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Summary

The classical approach in analysis of data on daily activity cycles is difficult due
to the randomness of the daily total group activity and dependency in the sam-
ples. The dependence occurs because the daily activities are recorded for the
same animal group over the entire study period. A hierarchical Bayes solution to
such a type of data is presented. The new approach is applied in a real data set
collected to compare daily activity behavior in a group of Black Lion Tamarin, L.
chrysopygus, in two different annual seasons in Brazil. Gibbs with Metropolis-
Hastings algorithms are used in order to determine the posterior distributions of
success probabilities of any specific activity at rainy and dry seasons. The margi-
nal posterior distributions were compared using the Kullback-Leibler divergence
measure.

Key Words: Activity behavior; Gibbs-with-Metropolis-Hastings algorithms; hi-
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1 Introduction

Data on daily activity cycles are common in studies of groups of animals
in their natural environments. The classical approach in such type of data
is difficult due to the randomness of the daily total group activity and
the dependence in the samples. This dependence occurs because the daily
activities are recorded for the same group of animals over the entire study
period. Sussman et al. (1979) present an alternative statistical methods
for analyzing data on daily activity. They propose a technique based on
fewer assumptions than those required by the chi-square test procedure.
In this paper a Bayesian solution to a set of data on daily activity cycles
in primate is given. This primate study (Costa, 1997) was conducted in
order to compare daily activity behavior in a group of Black Lion Tamarin,
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L. chrysopygus, in two different annual seasonal climatic conditions in Bra-
zil, the rainy and dry seasons. The basic data set was obtained through a
systematic observation of a single group of six individual: two adult male,
three adult female and an infant female. The group was observed from
November 1992 to October 1993, three consecutive days by month, total-
ling 36 observation days. The sampling technique known as instantaneous
scan-sampling (Altmann, 1974) was used. Counts, for each animal, of the
number of each of the following six activities were recorded: resting (A1);
animal-feeding (A2); plant-feeding (A3); foraging (A4); moving (A5) and
not in sight (A6). A fifteen-minute-interval was taken between the counts
of an animal to the next one. At the end of each day the total group ac-
tivity record for activity is collected. The period of observation per day
was associated to the awakeness and the retiringness of the group, thus
the total group activity record for the ith day in the rainy season, M;,
i =1,2,...,r, and for the jth day in the dry season, N;, 7 = 1,2,...,s,
were not fix. The activities are not assumed to be independent and all the
6 animals of the group take part on all activities.

2 Bayesian approach

Initially, let us assume that the main interest is to compare the resting
behavior of the two seasons. Suppose, in the rainy season, M is the total
group activity record, p is the probability that an element of the group be in
resting behavior and X is the total group resting record. In the dry season,
N is the total group activity record, q is the probability that an element of
the group be in resting behavior and Y is the total group resting record.
Suppose that the random vector (M, N) assumes values in N?, where N =
{0,1,...} and the marginal probability densities of M and N, fp/(-|\) and
fn(:]9), are indexed by the hyperparameters A and ¥, respectively. Given
M, p, N, and gq, it is assumed that X and Y have binomial distributions
with parameters M, p and N, ¢ respectively.

Even the random vectors (X, M) and (Y, N) are dependent, once the
study was based on the same animal group, it is possible, assuming the
previous assumptions, to write the likelihood functions of those vectors.

2.1 Likelihood functions

The likelihood function in the rainy season, for m € Nand z € {0,1,...m},
is given by

L\, plz,m) = P(X =z, M =m|\ p)
= <7Z>p$(1 — )™ far(m|N) .1y (p), (2.1)
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and in the dry season, for n € N and y € {0,1,...n}, is given by
n n
20, alyen) = ()0 = 0" Vil 00

2.2 Posterior distributions

All statistical inferences in the Bayesian analysis of resting behaviors will
be based on the posterior distributions of p|z, m and q|y, n.
The joint posterior distribution of (X, p) is

(A, plz,m) o< L(A, p|lz, m)n (A, p), (2.2)

where 7(\, p) is the joint prior density for (A, p).

