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Summary
Nielsen, G.G.; Gill, R.D.; Andersen, P.K.; Sorensen, T.I.A. (1992) propose a
consistent and asymptotically normal estimator for the variance of the frailty
distribution under gamma assumption. A simulation study shows that this esti-
mator is asymptotically biased for log-normal and absolute value of normal frailty
distributions.
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1 Introduction

In the last two decades there was a big leap in terms of survival analysis
methodology. This type of analysis has been applied not only in the tra-
ditional areas of biology and engineering, but also in demography, social
sciences and economy. One of the biggest problems in survival analysis is
related to the presence of populational heterogeneity. A very well-known
method of analysis is the method of partial likelihood based on the Cox’s
proportional hazard model (Cox, 1972). In this model it is assumed that
the heterogeneity can be measured through the observable covariates and
they were all included in the model. It is a semi-parametric model since
it considers the hazard function to be unknown but models covariate vari-
ables through a regression model. However, it is possible that there are
factors that are influencing the variable of interest and cannot be measured.
This unobserved covariable can lead to very different conclusions, biased
estimators and reduced efficiency of the model (Heckman and Singer, 1982;
Vaupel and Yashin; 1985; Trussel and Rodrigues, 1990). Several analysis in
epidemiology and prognostic studies require the inclusion of non-observable
covariates. For example, studies about incidence of colon cancer can de-
pend on familiar variable or genetic factors, also it can depend on envi-
ronment factors shared by elements of the same family or living in a close

121



122 Brazilian Journal of Probability and Statistics, 15, 2001

neighborhood. This heterogeneity is frequently called biological variation
and it is recognized as one of the most important source of variations in
medicine and biology (Aalen, 1988).

Frailty models were introduced by Vaupel, Manton and Stallard (1979)
as a generalization of the Cox’s proportional hazards models allowing a
random effect due to the unobserved heterogeneity of each individual (or
group). Estimation for the frailty model has been studied by several au-
thors. In particular, when the frailty has gamma distribution Nielsen et
al. (1992) proposed a maximum likelihood estimator for cumulative haz-
ard function and the variance of the random effect which is consistent
and asymptotically normal ( Murphy, 1994, 1995). The gamma distribu-
tion of the frailty has been used by several authors who justify this choice
based on its analytic simplicity and its variety of forms as the parame-
ters vary. Obviously, the gamma distribution is not the only choice for
the distribution of the frailty. Several other parametric distributions have
been suggested such as absolute value of normal (to be called from here
on absolute normal), log-normal, beta among others (Heckman and Singer,
1982; Hougaard, 1984, 1986; Vaupel, 1990, b; Aalen, 1989). However, the
frailty is an unobservable variable and it is extremely important to study
robust properties of estimators under misspecification of the frailty distri-
bution. For gamma frailty, there is the problem of identifiability (Hoem,
1990). However, making the restriction of unit expectation and letting the
variance be the unknown parameter leads to a nice interpretation. The
variance models the heterogeneity, and when it vanishes the frailty is iden-
tically one for all the subjects (no heterogeneity). For example, to have the
asymptotic distribution of the variance estimator allows to design hypoth-
esis testing for the heterogeneity of the model. The objective of this work
is to show in a simulation study that asymptotic properties of the estima-
tor for the variance proposed by Nielsen et al. (1992) under non-gamma
distributions are not robust.

The outline of the paper is as follows. In Section 2, we describe for
completeness, the estimator under study and its asymptotic properties un-
der gamma frailty, most of this results can be found in Nielsen et al. (1992)
and Murphy (1994, 1995). Section 3 presents the simulation study under
three distributions: gamma, log-normal and absolute normal and we can
see that although the estimator performs well for the gamma case, it lacks
consistency for the other distributions.

2 Maximum likelihood estimation under gamma

distribution

Nielsen et al. (1992) proposed a counting process approach for estima-
tion in frailty models assuming that the random effect follows a gamma
distribution. Let N be a multivariate counting process with components
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Nih where the components with the same value of the index i share the
same frailty variable Zi. Usually the index i refers to a group, and h to
stratum (treatment). The intensity of the process Nih is denoted by λih.
Consider Yi an non-negative observable predictable process and α the basic
unknown risk function. The random effects Zi are i.i.d. gamma distributed
random variables. As pointed before, in order to deal with the identifiabil-
ity problem (Hoem, 1990) we are going to make the restriction E(Zi) = 1
and Var (Zi) = θ and work a single parameter θ. If θ = 0 then Zi ≡ 1 and
there is no heterogeneity in the model. We are going to concentrate on the
semi-parametric model:

