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Summary

Competing risks analysis with two causes of failure was considered. Since inde-
pendence of causes are not realistic in many situations, bivariate dependent model
was considered for the underlying causes of failure. The absolutely continuous
bivariate Weibull model proposed by Ryu (1993) was modified in order to derive
a Weibull competing risks model with crude and net hazards equals. This condi-
tion allow identifiability of the marginals corresponding to each cause of failure.
Identifiability and estimation of its parameters by maximum likelihood method
are investigated. Also, tests for some hypotheses of interest were studied. Sim-
ulation studies for comparison of the proposed, Ryu’s and independent Weibulls
bivariate models and of proposed with independent competing risks models were
performed. Applications to real data also are presented.
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1 Introduction

In a variety of fields the time of failure can be associated with a cause of
failure. For instance, in the clinical trial for breast cancer from Lagakos
(1977), the failures times were associated with either local or metastases
causes of failure. This is called competing risks situation. Also, censored
observations can occur when the observed time of the experiment is limited
(type I censoring) or either by the limitation of the number of failure (type
II censoring) both by design or can be random (random censoring). In
the competing risks setting, the dichotomous variable δ indicates censoring
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when δ = 0 and failure when δ = 1. It can be also be observed the vector of
fixed covariates z′ = (z1, z2, ..., zp), at the initial time t0 for each individual
or to be time-dependent covariates. Thus, the data for each individual is
(tj , ij , δj , zj), j = 1, 2, .., n.

We may consider the following: the random variables failures times
T1, T2, ..., Tk are associated with causes C1, C2, .., Ck, respectively, so that,
the observed failure is T = min(T1, T2, ..., Tk) corresponding to the cause
of failure Ci, i = 1, 2, .., k. Prentice et al.(1978) has approached the com-
peting risks problem considering the observed random variable T for the
time of failure (when δ = 1) or for the time of censoring (when δ = 0),
in the independent random mechanism. An alternative approach consider
parametric model for the underlying times corresponding to the causes of
failure. Usually the k failures times were considered independents, in or-
der to avoid the identifiability problems. Since, in some applications, the
times of failures corresponding to the causes of failures are generally not
independent, in particular for two causes of failures, bivariate dependent
parametric model for the underlying times corresponding to the causes of
failures could be considered. Thus, given the joint survival distribution of
T1 and T2, denoted by S(t1, t2), the competing risks model proceed deriv-
ing the distribution of T = min(T1, T2) and I = i , i = 1, 2. Although
this approach appears to be more adequate at the statistical point of view,
many problems arises. The first one, is the identifiability problems in most
of bivariate distributions; since T and δ are observed; further, neither the
parameters of S(t1, t2) nor its marginals may not be identifiable. Also,
in competing risks situation there would be more adequate to choose ab-
solutely continuous bivariate distribution since its particular assumption
of failure are due to a single cause. Also, there exist a natural practical
appealing of choosing a bivariate distribution according to its marginals
distributions.

Thus, among the bivariate distributions proposed in the literature, bi-
variate exponential distributions have meet special attention: Marshall
and Olkin (1967), Block-Basu (1974), Raftery (1984), Sarkar (1987) and
Ryu (1993), among others. Among them, only Marshall-Olkin bivariate
exponential distribution is not absolutely continuous and both, Raftery
and Sarkar bivariate exponential distributions presented marginals expo-
nentials. The bivariate exponential distribution of Ryu (1993) (ACBE1),
is an extension of a non-absolutely continuous bivariate distribution of
Marshal and Olkin (1967) and is absolutely continuous. The Marshall
and Olkin’s bivariate Weibull distribution (BVW1) is the generalization
of Marshall and Olkin’s bivariate exponential distribution, with marginals
Weibulls and is not absolutely continuous. The bivariate Weibull model
suggested by Ryu (ACBW1) is not a generalization of BVW1, but a exten-
sion of ACBE1; its marginals are not Weibull. Therefore, it is not bivariate
Weibull distribution in strictly sense.

The parametric competing risks model based on bivariate distributions
has been studied by Moeschberger (1974), with bivariate Weibull model
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of Marshall and Olkin, by Wada and Sen (1995), with Sarkar exponen-
tial model and Bhattacharyya (1997) with bivariate exponential model of
Raftery, among others.

The objective of this study was to investigate a competing risks model
with two causes of failure considering a modified bivariate Weibull distri-
bution from Ryu (ACBW1), in order to obtain a competing risks model
with identifiable marginals. Identifiability and estimation of the parame-
ters by maximum likelihood method are investigated. Tests of hypotheses
of independence and exponential distribution are performed.

In Section 2, the modified bivariate Weibull model (ACBW2) and the
derivation of competing risks model (CRW1) based on this modified Wei-
bull model are presented. Section 3 consider estimation and tests of hy-
potheses of the parameters of this competing risks model. Simulation stud-
ies using the bivariate modified model and competing risks model are pre-
sented in Section 4. Finally, in Section 5, application of these models are
conducted in two real data sets. Conclusions are presented in Section 6.

2 Weibull bivariate and competing risks models

In this section, the derivation of a modified Weibull bivariate model based
on the bivariate Weibull model formulated by Ryu (1993) and a Weibull
competing risks model based on this modified bivariate model are pre-
sented.