For the primate daily activity cycles p will be the probability of success
of the specific activity and, in cases where fps(m|)) corresponds to the
Poisson density, Ap will be the average of success of the specific activity. If
A and p are independent a priori, 7(\,p) = 7(A)7(p), which is natural in
this case, then the marginal posterior distribution of p is given by

m(plz, m) o p*(1 — p)™ "7 (p)L(0,1)(p)- (2.3)

Analogously, the marginal posterior distribution of ¢, assuming that 9 and
q are independent a priori, is

m(qly,n) o ¢/ (1 = q)" "7 (q)I0,1)(q)- (2.4)
If p and ¢ have natural conjugate Beta distributions with hyperpara-

meters (a,b) and (c,d), respectively, then the expressions (2.3) and (2.4)
become

— at+xz—1 1 _ m+b7$711' 25
m(p|z, m) Blatomib—n)" (1 —p) on(P) (2.5
and
1 cty—1 n+d—y—1
_ 1— y='r 2.6
m(qly. n) Bletynid—y" (1-4q) on (@ (2.6)
respectively.

2.3 Selection of priors

The values of the hyperparameters a,b,c, and d are frequently based on
the previous knowledge of the experimenter involved in the investigation.
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If those values are not available they must be determined from any infor-
mation about the marginal distribution. Some methods (see Berger, 1985,
chapter 3) used to select the priors are, for instance, the type IT maximum
likelihood prior (ML-IT) and the moment approach.

The determination of a ML-II prior in this work will be associated with
the class I' of priors

r= {77 s\ p) = W(A)B(a b)p“_l(l —p)b_lI([],l)(p),a >0,b> 0} )

Thus, if 7 € I satisfies

P(X=z,M=m|7t)=  sup P(X =z, M =mla,b) (2.7)
(a,b):a>0,b>0

then 7 is the ML-IT prior. Similar class of priors is used for (¢, q).
The predictive distribution of (X, M) given a and b is given by

1 o0
P(X = z, M =mja,b) ://P(X:a:, M =m|X, p)n(A, p)drdp
00

oo

1
s [ [ = putm N B a3 ardy
0

0
B(a+z,m —xz +b)
B(a,b)

and the predictive distribution of (Y, N) given ¢ and d is given by

B(c+y,n—y+d)
B(c,d) '

P(Y =y, N =nlc,d) x (2.9)

In order to determine a and b in (2.5), considering the class I, it is
necessary to find a and b that satisfy (2.7). It is easy to show that there
are no a and b values such that the function (2.8) can be maximized.
It indicates that the ML-IT approach can not be used in this case. The
moment approach could also not be used, without subjective experience,
since the data set consist of just one value for X, the total group resting
record in the rainy season. Similar argument can be used about ¢ and d.

2.4 Hierarchical models

An alternative approach is to model such a problem hierarchically. That
is, given a and b, a > 0 and b > 0, if A and p are independent a priori,
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A and the vector (a,b) are independent and p can be modelled by a beta
distribution with hyperparameters a and b, then

m(A,pla,b) = w(N)m(pla,b)

- wa(i 57

1 —P)bflf(o,l)(l’)-

Suppose that 7(a,b) x exp{—(a+b)/k}. This prior put uniform probability
on a/(a + b), the mean of the beta distribution with hyperparameters a
and b (George, 1992). Different values of k were used in this study and the
posterior results showed insensitive to all of them. For this reason & = 10
was used in the analysis.

The posterior density for all the parameters (), p, a,b) is

m(A,p,a, blz,m) o< L(A, plz, m)m (A, pla, b)7(a, b)
1

x —B(a,b)paﬂil(l —p)b+mf:1:flfM(m‘)\)7T(>\)7T(a,b)[(o’l)(p).