λih(t) = ZiYih(t)αh(t) (2.1)

where the basic risk functions αh are unknown and need to be estimated.
That is, the goal is to jointly estimate θ and the accumulated risk functions

Ah(t) =
∫ t

0 αh(u)du, based solely in the observations of (N,Y). In this
case, it is possible to write the joint likelihood of (N,Y). First, write the
joint distribution of (N,Y) given Z = z

f(N,Y) | Z=z(n,y)=
∏

h

∏

t

(ziYih(t)αh(t))∆Nih(t) exp
[

−zi

∫ τ

0
Yih(u)dAh(u)

]

,

(2.2)
where τ denotes the end of the observation period. Multiplying the condi-
tional density (2.2) by the gamma density of Z we obtain the joint distri-
bution of (N,Y,Z) as

fN,Y,Z(n,y, z) =
∏

h

∏

t

(ziYih(t)αh(t))∆Nih(t)

exp
[

−zi

∫ τ

0
Yih(u) dAh(u)

]( 1
θ
)

1

θ (zi)
1

θ
−1

Γ(1
θ
)

exp
[

−1

θ
zi

]

. (2.3)

Integrating over z the complete density given by (2.3), we obtain the
joint density of (N,Y)

fN,Y(n,y) =

(1
θ
)

1

θ

Γ(1
θ
)

∏

h

∏

t

(Yih(t)αh(t))∆Nih(t) Γ(
∑

u ∆Nih(u)+ 1
θ
)

[1
θ
+
∫ τ

0 Yih(u)dAh(u)]
∑

u
∆Nih(u)+1

θ

. (2.4)

Dividing the joint density of (N,Y,Z) by the marginal density of
(N,Y) we have that the conditional distribution of Z given (N,Y) is prod-
uct of gamma densities with mean

∑

u ∆Nih(u) + 1
θ

[ 1
θ

+
∫ τ

0 Yih(u)dAh(u)]
(2.5)
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and variance
∑

u ∆Nih(u) + 1
θ

[1
θ

+
∫ τ

0 Yih(u)dAh(u)]2
. (2.6)

In this case, it is possible to jointly estimate (θ,A) using the EM algo-
rithm (Dempster et al., 1977). The E-step consists in estimating the value
of the Zi’s by their conditional expectation given (N,Y)

E − step : Ẑi =

∑

h ∆Nih(τ) + 1
θ

[1
θ

+
∑

h

∫ τ

0 Yih(u)dAh(u)]
(2.7)

and the M-step is given by the Nelson-Aalen estimator of A given by

M − step : Âh(t) =

∫ t

0

dN·h(u)
∑

i ẐiYih(u)
(2.8)

where N·h =
∑

i Nih.

Given the estimates Ẑi and Â(t), we can estimate the hazard function
for each individual as

Λ̂i(t) = Ẑi

∫ t

0
Yi(u) α̂(u) du = Ẑi Â(max{t;Yi(t) = 1}). (2.9)

The likelihood L(θ) was based on the joint distribution of (N,Y ) and

the EM algorithm to obtain the estimates Â1 and Â2 of the risk function
for each stratum. Let

L(θ) :=
n
∏

i=1

2
∏

h=1







(

1
θ

)
1

θ

Γ
(

1
θ

)

∏

t

(Yih(t)dAh(t))△Nih(t)

Γ
(

Nih(τ) + 1
θ

)

[

1
θ

+
∫ τ

0 Yih(u)dAh(u)
]Nih(τ)+ 1

θ







. (2.10)

Let θ̂ denote the maximum likelihood estimator as obtained by Nielsen
et al. as the argument that maximizes L(θ). However, since θ represents
the variance of the frailty distribution, we consider the parameter space to
be [0,∞) and compute the maximum likelihood estimator of θ as

θ̃ := arg max
θ≥0

L(θ). (2.11)
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2.1 Asymptotic results under gamma distribution

In this section, we state the results of Murphy (1994, 1995) for the estimator

of the variance θ. Call θ0 the true value of the variance. The results for θ̃
follow immediately from these ones.