The joint survival function of the bivariate Weibull model ACBW1
formulated by Ryu (1993) is given by:

S(t1, t2) =



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




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


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(1 − e−A1) + λ12
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e−A1 − e−A3
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}
if t1 > t2,

(2.1)

with A1 = γ1(t1 − t2), A2 = γ2(t2 − t1), A3 = γ1t1 + γ2t2 and γ0 = γ1 + γ2.
We can note that for α1 → 1 and α2 → 1, the survival function is the

bivariate exponential survival function ACBE1 of Ryu. Thus, it is exten-
sion of the exponential Ryu’s model. Further, if α1 → 1, α2 → 1, γ1 → ∞
and γ2 → ∞, this become the bivariate exponential survival function of
Marshall and Olkin (1967). It is an absolutely continuous distribution,
unless γ1 = γ2 = ∞. When λ12 = 0, T1 and T2, are independent. The
association between T1 and T2, can be measured by the correlation coeffi-
cient, which was positive for this model and by the measure of dependence
introduced by Slud and Rubstein (1983), ρ(t) > 1, also indicating positive



224 Brazilian Journal of Probability and Statistics, 15, 2001

association. This ACBW1 is not Weibull in the sense that its marginals
are not Weibull.

2.1 The modified Weibull bivariate model

Proposition 2.1 A modified Weibull bivariate distribution (ACBW2) with
survival function S∗ (t1, t2) given by:

S∗ (t1, t2) =




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(2.2)

with A0 = λ1t
α1

1 + λ2t
α2

2 + λ12(t1 + t2), is obtained from ACBW1 (2.1).

Proof: For the derivation of the bivariate Weibull model ACBW1 given
in (2.1), Ryu considered two plants, sharing a commom risk of break-
down, subject to three independent Poisson shock processes {Ni(t), t ≥ 0}
i = 1, 2 for the plant-specific component and {N12(t), t ≥ 0} for the com-
mom component of the plant with intensity rate λi, i = 1, 2 and λ12,
respectively. For these processes, the random variables Xi, i = 1, 2 (Xi ∼
Weibull(λi, αi)) are the times up to the first jump of the process Ni and
Zi, i = 1, 2 are the duration variables having a conditional hazard rates
γiN12(t) at the time t giving a realization N12. The hazard rate of Zi at
time t is λ12(1 − e−γit) for i = 1, 2 (Ryu, 1993, p.1459). He stated the
joint survival function of T1 and T2 (Ti = min(Xi, Zi), i = 1, 2), the times
of failure of ith plant, i = 1, 2 as:

S(t1, t2) =

P (X1>t1)P (X2>t2)E

{

exp

[

−γ1

∫ t1

0
N12(u)du−γ2

∫ t2

0
N12(u)du

]}

. (2.3)

The expectation term in (2.3) for t1 ≤ t2 (the case of t1 > t2 is similar)was
derived as:

E
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N12 (u) du− γ2

∫ t2

0
N12 (u) du

]}

= E

{

exp

[

−γ0
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. (2.4)
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At this point of Ryu’s derivation we introduced the following argument
for the calculation of the first expectation of the expression (2.4): EW 2 ≥
(EW )2. Thus,

E
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.

This last expression was solved using the same argument as in Ryu’s deriva-
tion (Ryu, 1993, p.1464). The second expectation follows the derivation of
Ryu:

E
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]

.

Then the product in (2.4) can be written as:

E
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.

Therefore S(t1, t2) ≥ S∗(t1, t2) given in (2.2).

Properties of this distribution:
a) This distribution is absolutely continuous, that is, P (T1 = T2) = 0.
b) The bivariate hazard functions as defined by Johnson and Kotz

(1975) are:

λ∗i (t1, t2) = −∂ log S∗(t1, t2)

∂ti

=

{

λiαit
αi−1
i + λ12(1 + e−A2) +Ai1 if t1 ≤ t2

λiαit
αi−1
i + λ12(1 − e−A1) +Ai2 if t1 > t2

(2.5)
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where i = 1, 2, A11 = −2λ12
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c) The marginals S∗
Ti

(ti) = exp
[

−λitαi

i − λ12ti +
λ12

γi

(

1 − e−γiti
)

]

have

constant, increasing or decreasing net hazard rates expressed by:

h∗i (t) = −
∂ log S∗

Ti
(ti)

∂ti

∣

∣

∣

ti=t
= λiαit

αi−1 +λ12(1−e−γit), for i = 1, 2, (2.6)

depending on the values of γi and αi. When γi → ∞, the hazard is constant
for αi = 1, is decreasing for αi < 1 and increasing for αi > 1. Note that
the marginals are similar as Ryu’s model.

d) When γi → ∞, the ACBW2 model become independent model with
marginals as compound independent survival of Weibull and exponential
survivals distributions. When λ12 = 0, the ACBW2 model become an
independent Weibull model.

e) The variables (T1, T2) following this joint survival function presents
the coefficient of correlation negative when γ1 = γ2 or when γi → ∞
and λ12 → ∞; the coefficient of correlation is positive when γi → ∞ and
λ12 → 0. The measure of dependence of Slud and Rubstein ρ(t) gave a more
general result which was dependent of γ1 and γ2 : for γ1 < γ2, ρ(t) > 1
indicating a positive association and for γ1 > γ2, ρ(t) < 1, indicating a
negative association. When setting γ1 = γ2 = γ, ρ(t) = 1 which indicate
no association.

f) Comparison between the ACBW1 and ACBW2 models show that
the reduction of the model ACBW2 over ACBW1 is a function of λ12, γ1
and γ2 as shown bellow. When γ1 → ∞ and γ2 → ∞, then the difference
is exp(λ12t1) in case of t1 ≤ t2 and exp(λ12t2) in case of t1 > t2. In fact,
for t1 ≤ t2,

S(t1, t2)

S∗(t1, t2)
= exp

[

λ12t1 +
λ12

γ0

(

e−A2 − e−A3
)

− 4λ12

γ0

(

e−
A2
2 − e−

A3
2

)

]

≥ 1.

