ are integers such that
n - f r
Iﬂfﬂér—li[?]—'ld#dﬂ '-‘iz;r{mm{T,r—J}_

Then, (i) the class of requences (dyy -+, d,) are grophic when r* — t + | is even,
(ii) dny groph with (d,, -+, d.) as its degree sequence is hamiltonian.
Proaf. (i) Tt is the consequence of Lemma 2.

(ii) Let G ={(V, E) be a graph with (d,, ---, d,) as its degree sequence and let
G = (V,E) be the closure of G. To prove the theorem, it is sufficient to show that G is
hamiltonian by Lemma 1.

We first partition ¥ into the following three parts
Sw={olde(p) =n—r—1, veV},
B = {v|de(e) = r, vEV}s
W ={v|de(e) =r —1, ve WV}
When +=0, we take arbitrarily ! vertices from those of degree r as W and the remains

as B. So we always have

BAW =@, |B|l=r—I1>¢tad |W|=121.

the definition of closure and r < |-=|, G(S5) is a complete subgraph. But G(S
By p P ph
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it not, since B == @, S
T == {v|dss(v) <n—r—1, veS}
Then T # & and dogs(¢) =0 —r—1 for all v€5 —T. Thus
{a) (¢, w)€E for all w€T and v€§— T,
Noting that dg(s) = ds(u) + 1 =a — r for all € T we also have
(b) (w, )€ E for all u€ T and z€ B,

Combining this with the fact that E(S} is a complete subgraph, we see that dalu) =
|§| =1+ |B| =n—r+z for all ue T, which gives immediately

(c) (uy w)€E for all €T and we W.

We now show that there exists 2 vertex z, € V' — § such that dalx,) = r + 1.
Suppese this is not true, i.e., dg(e) =< r for all x€ ¥ — 5. Then

(1) (#, &) € E for all x€ B and ve T,

This is because if there exist € B and w € T such that (z, «)EE, then, by (b),
da(x) = r + 1, contradicting the asumption.

(D) r+2=|T|=<r,

In fact, l&¢ we T, Then, by (a) and (1), n=—r =1 =dlu) = |5—T| +
|Bl =n—r—|T|+r—=l,andso |[T|Z=r—=1412=2¢+4+12,

If |[T]=r¢+1, then, by (b), ds(») = r + 1 for all x€ B, which iz contrary to
the assumption.

Consider now the vertices in W. Let wéW. If there exist ¢+ 1 wertices im T
nonadjacent o @, then, by (c), dg(w) =ds(w) + ¢+ | = r + 1, a conwradiction. Thus
w is ponadjacent to at most ¢ wvertices of T. ‘This means that & is adjacent ro ar least
| T| — ¢ vertices of T. Therefore there are at least |W | « (| T| — ¢) edges of G connecting
T with W. On the other hand, there are exactly [T| » |§ = T'| edges of G connecting T
with § — T by (a) and |T| = |B| edges of G connecting T with B by (1). It follows
that

SNda) = W] (T =+ |T|-|15—T|+ |T| - |B|

wgT

=Tl eln=r—D)+|T[— TP+ 7 |T| =21
With > dg(#) = |T| + (e —r — 1) we find tha

#gT

0= T = TP+ r-|T|=t-1=(|T| =)= |TDH+r—z-1L
But by (2), (|T] —1)(r — |T]|) = 0. Consequenty :;-EF, contradicting that £ <

min]-:—, ro— 1}. The contradiction shows that there exists a vertex 2,6 7 — 5 such that

da(x)=r + 1.
In this case, G{SU{x}) is clearly a complete subgraph of G and de(e)=n—r



