
Brazilian Journal of Probability and Statistis (2001), 15, pp. 1{14.Assoia�~ao Brasileira de Estat��stiaA HIERARCHICAL BAYES ANALYSIS OF DATA ONDAILY ACTIVITY CYCLESCarlos Alberto Ribeiro Diniz and Jos�e Galv~ao LeiteDepartamento de Estat��stia, Universidade Federal de S~ao Carlos, CP676, S~ao Carlos, SP, Brazil. E-mails: dad�power.ufsar.br and lei-te�power.ufsar.brSummaryThe lassial approah in analysis of data on daily ativity yles is diÆult dueto the randomness of the daily total group ativity and dependeny in the sam-ples. The dependene ours beause the daily ativities are reorded for thesame animal group over the entire study period. A hierarhial Bayes solution tosuh a type of data is presented. The new approah is applied in a real data setolleted to ompare daily ativity behavior in a group of Blak Lion Tamarin, L.hrysopygus, in two di�erent annual seasons in Brazil. Gibbs with Metropolis-Hastings algorithms are used in order to determine the posterior distributions ofsuess probabilities of any spei� ativity at rainy and dry seasons. The margi-nal posterior distributions were ompared using the Kullbak-Leibler divergenemeasure.Key Words: Ativity behavior; Gibbs-with-Metropolis-Hastings algorithms; hi-erarhial Bayesian analysis; Kullbak-Leibler divergene measure.1 IntrodutionData on daily ativity yles are ommon in studies of groups of animalsin their natural environments. The lassial approah in suh type of datais diÆult due to the randomness of the daily total group ativity andthe dependene in the samples. This dependene ours beause the dailyativities are reorded for the same group of animals over the entire studyperiod. Sussman et al. (1979) present an alternative statistial methodsfor analyzing data on daily ativity. They propose a tehnique based onfewer assumptions than those required by the hi-square test proedure.In this paper a Bayesian solution to a set of data on daily ativity ylesin primate is given. This primate study (Costa, 1997) was onduted inorder to ompare daily ativity behavior in a group of Blak Lion Tamarin,1



2 Brazilian Journal of Probability and Statistis, 15, 2001L. hrysopygus, in two di�erent annual seasonal limati onditions in Bra-zil, the rainy and dry seasons. The basi data set was obtained through asystemati observation of a single group of six individual: two adult male,three adult female and an infant female. The group was observed fromNovember 1992 to Otober 1993, three onseutive days by month, total-ling 36 observation days. The sampling tehnique known as instantaneoussan-sampling (Altmann, 1974) was used. Counts, for eah animal, of thenumber of eah of the following six ativities were reorded: resting (A1);animal-feeding (A2); plant-feeding (A3); foraging (A4); moving (A5) andnot in sight (A6). A �fteen-minute-interval was taken between the ountsof an animal to the next one. At the end of eah day the total group a-tivity reord for ativity is olleted. The period of observation per daywas assoiated to the awakeness and the retiringness of the group, thusthe total group ativity reord for the ith day in the rainy season, Mi;i = 1; 2; : : : ; r, and for the jth day in the dry season, Nj ; j = 1; 2; : : : ; s;were not �x. The ativities are not assumed to be independent and all the6 animals of the group take part on all ativities.2 Bayesian approahInitially, let us assume that the main interest is to ompare the restingbehavior of the two seasons. Suppose, in the rainy season, M is the totalgroup ativity reord, p is the probability that an element of the group be inresting behavior and X is the total group resting reord. In the dry season,N is the total group ativity reord, q is the probability that an element ofthe group be in resting behavior and Y is the