2.1.1 Consistency and asymptotic normality

Theorem 2.1 (Murphy (1994, 1995)) i) θ̂
P−→ θ0 and

ii)
√

n (θ̂ - θ0)
D−→ N(0, σ2)

as n → ∞ where σ2 is computed through the Fisher information matrix

σ2 =

[

E

(

− ∂2L(θ,A)

∂θ2

∣

∣

∣

∣

(θ0,A0)

)]−1

. (2.12)

In the following, we are going to detail some of the calculation necessary
to obtain σ2. In order to compute the second partial derivative of L(θ,A)
with respect to θ, we can use the following equivalent definition

L(θ,A) =
1

n

n
∑

i=1

∫ τ

0
ln (1 + θNi(u−)) dNi(u)

−
(

θ−1 + Ni(τ)
)

ln

(

1 + θ

∫ τ

0
Yi(u)dA(u)

)

+

∫ τ

0
ln (Yi(u)△A(u)) dNi(u). (2.13)

Therefore,

− ∂2L(θ,A)

∂θ2

∣

∣

∣

∣

(θ0,A0)

= n−1
n
∑

i=1

∫ τ

0

(

Ni(t−)

1 + θ0Ni(t−)

)2

dNi(t)

−Ni(τ)

(

∫ τ

0 YidA0

1 + θ0

∫ τ

0 YidA0

)2

+ 2θ−3
0

[

log

(

1 + θ0

∫ τ

0
YidA0

)

− θ0

∫ τ

0 YidA0

1 + θ0

∫ τ

0 YidA0
− 1

2

(

θ0

∫ τ

0 YidA0

1 + θ0

∫ τ

0 YidA0

)2
]

,

when θ0 = 0 , the last term is defined by its limit 2
3

(∫ τ

0 YidA0

)3
.

Notice that θ̃ = θ̂1
θ̂≥0 and we have
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Proposition 2.1 The restricted estimator θ̃ satisfies:

i) θ̃
P−→ θ0 ;

ii)
√

n(θ̃ − θ0)
D−→ G.

as n → ∞ where G is a random variable with cumulative distribution
function given by

FG(u) = (1/2)1[θ0=0]1{0}(u) + Φ(u/σ)1(0,∞)(u) (2.14)

where Φ is the cumulative distribution function of the standard normal and
σ is given by expression (2.12).

2.1.2 Asymptotic variance σ2

Case 1: θ0 = 0. In this case, all Zi ≡ 1 and there is unobserved hetero-
geneity and σ2 can be obtained through the following expected value:

E

{

n−1
n
∑

i=1

2
∑

h=1

[

∫ τ

0
(Nih(t−))2dNih(t) − Nih(τ)

(
∫ τ

0
YihdA0h

)2

+
2

3

(
∫ τ

0
YihdA0h

)3
]}

= n−1
n
∑

i=1

2
∑

h=1

{

E

[
∫ τ

0
(Nih(t−))2dNih(t)

]

−E

[

Nih(τ)

(
∫ τ

0
YihdA0h

)2
]

+
2

3
E

[

(
∫ τ

0
YihdA0h

)3
]}

. (2.15)

Noting that α0h(t) = λ, Nih(τ) = 1 and Nih(t−) = 0 since before time
t there is no failure,

E

[

(
∫ τ

0
YihdA0h

)3
]

= E
[

(λmax {t : Yih(t) = 1})3
]

, (2.16)

E

[

Nih(τ)

(
∫ τ

0
YihdA0h

)2
]

= E
[

(λmax {t : Yih(t) = 1})2
]

, (2.17)

E

[
∫ τ

0
(Nih(t−))2dNih(t)

]

= E

[

τ
∑

t>0

(Nih(t−))2△Nih(t)

]

= 0. (2.18)
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Therefore, for non-censored data we have

σ2 =

{

n−1
n
∑

i=1

2
∑

h=1

[

2

3
E
[

(λmax {t : Yih(t) = 1})3
]

−E
[

(λmax {t : Yih(t)})2
]]}−1

. (2.19)

If there are censored data, we have to modify (2.17) as

E

[

Nih(τ)

(
∫ τ

0
YihdA0h

)2
]

=E

[

E

[

Nih(τ)

(
∫ τ

0
YihdA0h

)2

|Nih(τ)]

]

= E
[

Nih(τ)E
[

(λmax {t : Yih(t) = 1})2
]]

. (2.20)

Using the fact that Nih(τ) = 1 if, and only if there is failure we have

σ2 =

{

n−1
n
∑

i=1

2
∑

h=1

[

2

3
E
[

(λmax {t : Yih(t) = 1})3
]

−E
[

(λmax {t : Yih(t) = 1})2
]

P (failure)
]}−1

(2.21)