Estimation of the parameters:
In order to construct the likelihood function, including censored obser-

vations, we denote C1 the set of observations where t1 and t2 are failure
times, C2 the set of observations where t1 is time of failure and t2 is cen-
sored times, C3 is the set of observations where t1 is censored times and
t2 is failure times and finally, C4 is the set of observations where both are
censored times. Considering the observations (t1j , t2j), i = 1, 2, ..., n, the
likelihood function can be written as (Lawless, 1982, p.479):

L(θ)=
∏

j∈C1

f∗(t1j , t2j)
∏

j∈C2

−∂S
∗(t1j , t2j)

∂t1j

∏

j∈C3

−∂S
∗(t1j , t2j)

∂t2j

∏

j∈C4

S∗(t1j , t2j),

(2.7)
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where: S∗(t1j , t2j) is the survival function given in (2.2); −∂S∗(t1,t2)
∂t1

=
∫ ∞
t2j
f∗(t1j , v)dv is the joint probability of the failure of the first component

t1j and censor of the second component; −∂S∗(t1j ,t2j)
∂t2j

is the joint probability

of censor of the first and failure of the second, and finally, f∗(t1j , t2j) is the

joint density function between t1j and t2j . The expressions for −∂S∗(t1j ,t2j)
∂t1j

,

for −∂S∗(t1j ,t2j)
∂t2j

and for f∗(t1j , t2j) are:

−∂S
∗(t1j , t2j)

∂tij
= S∗(t1j , t2j)λ

∗
i (t1j , t2j), for i = 1, 2,

where λ∗i (t1j , t2j), i = 1, 2 are given in (2.5) and

f∗(t1j , t2j)=S
∗(t1j , t2j)

[

−∂S
∗(t1j , t2j)

∂t1j

][

−∂S
∗(t1j , t2j)

∂t2j

][

1

S∗(t1j , t2j)

]

× Ei,

(2.8)

where E1 = λ12γ2e
−A2 − λ12γ2

γ0
(γ2e

−
A2
2 + γ1e

−
A3
2 if t1j ≤ t2j and E2 =

λ12γ1e
−A1 − λ12γ1

γ0
(γ1e

−
A1
2 + γ1e

−
A3
2 if t1j ≤ t2j .

The MLE of the parameters of ACBW2 are found, by iterative methods,
using the likelihood function given in (2.7).

2.2 A Weibull competing risks model

In a competing risks situation, the observed random variables are (T, I)
where the observed failure time is the minimum of the hypothetical times
of failures (Ti, i ≥ 1) from different causes and I is the index relating to
the specific cause of failure. Therefore, the data from this situation is
(tj , δij), where : δij= 1 if the cause of failure is i and 0 otherwise, i ≥ 1
and j = 1, 2, ..., n.

For the current study, we consider the latent parametric approach for
the competing risks analysis with two causes of failures. In this setting we
need to consider a joint parametric bivariate distribution for the underlying
times of failures (T1, T2) and derive the distribution of (T, I) and related
functions.

We consider S∗(t1, t2) given in (2.2) when γ1 = γ2 = γ as the sur-
vival function of the underlying times T1 and T2. The survival function of
observed time T = min(T1, T2) is given by:

ST (t) = exp

[

−λ1t
α1 − λ2t

α2 − 2λ12t+
2λ12

γ
(1 − e−γt)

]

, t > 0 (2.9)

and the corresponding total hazard function by:

λT (t) = λ1α1t
α1−1 + λ2α2t

α2−1 + 2λ12(1 − e−γt). (2.10)
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It can noted that this hazard function is written as the sum of the hazard
functions of Weibull distributions (corresponding to the variables X1 and
X2) and the hazard functions of the distribution of Z1 and Z2 (duration
variables).

In the bivariate hazard functions (property b, section 2.1), if we set
t1 = t2 = t, we have the crude hazard functions, the instantaneous rate of
failing from cause Ci at time t where both causes are acting simultaneously
(Elandt-Johnson et. al., 1980, p.273):

λi(t) = −∂S(t1, t2)

∂ti

∣

∣

∣

t1=t2=t

1

ST (t)
= λiαit

αi−1 + λ12(1 − e−γt), i = 1, 2

(2.11)

with λT (t) =
∑2

i=1 λi(t), that is, the failure may be due to a unique cause.
In this model, the net and crude hazard, given respectively in (2.6) and
(2.11), are equal. This is the property we were seeking in a Weibull compet-
ing risks model in order to have identifiability of the marginals distributions
(Fleming and Harrington, 1991, p.26).

Using (2.11), the total survival function ST (t) in (2.9) can be expressed
by:

ST (t) =
2

∏

i=1

exp

{

−
∫ t

0
λi(u)du

}

=
2

∏

i=1

Gi(t) (2.12)

where Gi(t) is a pseudo survival function, called by Elandt-Johnson et al.
(1980, p.278) as the distribution due to the cause Ci alone and for this
model,

Gi (t) = exp

{

−
∫ t

0
λi (u) du

}

= exp

{

−λitαi − λ12t+
λ12

γ
(1 − e−γt)

}

= S∗
Ti

(t) , i = 1, 2.