total group resting reord.Suppose that the random vetor (M; N) assumes values in N2 , where N =f0,1,: : :g and the marginal probability densities of M and N; fM(�j�) andfN (�j#); are indexed by the hyperparameters � and #; respetively. GivenM , p, N , and q; it is assumed that X and Y have binomial distributionswith parameters M , p and N; q respetively.Even the random vetors (X;M) and (Y;N) are dependent, one thestudy was based on the same animal group, it is possible, assuming theprevious assumptions, to write the likelihood funtions of those vetors.2.1 Likelihood funtionsThe likelihood funtion in the rainy season, form 2 N and x 2 f0; 1; : : : mg,is given byL(�; pjx;m) = P (X = x; M = mj�; p)= �mx�px(1� p)m�xfM (mj�)I(0;1)(p); (2.1)



Diniz and Leite: A hyerarhial Bayes analysis of data on daily ativity yles 3and in the dry season, for n 2 N and y 2 f0; 1; : : : ng, is given byL(#; qjy; n) = �ny�qy(1� q)n�yfN(nj#)I(0;1)(q):2.2 Posterior distributionsAll statistial inferenes in the Bayesian analysis of resting behaviors willbe based on the posterior distributions of pjx;m and qjy; n:The joint posterior distribution of (�; p) is�(�; pjx;m) / L(�; pjx;m)�(�; p), (2.2)where �(�; p) is the joint prior density for (�; p):For the primate daily ativity yles p will be the probability of suessof the spei� ativity and, in ases where fM (mj�) orresponds to thePoisson density, �p will be the average of suess of the spei� ativity. If� and p are independent a priori, �(�; p) = �(�)�(p), whih is natural inthis ase, then the marginal posterior distribution of p is given by�(pjx;m) _ px(1� p)m�x�(p)I(0;1)(p): (2.3)Analogously, the marginal posterior distribution of q; assuming that # andq are independent a priori, is�(qjy; n) _ qy(1� q)n�y�(q)I(0;1)(q): (2.4)If p and q have natural onjugate Beta distributions with hyperpara-meters (a; b) and (; d); respetively, then the expressions (2.3) and (2.4)beome�(pjx;m) = 1B(a+ x;m+ b� x)pa+x�1(1� p)m+b�x�1I(0;1)(p) (2.5)and �(qjy; n) = 1B(+ y; n+ d� y)q+y�1(1� q)n+d�y�1I(0;1)(q) (2.6)respetively.2.3 Seletion of priorsThe values of the hyperparameters a; b; ; and d are frequently based onthe previous knowledge of the experimenter involved in the investigation.



4 Brazilian Journal of Probability and Statistis, 15, 2001If those values are not available they must be determined from any infor-mation about the marginal distribution. Some methods (see Berger, 1985,hapter 3) used to selet the priors are, for instane, the type II maximumlikelihood prior (ML-II) and the moment approah.The determination of a ML-II prior in this work will be assoiated withthe lass � of priors� = �� : �(�; p) = �(�) 1B(a; b)pa�1(1� p)b�1I(0;1)(p); a > 0; b > 0� :Thus, if b� 2 � satis�esP (X = x;M = mjb�) = sup(a;b):a>0;b>0P (X = x;M = mja; b) (2.7)then b� is the ML-II prior. Similar lass of priors is used for (#; q):The preditive distribution of (X;M) given a and b is given byP (X = x; M = mja; b) = 1Z0 1Z0 P (X = x; M = mj�; p)�(�; p)d�dp/ 1Z0 1Z0 px(1� p)m�xfM(mj�)pa�1(1� p)b�1B(a; b) �(�)d�dp/ B(a+ x;m� x+ b)B(a; b) : (2.8)and the preditive distribution of (Y;N) given  and d is given byP (Y = y; N = nj; d) / B(+ y; n� y + d)B(; d) : (2.9)In order to determine a and b in (2.5), onsidering the lass �; it isneessary to �nd a and b that satisfy (2.7). It is easy to show that thereare no a and b values suh that the funtion (2.8) an be maximized.It indiates that the ML-II approah an not be used in this ase. Themoment approah ould also not be used, without subjetive experiene,sine the data set onsist of just one value for X; the total group restingreord in the rainy season. Similar argument an be used about  and d:2.4 Hierarhial modelsAn alternative approah is to model suh a problem hierarhially. Thatis, given a and b, a > 0 and b > 0; if � and p are independent a priori,