Case 2: θ0 > 0. In this case, the computation of the expression (2.12)
is much more difficult. A much simpler approach is to use the observed
Fisher information number given by

I
(

θ̂
)

= n−1
n
∑

i=1

2
∑

h=1







∫ τ

0

(

Nih(t−)

1 + θ̂Nih(t−)

)2

dNih(t)

−Nih(τ)

(

∫ τ

0 YihdA0h

1 + θ̂
∫ τ

0 YihdA0h

)2

+2θ̂−3

[

log

(

1 + θ̂

∫ τ

0
YihdA0h

)

− θ̂
∫ τ

0 YihdA0h

1 + θ̂
∫ τ

0 YihdA0h

− 1

2

(

θ̂
∫ τ

0 YihdA0h

1 + θ̂
∫ τ

0 YihdA0h

)2










.

Working out the following integrals:
∫ τ

0
YihdA0h =

∫ τ

0
Yih(t)α0h(t)dt = A0h (max {t : Yih(t) = 1}) (2.22)
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∫ τ

0

(

Nih(t−)

1+θ̂Nih(t−)

)2

dNih(t)=
∑

t>0

(

Nih(t−)

1+θ̂Nih(t−)

)2

△Nih(t)=0. (2.23)

we obtain the following expression:

I(θ̂) = n−1
n
∑

i=1

2
∑

h=1







−Nih(τ)

(

A0h (max {t : Yih(t) = 1})
1 + θ̂A0h (max {t : Yih(t) = 1})

)2

+2(θ̂)−3
[

log
(

1 + θ̂A0h (max {t : Yih(t) = 1})
)

− θ̂A0h (max {t : Yih(t) = 1})
1 + θ̂A0h (max {t : Yih(t) = 1})

−1

2

(

θ̂A0h (max {t : Yih(t) = 1})
1 + θ̂A0h (max {t : Yih(t) = 1})

)2










. (2.24)

3 Simulation studies

In the following, we will follow the simulation procedure of Nielsen et al
(1992) and concentrate on the two sample case, that is h = 1, 2. In this case,
we are assuming that there are two individuals sharing the same frailty,
for example, brothers. For simplicity, we take α1(t) = α2(t) ≡ 1, however
in the analysis, A1 and A2 are estimated non-parametrically. For selected
values of the variance parameter θ of the frailty density, we generate m
datasets of n independent pairs (ti1, ti2) of survival times in the following
way using S-Plus to generate the random variables:
vih, i = 1, . . . , n, h = 1, 2 independent exp(1) random variables;
zi, i = 1, . . . , n, independent and identically distributed random variables
with mean one and variance θ (to be generated using gamma, log-normal
and absolute normal distributions);

tih = vih/zi. (3.1)

The data were analyzed twice, one time without censoring. The second
time a U(0, 8) censoring variable was used. That is, let cih, i = 1, . . . , n, h =
1, 2 be independent and identically distributed U(0, 8) random variables
and let

tih = min{vih/zi, cih}. (3.2)

3.1 Estimation of θ0

For all of the cases, the tables present the average and standard deviation
for several simulation studies. For all cases, the sample size n are 100,
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200, 500 and 1000. The estimator θ̃ were computed using the procedure
described above. These values can be compared with the values θ̂ presented
in Nielsen et al. (1992). In all cases, we have m = 200 repetitions of
the experiment. All simulations were carried using S-plus running on a
PC. Matlab for Windows was used for the maximization and iteration
procedure.

3.1.1 Gamma frailty

Table 1 presents the average and standard deviation when the data was
generated by equations (3.1) or (3.2) and z1, . . . , zn are independent and
identically distributed gamma random variables with mean one and vari-
ance θ. Also, we present in this table the standard deviation of the esti-
mator using expression (2.19) and (2.21) for θ0 = 0. For the case, θ0 > 0
only the variance based on the observed Fisher information given by (2.24)

was computed to obtain σ̂(θ̃). As expected the estimative θ̃ are very close
to the true parameter value θ0. Also, as n increases the approximation
gets better. In fact, it is closer for censored data, although the standard
deviation also increases.