The posterior density for the parameters (p,a,b) is given by

1 at+xr—1 b+m—x—1
7(p, a,b|lz,m) x mp + (1-p) * exp{—(a + b)/k}I(U,l)(p)
(2.10)
and for the parameters (a,b) is given by
B b —
7(a, bz, m) o (ata.btm=z) exp{—(a + b)/k}. (2.11)

B(a,b)

The marginal posterior densities of the parameters p, a, and b in equa-
tion (2.10) are not easily obtained. An alternative to handle situations
where the integration is difficult or impossible to be calculated exactly is
the use of the Gibbs with Metropolis-Hastings algorithm, which allows one
to simulate observations from a complex joint distribution.

In this study the posterior simulation is performed in part using the
Gibbs sampler algorithm (Casella and George, 1992), for the cases where
the conditional posterior distributions of the parameters are available for
sampling, and in part using the Metropolis-Hastings algorithm (Chib and
Greenberg, 1995), for the cases where the conditional distribution are not
of standard form.

All results in this section and in the next subsection can automatically
be used to simulate from the full conditionals of ¢, ¢, and d.

2.4.1 The conditional posterior distributions of the parameters

The conditional posterior density for p given a, b,z and m is
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L = )" 1) (p). (2.12)

The expression in (2.12) is readily recognized to be the kernel of a beta
distribution with parameters a + = and b+ m — .
The conditional posterior density for a given b, p, z and m is

I'(a+ )
I'(a)
and the conditional posterior density for b given a,p, z and m is

I'(a+0b)
I'(b)

#(alb, p. z,m) o P exp{—a/k} ) (@) (213)

7(bla.p.,m) ox P ep{-b/kH oy ®):  (214)

Observe that it is almost impossible to simulate from the densities (2.13)
and (2.14). Thus in order to generate the samples from a and b we use the
Metropolis-Hastings algorithm.

3 Data analysis

The Bayesian methods outlined in the previous sections are now applied
to a set of data on daily activity cycles of a group of Black Lion Tamarin,
in two different annual seasonal climatic conditions in Brazil. Counts of
six activities, for each animal, were recorded. At the end of each day the
total group activity record for activity was collected (see the original data
set in Table 4).

Characteristics of the posterior distributions of the parameters p a,
and b (q,c, and d) can be calculated from the samples generated by the
Gibbs with Metropolis-Hastings technique. A Pentium IT 333 MHZ and
the statistical software SAS were used to generate two chains of 10,000
iterations for the three parameters. The first 3000 iterations were ignored
and then every 5th sample run was taken forward for analysis.

The posterior distributions of p and ¢ are summarized in Table 1, with
characteristics such as the posterior means and the posterior medians (the
averages and the medians of the simulated values), and the 95% credible
intervals. The activity not in sight was not relevant for the research.
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Table 1
Mean, median, sd and HPD interval for p and q.
Seasonal Activity mean median sd  0.95 HPD interval
rainy resting - p 0.3860 0.3860 0.0056 (0.3750; 0.3970)

dry resting - ¢ 0.3670 0.3670 0.0106
rainy animal-feeding -p 0.0111 0.0111 0.0012
dry  animal-feeding -¢ 0.0078 0.0076 0.0020
rainy  plant-feeding - p 0.1120 0.1120 0.0037
dry plant-feeding - ¢ 0.1200 0.1200 0.0071
rainy foraging - p  0.0783 0.0782 0.0031

0.3470; 0.3880)
0.0088; 0.0136)
0.0044; 0.0121)
0.1050; 0.1190)
0.1060; 0.1340)
0.0723; 0.0845)
)
)
)

o~~~ o~~~ —~

dry foraging - ¢  0.0955 0.0952 0.0065 (0.0831; 0.1090
rainy moving - p 0.1280 0.1280 0.0039 (0.1210; 0.1360
dry moving - q 0.1410 0.1410 0.0076 (0.1270; 0.1560

4 Convergence diagnosis

The CODA software (Best, et al., 1995) was used to perform convergence
disgnostics of the chains. At least four criteria available in that package
were used and the results showed that the chains have converged. One of
them, the Gelman and Rubin criterion (Gilks et al., 1995), is presented in
Table 2. Histograms of the combined chains for each activity are showed
in Figure 1.