The distributions of the probability for the time of failure for cause Ci is:

Qi(t) = P (T < t, I = i) =

∫ t

0
λi(u)ST (u)du =

∫ t

0
fi(u)du

=

∫ t

0

{

λiαiu
αi−1 + λ12(1 − e−γu)

}

exp
{

−λ1u
α1 − 2λ12u

−λ2u
α2 +

2λ12

γ
(1 − e−γu)

}

du, i = 1, 2

where fi(t) is the probability density associated to the cause Ci.
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The likelihood function for the total time of failure T , independent
censoring and considering causes of failures, is proportional to

L =

2
∏

i=1







Di
∏

j=1

λi(tj)

n
∏

j=1

{

exp[−
∫ tj

0
λi(u)du]

}







(2.13)

where Di is the set of individuals that fail for cause Ci. For the ACBW2,
the likelihood function given in (2.13), can be written as:

L(θ) =

n
∏

j=1

2
∏

i=1

(

λiαit
αi−1
j + λ12(1 − e−γtj )

)δij
exp

{

−λitαi

j − λ12tj

+
λ12

γ
(1 − e−γtj )

}

(2.14)

where δij = 1 if the cause of failure is i and 0 otherwise, i = 1, 2. The pa-
rameter space for this model is: Θ = {0 < λ1 <∞, 0 < α1 < ∞, 0 < λ2 <
∞, 0 < α2<∞, 0≤λ12<∞, 0< γ<∞}, and θ = (λ1, α1, λ2, α2, λ12, γ)

′ is
the vector of the parameters. They are all identifiable.

The maximum likelihood estimates (MLE) of θ, θ̂ = (λ̂1, λ̂2, λ̂12, α̂1, α̂2,
γ̂) are found maximizing the likelihood (2.14) by iterative numerical meth-
od.

3 Estimation and tests of hypotheses of the pa-

rameters of the Weibull competing risks model

In this section we studied the regularity conditions for the large sample
properties of the MLE and some hypotheses tests of interest.

As in Lehmann and Casella (1998, p.463), the model must satisfies
the conditions given in Lemma 3.1 and 3.2 bellow. Consider the vector
of the scores statistics U(θ) = (U(θ1), U((θ2), ..., U(θs))

′, where U(θi) =
∂ log f(t,δ|θ)

∂θi
, i = 1, 2, ..., s and the s×smatrix I(θ) of the information matrix

whose elements are Ijk = cov
[

∂ log f(t,δ|θ)
∂θj

,
∂ log f(t,δ|θ)

∂θk

]

, j, k = 1, ..., s.

Lemma 3.1 The elements Ijk, j, k = 1, 2, ...., s of I(θ) are finite and I(θ)
is a positive definite for all θ in ω ⊂ Ω, a open set of which the true
parameter value θ

0, is an interior point.

Lemma 3.2 There exist functions Mjkl such that
∣

∣

∣

∂3

∂θj∂θk∂θl
log (f(t, δ|θ))

∣

∣

∣

≤Mjkl(t) for all θ ∈ ω where mjkl = Eθ[Mjkl(t)] <∞ for all j, k, l.
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The proofs are outlined as follows: Denoting

B = B1 ×B2 =

[

2
∏

i=1

(

λiαit
αi−1 + λ12(1 − e−γt)

)δi

]

,

C = exp

{

−
[

2
∏

i=1

λit
αi

]

− 2λ12t+
2λ12

γ
(1 − e−γt)

}

, and

D = exp

{

−λ1t
α1 +

2λ12

γ

}

with the following restrictions: a)0 < (1 − e−γt) ≤ 1, γ > 0 and t > 0,
b) | log(t)| ≤ t−1 if t ≤ 1 and | log(t)| ≤ t if t ≥ 1, it can be show that

in Lemma 3.1: Ijk(θ) = E
(
∣

∣

∣
−∂2 log f(t,δ|θ)

∂θj∂θk

∣

∣

∣

)

< ∞ and in Lemma 3.2,

Eθ[Mjkl(t)] < ∞. Also, I(θ) is a positive definite since it is a covariance
matrix. The score statistics U are linearly independents, so that E(U ′U)
is not singular and I(θ) is a full rank matrix. Therefore, I(θ) is positive
definite.

The regularity conditions for the large sample derivations of MLE was
satisfied by Lemma 3.1 and 3.2 above. Therefore, the following theorem
was satisfied:

Theorem 3.1 Let X1,X2, ...,Xn be iid, each with density f(x;θ),θ ∈
Θp ⊂ R

p which satisfies the regularity conditions shown in Lemma 1 and 2.
Then, the MLE of θ, which maximize the log L(θ), present the following
asymptotic properties:

a)θ̂n
P−→ θ0; b)

√
n(θ̂n − θ0)

D−→ Np

(

0, I(θ)−1
)

Moreover, I0(θ̂) =
(

− ∂2

∂θ∂θ
′ lnL(θ)

)
∣

∣

∣

θ=θ̂

P−→ I(θ), where I0(θ̂) is called

observed information matrix.

The hypotheses of interest in the Weibull competing risks model are
related to reduction of the model, that is, whether or not a bivariate expo-
nential fit the data (H01 : α1 = α2 = 1) and whether or not the independent
Weibull model fit the data (H02 : λ12 = 0). Another hypothesis of inter-
est may be the hypothesis of equality of marginals or equality of hazard
functions (H03 : α1 = α2 and λ1 = λ2).