Table 1

Mean and standard deviation for 200 replication of estimate of θ0, σ(θ̃)
and σ(θ̃) are the standard deviation of the estimate computed using
true and observed Fisher information number respectively, under gamma
frailty

Uncensored data Censored data

n θ0 mean SD σ(θ̃) σ̂(θ̃) mean SD σ(θ̃) σ̂(θ̃)

0.0 0.0201 0.0471 0.0500 0.0415 0.0276 0.0503 0.0471 0.0501
100 0.2 0.1476 0.1188 — 0.0967 0.1614 0.1398 — 0.1248

0.4 0.3133 0.1634 — 0.1337 0.3200 0.1739 — 0.1679

0.0 0.0170 0.0320 0.0353 0.0289 0.0175 0.0366 0.0333 0.0352
200 0.2 0.1639 0.0883 — 0.0658 0.1653 0.0917 — 0.0862

0.4 0.3460 0.1181 — 0.1258 0.3519 0.1316 — 0.1357

0.0 0.0110 0.0201 0.0223 0.0183 0.0119 0.0219 0.0210 0.0222
500 0.2 0.1816 0.0592 — 0.0475 0.1855 0.0719 — 0.0568

0.4 0.3713 0.0749 — 0.0958 0.3832 0.0877 — 0.0978

1000 0.2 0.1884 0.0468 — 0.0353 — — — —
0.4 0.3756 0.0585 — 0.0693 — — — —

Figure 1 presents the histograms of the simulated values. We can ob-
serve that for θ0 = 0 we have a mixture of a normal random variable and a
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discrete variable with mass concentrated at 0. For θ0 > 0 we can see that
as n increases the approximation to a normal variable is attained. These
conclusions were expected in view of the results of Murphy (1994, 1995),
however they were included for the sake of comparison with the log-normal
and normal case.
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Figure 1: Histogram for 200 simulation of the estimator θ̃ under

gamma frailty

3.1.2 Log-normal and absolute normal frailty

Table 2 presents the average and standard deviation when the data was gen-
erated by equations (3.1) or (3.2) and z1, . . . , zn are independent and identi-
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cally distributed log-normal random variables and z1 = |w1|, . . . , zn = |wn|,
where w1, . . . , wn are independent and identically distributed normal ran-
dom variables with mean one and variance θ. In these cases, the expressions
for the observed Fisher information are not so easily obtained as in (2.24)
and are not presented. Notice that for the log-normal case the values of
θ̃ underestimates the true variance, whereas for the absolute normal case
it overestimates it, even for very large sample n = 1000 it has a very big
bias. On the other hand, Figures 2 and 3 present the histograms of the
simulated values and we can see that, although the mean do not approach
the true value, the curves approaches a normal curve.

Table 2
Average and standard deviation for 200 replication of estimate of θ0

under log-normal and absolute normal frailty

log-normal absolute normal

Uncensored Censored Uncensored Censored

n θ0 mean SD mean SD mean SD mean SD

100 0.2 0.1035 0.0938 0.1091 0.1074 0.3526 0.1844 0.3028 0.1809
0.4 0.1862 0.1326 0.2136 0.1568 0.5395 0.1817 0.5199 0.1977

200 0.2 0.1195 0.0866 0.1292 0.0950 0.3255 0.1135 0.2931 0.1221
0.4 0.2280 0.1063 0.2533 0.1225 0.5749 0.1340 0.5454 0.1430

500 0.2 0.1361 0.0574 0.1388 0.0644 0.3470 0.0680 0.3072 0.0705
0.4 0.2407 0.0624 0.2573 0.0722 0.6076 0.0907 0.5691 0.0976

1000 0.2 0.1388 0.0374 — — 0.3546 0.0515 — —
0.4 0.2573 0.0469 — — 0.6275 0.0675 — —

4 Conclusion

The estimator proposed by Nielsen et al. (1992) based on the EM-algorithm
is very good and it has optimal asymptotic properties for the case that
it was designed for, unobserved frailty variable with gamma distribution
(Murphy, 1994, 1995). However, as the simulation study shows, the estima-
tor is not consistent when the gamma assumption fails. It underestimates
the variance for log-normal frailty and overestimates it in the absolute nor-
mal case. On the other hand, the histograms show that, although the
estimator is not consistent, it still follows asymptotically a normal distri-
bution and maybe it could be possible to find a non-parametric correction
for the bias. This is not, however the objective of this work. We would like
to stress that, the frailty variable is not observable, therefore it cannot be
tested to check whether it satisfies the distributional assumption. Conse-
quently, caution must be taken when using a parametric procedure, since
a misspecification on the hypothesis can lead to a very strong bias.
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Figure 2: Histogram for 200 simulation of the estimator θ̃ under

log-normal frailty
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Figure 3: Histogram for 200 simulation of the estimator θ̃ under

absolute normal frailty
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