Diniz and Leite: A hyerarhial Bayes analysis of data on daily ativity yles 5� and the vetor (a; b) are independent and p an be modelled by a betadistribution with hyperparameters a and b, then�(�; pja; b) = �(�)�(pja; b)= �(�) 1B(a; b)pa�1(1� p)b�1I(0;1)(p):Suppose that �(a; b) / expf�(a+b)=kg. This prior put uniform probabilityon a=(a + b); the mean of the beta distribution with hyperparameters aand b (George, 1992). Di�erent values of k were used in this study and theposterior results showed insensitive to all of them. For this reason k = 10was used in the analysis.The posterior density for all the parameters (�; p; a; b) is�(�; p; a; bjx;m) / L(�; pjx;m)�(�; pja; b)�(a; b)/ 1B(a; b)pa+x�1(1� p)b+m�x�1fM (mj�)�(�)�(a; b)I(0;1)(p):The posterior density for the parameters (p; a; b) is given by�(p; a; bjx;m) / 1B(a; b)pa+x�1(1� p)b+m�x�1 expf�(a+ b)=kgI(0;1)(p)(2.10)and for the parameters (a; b) is given by�(a; bjx;m) / B(a+ x; b+m� x)B(a; b) expf�(a+ b)=kg: (2.11)The marginal posterior densities of the parameters p; a; and b in equa-tion (2.10) are not easily obtained. An alternative to handle situationswhere the integration is diÆult or impossible to be alulated exatly isthe use of the Gibbs with Metropolis-Hastings algorithm, whih allows oneto simulate observations from a omplex joint distribution.In this study the posterior simulation is performed in part using theGibbs sampler algorithm (Casella and George, 1992), for the ases wherethe onditional posterior distributions of the parameters are available forsampling, and in part using the Metropolis-Hastings algorithm (Chib andGreenberg, 1995), for the ases where the onditional distribution are notof standard form.All results in this setion and in the next subsetion an automatiallybe used to simulate from the full onditionals of q; ; and d.2.4.1 The onditional posterior distributions of the parametersThe onditional posterior density for p given a; b; x and m is



6 Brazilian Journal of Probability and Statistis, 15, 2001�(pja; b; x;m) / pa+x�1(1� p)b+m�x�1I(0;1)(p): (2.12)The expression in (2.12) is readily reognized to be the kernel of a betadistribution with parameters a+ x and b+m� x.The onditional posterior density for a given b; p; x and m is�(ajb; p; x;m) / �(a+ b)�(a) pa expf�a=kgI(0;1)(a) (2.13)and the onditional posterior density for b given a; p; x and m is�(bja; p; x;m) / �(a+ b)�(b) pb expf�b=kgI(0;1)(b): (2.14)Observe that it is almost impossible to simulate from the densities (2.13)and (2.14). Thus in order to generate the samples from a and b we use theMetropolis-Hastings algorithm.
3 Data analysisThe Bayesian methods outlined in the previous setions are now appliedto a set of data on daily ativity yles of a group of Blak Lion Tamarin,in two di�erent annual seasonal limati onditions in Brazil. Counts ofsix ativities, for eah animal, were reorded. At the end of eah day thetotal group ativity reord for ativity was olleted (see the original dataset in Table 4).Charateristis of the posterior distributions of the parameters p a;and b (q; ; and d) an be alulated from the samples generated by theGibbs with Metropolis-Hastings tehnique. A Pentium II 333 MHZ andthe statistial software SAS were used to generate two hains of 10,000iterations for the three parameters. The �rst 3000 iterations were ignoredand then every 5th sample run was taken forward for analysis.The posterior distributions of p and q are summarized in Table 1, withharateristis suh as the posterior means and the posterior medians (theaverages and the medians of the simulated values), and the 95% redibleintervals. The ativity not in sight was not relevant for the researh.