Asymptotic tests were considered for the hypotheses above, stated as
H0 : θ = θ1 considering θ2 as nuisance parameters (Lawless, 1982, p.523).
They have χ2

k distribution under the null hypotheses (k is the dimension of
θ1). For the hypothesisH01 : θ1 = (α1 α2)

′ = (1 1)′ the usual alternative
is Ha1 : at least one of αi 6= 1, the vector θ2 = {λ1, λ2, λ12, γ} is the vector
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of nuisance parameters. For the hypothesis H02 : θ1 = λ12 = 0 against the
alternative Ha2 : λ12 6= 0, the vector θ2 = {λ1, λ2, α1, α2, γ} is the vector
of nuisance parameters. The parameter γ is not identifiable, under H02
and hence, there is no the score statistic test for this hypothesis. For the
hypothesis H03 : α1 = α2 and λ1 = λ2 or H03 : α1 − α2 = α = 0 and
λ1 −λ2 = λ = 0, the vector of nuisance parameters is θ2 = {α2, λ2, λ12, γ}.

4 Simulation studies

In this section, we present a simulation study in order to assess the per-
formance of the standard likelihood based tests. First, the studies were
based on proposed ACBW2 and compared with Ryu’s bivariate Weibull
(ACBW1) and independent Weibull (ACBW3) models. Second, the stud-
ies were based on the proposed Weibull (CRW1) and independent Weibull
competing risks (CRW2) models.

For these studies, 500 samples of size 30, 50, 100, 200, 300 and 500
were generated by Gibbs and Metropolis-Hasting methods from bivari-
ated Weibull model ACBW2. The true parameters values are λ1 = λ2 =
0.1, λ12 = 0.2, α1 = α2 = γ1 = γ2 = 0.5 following the Ryu’s paper (1993).

This method consist in generating random samples of the following
conditional densities written as:

f∗(t1|t2) = e−λ1t
α1
1 ψ1i(t1),

where ψ1i(t1) = f∗(t1,t2)
f∗(t2) × Fi, F1 = exp [−λ2t

α2

2 − λ12(t1 + t2) +A2 +B2]

if t1 ≤ t2 and F2 = exp [−λ2t
α2

2 − λ12(t1 + t2) +A1 +B1] if t1 > t2 and

f∗(t2|t1) = e−λ2t
α2
ψ2j(t2),

where ψ2i(t2) = f∗(t1,t2)
f∗(t2) ×Gi, G1 = exp [−λ1t

α1

1 − λ12(t1 + t2) +A2 +B2]

if t1 ≤ t2 and G2 = exp [−λ1t
α1

1 − λ12(t1 + t2) +A1 +B1] if t1 > t2, with

A2 =
λ12

γ2

(

1 − e−γ2(t2−t1)
)

, A1 =
λ12

γ1

(

1 − e−γ1(t1−t2)
)

,

B2 =
4λ12

(γ1 + γ2)

(

e−
γ2
2

(t2−t1) − e−
γ1
2
t1−

γ2
2
t2

)

,

B1 =
4λ12

(γ1 + γ2)

(

e−
γ1
2

(t1−t2) − e−
γ1
2
t1−

γ2
2
t2

)

,

f∗(t1, t2) is given in (2.9) and f∗(ti) = h∗i (ti)S
∗
Ti

(ti), where h∗i (ti) and

S∗
Ti

(ti) are given in property c) (section 2.1).
The method proceed generating samples units (t1, t2) from Weibull dis-

tribution (λi, αi) (i = 1, 2) which has to be accepted with probability
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min

{

ψi(t
j+1

i )

ψi(t
j
i )
, 1

}

, i = 1, 2 and j = 1, 2, . . . , k. For each simulation, we

generated five Metropolis-Hastings chains each of which ran for 6000 itera-
tions and burn-in the first 1000 iterations. We monitored the convergence
of the Metropolis-Hastings samplers using the Gelman and Rubin (1992)
method that uses the analysis of variance technique to determine if further
iterations are needed.

Table 1

Mean, standard error, bias and MSE of MLE (×10) for the proposed
ACBW2, Ryu ACBW1 and independent ACBW3 bivariate models.

n mo- λ̂1(S.D.) λ̂2(S.D.) λ̂12(S.D.) α̂1(S.D.) α̂2(S.D.) γ̂1(S.D.) γ̂2(S.D.)
dels bias(mse) bias(mse) bias(mse) bias(mse) bias(mse) bias(mse) bias(mse)

30 ACBW2 0.92(0.61) 0.93(0.65) 2.07(0.79) 5.37(3.47) 5.53(3.88) 6.86(5.44) 6.75(4.93)
0.08(0.03) 0.07(0.04) 0.07(0.06) 0.37(1.21) 0.53(1.53) 1.86(3.30) 1.75(2.73)

ACBW1 1.37(0.63) 1.40(0.69) 2.15(1.68) 6.90(3.19) 6.66(2.99) 6.90(11.0) 7.39(12.6)
0.37(0.05) 0.40(0.06) 0.15(0.28) 1.90(1.37) 1.66(1.16) 1.90(12.4) 2.39(16.4)

ACBW3 1.74(0.66) 1.82(0.71) 10.6(1.73) 10.4(1.74)
0.74(0.09) 0.82(0.11) 5.65(3.43) 5.48(3.21)