Diniz and Leite: A hyerarhial Bayes analysis of data on daily ativity yles 7Table 1Mean, median, sd and HPD interval for p and q.Seasonal Ativity mean median sd 0.95 HPD intervalrainy resting - p 0.3860 0.3860 0.0056 (0.3750; 0.3970)dry resting - q 0.3670 0.3670 0.0106 (0.3470; 0.3880)rainy animal-feeding -p 0.0111 0.0111 0.0012 (0.0088; 0.0136)dry animal-feeding -q 0.0078 0.0076 0.0020 (0.0044; 0.0121)rainy plant-feeding - p 0.1120 0.1120 0.0037 (0.1050; 0.1190)dry plant-feeding - q 0.1200 0.1200 0.0071 (0.1060; 0.1340)rainy foraging - p 0.0783 0.0782 0.0031 (0.0723; 0.0845)dry foraging - q 0.0955 0.0952 0.0065 (0.0831; 0.1090)rainy moving - p 0.1280 0.1280 0.0039 (0.1210; 0.1360)dry moving - q 0.1410 0.1410 0.0076 (0.1270; 0.1560)4 Convergene diagnosisThe CODA software (Best, et al., 1995) was used to perform onvergenedisgnostis of the hains. At least four riteria available in that pakagewere used and the results showed that the hains have onverged. One ofthem, the Gelman and Rubin riterion (Gilks et al., 1995), is presented inTable 2. Histograms of the ombined hains for eah ativity are showedin Figure 1.Table 2Gelman and Rubin 50% and 97.5% shrink fatorsVariable Point est. 97.5% quantileresting - p 1.00 1.00resting - q 1.02 1.08animal-feeding -p 1.00 1.00animal-feeding -q 1.00 1.00plant-feeding - p 1.00 1.00plant-feeding - q 1.00 1.00foraging - p 1.00 1.00foraging - q 1.00 1.00moving - p 1.00 1.00moving - q 1.00 1.00
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Diniz and Leite: A hyerarhial Bayes analysis of data on daily ativity yles 95 Comparing the posterior distributionsThe Kullbak-Leibler (KL) divergene measure and Monte Carlo methodsare used here in order to ompare the posterior distributions of p andq: Suppose that the random variables W1 and W2 have pdf fW1(z) =�1(zjx;m) and pdf fW2(z) = �2(zjy; n), respetively, and, for some j =1; 2; : : : J; fW1(zj) = ZZ �1(zj ja; b; x;m)�(a; bjx;m)dadb= Ea;b(�1(zj ja; b; x;m)): (5.1)Thus, for values (a1; b1); (a2; b2); : : : ; (aI ; bI) generated from �(a; bjx;m)the expetation (5.1) an be estimated by (Makay, 1996; Gelfand et al.,1992)fW1(zj) �= 1I IXi=1 �1(zj jai; bi; x;m); for all I suÆiently large. (5.2)Similarly, for values (1; d1); (2; d2);: : :;(I ; dI) generated from �(; djy; n),fW2(zj) an be estimated byfW2(zj) �= 1I IXi=1 �2(zj ji; di; y; n); for all I suÆiently large. (5.3)The KL divergene between fW1 and fW2 is de�ned as (Csisz�ar, 1967)K(fW1 ; fW2) = Z log�fW2(z)fW1(z)� fW1(z)dz= K(�1(�jx;m); �2(�jy; n)):Using (5.2) and (5.3) the disrepany between �1 and �2 an be appro-ximately measured byK(�1(�jx;m); �2(�jy; n)) �= 1J JXJ=1 log0BBB� 1I2 I2Pi=1�2(zj ji; di; y; n)1I1 I1Pi=1 �1(zj jai; bi; x;m)1CCCA ; (5.4)for all J; I1 and I2 suÆient large.The use of K(�1; �2) as a measure of the disrepany between �1 and�2 depends on the alibration of K(�; �): Thus, given K(�1; �2) = K; we



10 Brazilian Journal of Probability and Statistis, 15, 2001have to reate a sale to deide ifK indiates a weak or a strong divergenebetween the posteriors.The alibration of K(�; �) follows from MCulloh (1989) and Pengand Dey (1995). Let fg(�jp) : p 2 (0; 1)g be the family of probabilityfuntions orresponding to the Bernoulli distribution; that is, g(xjp) =px(1�p)1�xIf0;1g(x); p 2 (0; 1): Fixing, arbitrarily, the numbers p0 and p1;suh that p0 2 (0; 0:5) and p1 2 (0:5; 1); with p0 and p1 symmetriallyabout p = 0.5, as, for example, p0 = 0:02 and p1 = 0:98; it is reasonableto suppose that, for all p < p0 or p > p1 g(�j0:5) and g(�jp) are ompletelydi�erent, and for all p 2 [p0, p1℄ it is reasonable to suppose that g(�j0:5)and g(�jp) are similar. It implies that, for all p 2 (0; p0)[ (p1, 1); the valueof K(g(�j0:5); g(�jp)) ould be onsidered large and, for all p 2 [p0, p1℄ ; thevalue of K(g(�j0:5); g(�jp)) ould be onsidered small.The funtionK(g(�j0:5); g(�jp)); whih is equal to �0:5 log[4p(1�p)℄; forp 2 (0; 1); is symmetri about p= 0.5, monotone dereasing for 0 < p < 0:5;monotone inreasing for 0:5 < p < 1; and zero for p = 0:5; (see Figure 2).For this reason the alibration is de�ned as follows. If K(�1; �2) � K0,where K0 = K(g(�j0:5); g(�jp0));then �1 and �2 are ompletely di�erent,otherwise, �1 and �2 are similar.