50 ACBW2 0.89(0.52) 0.91(0.49) 2.08(0.83) 5.48(3.33) 5.20(2.78) 6.16(3.55) 6.28(4.20)
0.11(0.02) 0.09(0.02) 0.08(0.06) 0.48(1.13) 0.20(0.77) 1.16(1.39) 1.28(1.92)

ACBW1 1.36(0.56) 1.34(0.50) 2.12(1.81) 6.98(2.84) 6.94(2.79) 5.91(9.57) 6.19(9.94)
0.36(0.04) 0.34(0.03) 0.12(0.32) 1.98(1.19) 1.94(1.15) 0.91(9.24) 1.19(10.0)

ACBW3 1.68(0.52) 1.68(0.50) 10.6(1.39) 10.6(1.32)
0.68(0.07) 0.68(0.07) 5.69(3.32) 5.68(3.31)

100 ACBW2 0.93(0.40) 0.92(0.38) 1.99(0.30) 5.22(2.25) 5.16(2.14) 5.73(2.42) 5.62(2.20)
0.07(0.01) 0.08(0.01) 0.01(0.01) 0.22(0.51) 0.16(0.46) 0.73(0.63) 0.62(0.52)

ACBW1 1.35(0.44) 1.35(0.43) 1.85(1.15) 7.40(2.53) 7.23(2.54) 5.59(9.32) 5.13(7.79)
0.35(0.03) 0.35(0.03) 0.15(0.13) 2.40(1.21) 2.23(1.14) 0.59(8.72) 0.13(6.07)

ACBW3 1.63(0.40) 1.64(0.38) 10.6(1.03) 10.6(1.06)
0.63(0.05) 0.64(0.05) 5.68(3.24) 5.68(3.24)

200 ACBW1 0.98(0.26) 0.97(0.24) 2.00(0.20) 5.17(1.19) 5.14(1.20) 5.21(1.26) 5.21(1.29)
0.02(0.01) 0.03(0.01) 0.00(0.01) 0.17(0.14) 0.14(0.14) 0.21(0.16) 0.21(0.17)

ACBW2 1.40(0.32) 1.34(0.33) 1.79(0.84) 7.62(2.03) 7.21(2.10) 3.97(6.06) 4.33(6.22)
0.40(0.02) 0.34(0.02) 0.21(0.07) 2.62(1.09) 2.21(0.92) 1.03(3.77) 0.67(3.91)

ACBW3 1.61(0.27) 1.60(0.26) 10.7(0.73) 10.7(0.72)
0.61(0.04) 0.60(0.04) 5.70(3.30) 5.70(3.30)

300 ACBW2 0.99(0.20) 0.98(0.19) 1.98(0.16) 5.08(1.00) 5.13(1.01) 5.17(0.96) 5.16(0.98)
0.01(0.00) 0.02(0.00) 0.02(0.00) 0.08(0.10) 0.13(0.10) 0.17(0.09) 0.16(0.09)

ACBW1 1.40(0.28) 1.38(0.28) 1.70(0.50) 7.38(1.82) 7.46(1.91) 3.68(3.94) 3.72(4.37)
0.40(0.02) 0.38(0.02) 0.30(0.03) 2.38(0.89) 2.46(0.96) 1.32(1.72) 1.28(2.07)

ACBW3 1.61(0.23) 1.59(0.22) 10.6(0.61) 10.6(0.61)
0.61(0.04) 0.59(0.03) 5.65(3.17) 5.68(3.17)

500 ACBW2 0.99(0.15) 0.99(0.13) 1.99(0.11) 5.03(0.72) 5.03(0.66) 5.07(0.68) 5.06(0.67)
0.01(0.00) 0.01(0.00) 0.01(0.00) 0.03(0.05) 0.03(0.04) 0.07(0.04) 0.06(0.04)

ACBW1 1.41(0.22) 1.43(0.23) 1.70(0.41) 7.31(1.58) 7.43(1.53) 3.24(3.00) 3.19(3.98)
0.41(0.02) 0.43(0.02) 0.30(0.02) 2.31(0.78) 2.43(0.82) 1.76(1.20) 1.81(1.91)

ACBW3 1.61(0.17) 1.60(0.17) 10.6(0.46) 10.6(0.45)
0.61(0.04) 0.60(0.03) 5.64(3.15) 5.64(3.15)

The real values of the parameters are:λ1 = λ2 = 1, λ12 = 2, α1 = α2 = γ1 = γ2 = 5.

Maximum likelihood estimators were calculated by Quasi-Newton meth-
od; their standard deviation, bias and mean square error are calculated



Tarumoto and Wada: A bivariate Weilbull and its competing risks models 233

also. It was used for the calculations, the observed information matrix in-
stead of the Fisher information matrix. Table 1 shows these results under
the three models studied.

For the samples generated by the bivariate model ACBW2, two facts
could be noticed when sample sizes increase: the MLE of the parameters
converge to the true values and both bias and standard deviations decrease,
specially when n ≥ 200. Even for the sample sizes 30 up to 100, the bias
and MSE of the parameters: λ1, λ2, λ12, α1 and α2 are small. The fitness
of the Weibull bivariate model ACBW1 for these 500 samples seems to
produce MLE which overestimates the true values when sample sizes are
30 and 50 and underestimate, when samples size are greater than 100.
When independent Weibull model ACBW3 was fitted to these samples, the
convergence of MLE of all the parameters was bad, showing how we could
mislead the true values, when we treat dependent data as independent.

Some plots of the 500 MLE based on samples generated by the bivari-
ate model ACBW2 with size 500, were performed in order to study the
asymptotic normality; histogram and normal probability plots gives a par-
tial view of the approximation. The plots below suggest a reasonable fit to
the normal distribution.
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Table 2 shows the means, standard deviations, bias and MSE of 500
samples for the Weibull competing risks model CRW1 and independent
model CRW2. These 500 samples of competing risks setting were derived
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from the generated samples of bivariate Weibull ACBW2, that is, the data
(tj , δij) where tj = min(t1j , t2j), δij = 1 if the cause of failure is i and δij
= 0 otherwise, i = 1, 2 and j = 1, 2, ..., n.

The MLE of the parameters of the competing risks model converges
also for the true values when sample size increase; the bias are small for
samples size up to 50 for all estimates, except for estimate of γ, which bias
become small only for sample sizes up to 200. The estimates of λ12 and γ
presented large standard deviations even decreasing with the increasing of
sample size. It seems that the approximation to normality seems reasonable
for the estimates of the parameters for sample size up to 200, with exception
to the parameter γ. Weibull independent competing risks model with these
500 samples produced overestimates the true values for all samples sizes.

Table 2

Mean, standard error, bias and MSE of MLE (×10) for the proposed
CRW1 and independent CRW2 competing risks models.

n mo- λ̂1(S.D.) λ̂2(S.D.) λ̂12(S.D.) α̂1(S.D.) α̂2(S.D.) γ̂(S.D.)
dels bias(mse) bias(mse) bias(mse) bias(mse) bias(mse) bias(mse)

30 CRW1 1.13(0.66) 1.10(0.63) 2.26(1.64) 5.78(3.49) 5.66(3.41) 9.13(1.14)
0.13(0.04) 0.10(0.04) 0.26(0.27) 0.78(1.27) 0.66(1.20) 4.13(1.83)

CRW2 1.92(0.77) 1.87(0.72) 9.60(2.43) 9.70(2.46)
0.92(0.14) 0.87(0.12) 4.60(2.70) 4.70(2.81)

50 CRW1 1.04(0.48) 1.05(0.50) 2.26(1.35) 5.58(3.20) 5.48(2.65) 7.75(9.42)
0.04(0.02) 0.05(0.02) 0.26(0.18) 0.58(1.05) 0.48(0.72) 2.75(9.62)

CRW2 1.78(0.55) 1.44(0.57) 9.88(1.87) 9.90(1.95)
0.78(0.09) 0.44(0.05) 4.88(2.73) 4.90(2.78)

100 CRW1 1.01(0.38) 1.01(0.42) 2.29(1.11) 5.38(2.64) 5.45(2.24) 6.68(8.61)
0.01(0.01) 0.01(0.02) 0.29(0.13) 0.38(0.71) 0.45(0.52) 1.68(7.69)

CRW2 1.72(0.43) 1.72(0.46) 9.99(1.45) 10.0(1.50)
0.72(0.07) 0.72(0.07) 4.99(2.70) 5.00(2.72)

200 CRW1 1.02(0.28) 1.03(0.32) 2.35(0.95) 5.28(1.33) 5.33(1.35) 5.01(3.67)
0.02(0.01) 0.03(0.01) 0.35(0.10) 0.28(0.18) 0.33(0.19) 0.01(1.34)

CRW2 1.69(0.30) 1.69(0.31) 10.0(1.02) 10.1(1.06)
0.69(0.05) 0.69(0.05) 5.00(2.60) 5.10(2.71)

300 CRW1 1.01(0.24) 1.03(0.25) 2.14(0.57) 5.24(1.17) 5.20(1.13) 5.02(2.44)
0.01(0.01) 0.03(0.01) 0.14(0.03) 0.24(0.14) 0.20(0.13) 0.02(0.59)

CRW2 1.68(0.26) 1.70(0.27) 10.0(0.87) 10.0(0.88)
0.68(0.05) 0.70(0.05) 5.00(2.57) 5.00(2.57)

500 CRW1 1.02(0.19) 1.02(0.19) 2.09(0.41) 5.15(0.83) 5.12(0.83) 4.91(1.71)
0.02(0.00) 0.02(0.00) 0.09(0.01) 0.15(0.07) 0.12(0.07) 0.09(0.29)

CRW2 1.70(0.19) 1.69(0.20) 9.98(0.67) 10.0(0.70)
0.70(0.05) 0.69(0.05) 4.98(2.52) 5.00(2.54)

The real values of the parameters are: λ1 = λ2 = 1, λ12 = 2, α1 = α2 = γ = 5.

In order to study the asymptotic statistic tests for the hypotheses H01,
H02 and H03, 250 samples of size 200 were generated in competing risks
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setting. The true values were λ1 = λ2 = 0.1, λ12 = 0.2 and γ = 0.5 for
H01; λ1 = λ2 = 0.1 and α1 = α2 = γ = 0.5, for the hypothesis H02.

Table 3 shows the true size and the power of the asymptotic tests when
the nominal level of significance are 5% and 10%. The Wald statistic test
(W) presented true size larger than the nominal size in all the hypotheses
and the power is higher than the other tests. The Rao’s score statistic test
(LM) presented true size close to the nominal size for H01 but high for
H03 and the power is smaller than the other tests. For the likelihood ratio
statistic test (LR) the true size is close of the nominal size in all cases,
except in H01. The hypothesis H02 : λ12 = 0 is testing the parameter on
the boundary of the parameter space, which the statistic test could not
result in χ2 with 1 d.f. under H02.