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Diniz and Leite: A hyerarhial Bayes analysis of data on daily ativity yles 11The values of the approximate KL divergene measure between themarginal posteriors (rainy and dry seasons) for eah ativity, measured byexpression (5.4), are given in Table 3. The results suggest the plausibilityof di�erent behavior between the rainy and dry seasons.Table 3Divergene measure between the marginal posteriorsAtivity Approximate KL divergene measureResting 37.3586Animal-Feeding 8.4387Plant-Feeding 8.9072Foraging 22.3466Moving 9.8767
6 DisussionThe methodology proposed in this paper is an attempt to use an hierar-hial Bayes approah for data on daily ativity yles. This approahprovides a onvenient way to ompare ativity behavior in two dependentsamples. In the situation presented here, samples from the marginal pos-terior distributions of suess probabilities at rainy and dry seasons, on-sidering informative prior distributions, were generated by the Gibbs withMetropolis-Hastings tehnique. Charateristis of those posterior were al-ulated.The posterior distributions for eah season were ompared using theKullbak-Leibler divergene measure. In all situations the group of animalsseems to have di�erent behavior with respet to the �ve ativities studiedhere.



12 Brazilian Journal of Probability and Statistis, 15, 2001Table 4Raw data set, by season, by month, by day, and by a-tivity: resting (A1);animal-feeding(A2); plant-feeding(A3);foraging(A4); moving (A5) and not in sight(A6).Season Month Day A1 A2 A3 A4 A5 A6 Totalrainy Nov 1 120 3 34 7 41 85 290rainy Nov 2 106 5 57 14 41 73 296rainy Nov 3 132 4 35 28 48 77 324rainy De 1 152 13 19 19 60 45 308rainy De 2 112 1 14 16 39 108 290rainy De 3 158 9 11 14 41 62 295rainy Jan 1 48 0 24 5 21 43 141rainy Jan 2 91 1 33 11 29 115 280rainy Jan 3 65 3 37 20 39 129 293rainy Feb 1 84 3 36 15 28 92 258rainy Feb 2 64 2 13 30 22 119 250rainy Feb 3 106 1 26 39 38 60 270rainy Mar 1 113 1 11 15 35 85 260rainy Mar 2 108 0 32 16 34 60 250rainy Mar 3 97 11 3 23 35 102 271rainy Apr 1 101 0 23 23 25 89 261rainy Apr 2 97 6 23 29 23 112 290rainy Apr 3 109 0 54 33 35 23 254rainy May 1 102 7 34 26 35 46 250rainy May 2 80 0 45 13 41 37 216rainy May 3 126 1 20 17 35 61 260dry Jun 1 73 1 30 25 28 74 231dry Jun 2 112 3 9 17 33 46 220dry Jun 3 58 1 52 19 28 42 200dry Jul 1 57 6 22 15 23 87 210dry Jul 2 82 1 39 22 32 54 230dry Jul 3 97 1 20 30 42 36 226dry Aug 1 98 1 25 20 30 95 269dry Aug 2 98 0 32 28 45 47 250dry Aug 3 90 2 20 22 32 75 241rainy Sep 1 140 0 30 29 23 58 280rainy Sep 2 71 6 35 29 38 91 270rainy Sep 3 107 2 54 36 44 67 310rainy Ot 1 102 1 33 22 31 101 290rainy Ot 2 74 1 41 33 26 85 260rainy Ot 3 45 0 13 3 14 205 280
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