Table 3

Estimates of true size and power (in parentheses) of the asymptotic tests
for competing risks model CRW1.

estimates null 5% 10% correlation
hypotheses W LM LR W LM LR W-LM W-LR LM-LR

H01 : α1 = α2 = 1 11.2 6.0 3.2 16.4 8.0 7.6 0.68 0.97 0.79
true (93.6) (77.6) (88.0) (96.4) (84.0) (94.0) (0.68) (0.84) (0.89)
size H02 : λ12 = 0 7.2 − 4.0 14.8 − 12.0 − 0.98 −

(power) (99.6) − (95.6) (99.6) − (98.0) − (0.82) −
H03 : λ = α = 0 8.0 9.6 5.6 13.6 16.8 11.2 0.95 0.99 0.97

(92.8) (94.4) (97.5) (97.8) (97.7) (98.4) (0.65) (0.69) (0.70)

5 Applications to real data

In order to illustrate the methodology above, we studied two competing
risks data:

Example 5.1 The first data analysed was extracted from Lagakos (1977).
This data is from the lung cancer clinical trial being conducted by Eastern
Cooperative Oncology group at that time. Among the 194 patients, 83 died
from local spread of disease (cause 1) and 44 died with metastatic spread
of disease (cause 2) and 67 were censored. Covariates were considered in
that study.

The Weibull competing risks model CRW1 (section 2.2) was considered
for the analysis of this data. The hypotheses of interest are in Table 4.

From these results we may conclude that exponential bivariate depen-
dent model may fit the data since H01 was not significant at 5%. The crude
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hazard functions (2.11) of deaths from local (higher) an metastic (lower)
spread of lung cancer may be increasing functions as show in the Figure 1.

Table 4

Tests of hypotheses of interest.

hypotheses asymptotic tests

W LR LM

value p-value value p-value value p-value

H01 : α1 = α2 = 1 2.18 0.34 2.37 0.31 2.50 0.29

H02 : λ12 = 0 6.09 0.01 7.31 0.006

H03 : λ = α = 0 5.84 0.05 9.75 0.007 6.67 0.04

Example 5.2 The second data is from a follow-up study considered in
patients with dilated cardiomyopathy with heart congestive failure. In
this study, 95 patients with heart congestive failure were observed from
august/92 to august/94 and the time of failures (in weeks) are from the
hospital entrance until death. Thus patients alive at the end of the study
were considered as censored. Two causes of death were observed: deaths
from shock and unexpected deaths. It was verified that among the 95
patients of the study, 23 had survival to the final of the study; 63 died due
to shock and only 9 died unexpectedly. The median survival times from
shock is 15 weeks and from unexpected causes is 20 weeks for failures times
and is 64 weeks for censored times.

Table 5

Tests of hypotheses of interest

hypotheses asymptotic tests

W LR LM

value p-value value p-value value p-value

H01 : α1 = α2 = 1 3.72 0.16 3.94 0.14 3.74 0.15

H
∗

01 : α1 = 1 4.28 0.04 4.44 0.03 3.73 0.05

H
∗∗

01 : α2 = 1 4.1e-5 0.99 2.33e-6 0.99 2.4e-6 0.99

H02 : λ12 = 0 0.92 0.34 0.62 0.43

H03 : λ = α = 0 14.41 < 0.001 46.44 < 0.001 38.79 < 0.001

The test of the reduction to exponential bivariate model (H01) resulted
non-significant at 5% because the high standard deviation (0.2686). This
may be due the small sample size verified for unexpected deaths. Tests
for reduction of each marginal to exponential resulted significant only for
cause due to shock deaths (H∗

01), that is, for this cause of death the hazard
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functions is not constant. We may conclude that Weibull bivariate inde-
pendent model would fit the data (H02). The crude hazard functions can
be shown in the Figure 2.

We used the software SAS (proc IML) to perform all the simulations
and calculations.
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Fig.1: Crude Hazard functions (example 1) Fig.2: Crude hazard functions (example 2)

6 Conclusions

The modified bivariate Weibull model has some importants requirements
for a derivation of competing risks model: 1) the modified bivariate Weibull
model is absolutely continuos and 2) it is a dependent model. The compet-
ing risks model derived from this distribution presents (in the only possible
case of γ1 = γ2 = γ), the net and crude hazards equals which makes the
marginal distributions of competing Weibull model identifiable. This prop-
erty is very interesting since usually the marginals are not identifiable in
competing risks models.

In the modified bivariate and competing risks model, the MLE seems
to have asymptotic desirable properties needed for the tests of hypotheses
for all the parameters, with exception to the parameter γ in competing
risks model. Simulations studies were performed for these models in order
to study MLE distributions and tests of hypotheses in the bivariate and
competing risks models. There was need of heavy use of computer programs
for the study of the proposed bivariate and competing risks models, since
many expressions could not be written in closed form as some integrals and
the information matrix and even so the observed information matrix.

Tests of hypotheses were performed in two data sets. Dependent Weibull
competing risks model seems to be adequate for both data sets, since the
hazards functions are increasing (for the first data), constant or decreas-
ing (for the second data). The results of the applications agree with the
previous analyses performed for these data.
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