Table 2
Gelman and Rubin 50% and 97.5% shrink factors
Variable Point est.  97.5% quantile
resting - p 1.00 1.00
resting - ¢ 1.02 1.08
animal-feeding -p 1.00 1.00
animal-feeding -q 1.00 1.00
plant-feeding - p 1.00 1.00
plant-feeding - ¢ 1.00 1.00
foraging - p 1.00 1.00
foraging - ¢ 1.00 1.00
moving - p 1.00 1.00

moving - ¢ 1.00 1.00
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Figure 1
Histogram of the chains
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5 Comparing the posterior distributions

The Kullback-Leibler (KL) divergence measure and Monte Carlo methods
are used here in order to compare the posterior distributions of p and
g. Suppose that the random variables W; and Wy have pdf fi,(2) =
m1(z|z,m) and pdf fw,(z) = ma(z]y,n), respectively, and, for some j =

g Ly eee 3

fin(z) = / / m1(z5a, b, z, m)(a, blz, m)dadb
= Ea,b(ﬂ-l(zj‘aabaxam))' (5.1)

Thus, for values (ai,b1),(ag,b2),...,(ar,br) generated from w(a,b|z, m)
the expectation (5.1) can be estimated by (Mackay, 1996; Gelfand et al.,
1992)

I
1
Jw, () = 7 Z m1(zj]ai, bi,z,m),  for all I sufficiently large.  (5.2)
i=1
Similarly, for values (c1,dy), (c2,d2),. . .,(cr,dr) generated from 7(c, d|y, n),
Jws(2;) can be estimated by

I
1
fw, (25) = 7 Z mo(zjlci, di, y,m),  for all I sufficiently large.  (5.3)

i=1
The KL divergence between fyy, and fyy, is defined as (Csiszar, 1967)

e

= K(7T1('|I,m), 772("?/7”))‘

Using (5.2) and (5.3) the discrepancy between m; and 79 can be appro-
ximately measured by

1

[¥)

g

‘ 7r2(zj|ciadiayﬂn)
! . (5.4)

m1(zj|ai, bi, z,m)

€
1>

<
Il

J
1
K(m(|z.m), m2(ly,n)) =~ > log
J=1

o
=

=1

for all J, I; and Iy sufficient large.
The use of K(m, m3) as a measure of the discrepancy between m; and
79 depends on the calibration of K(-,-). Thus, given K(m, m) = K, we
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have to create a scale to decide if K indicates a weak or a strong divergence
between the posteriors.

The calibration of K(-,-) follows from McCulloch (1989) and Peng
and Dey (1995). Let {g(-|p) : p € (0,1)} be the family of probability
functions corresponding to the Bernoulli distribution, that is, g(z|p) =
p‘”(l—p)l_‘vI{[],l}(ac), p € (0,1). Fixing, arbitrarily, the numbers pg and p;,
such that py € (0, 0.5) and p; € (0.5,1), with py and p; symmetrically
about p = 0.5, as, for example, pg = 0.02 and p; = 0.98, it is reasonable
to suppose that, for all p < py or p > p; ¢(-|0.5) and g(:|p) are completely
different, and for all p € [pg, p1] it is reasonable to suppose that g(-/0.5)
and g(-|p) are similar. It implies that, for all p € (0, pg) U (p1, 1), the value
of K(g(-]0.5), g(-|p)) could be considered large and, for all p € [po, p1] , the
value of K(g(-/0.5), g(-|p)) could be considered small.

The function K (g(-|0.5), g(-|p)), which is equal to —0.5log[4p(1—p)], for
p € (0,1), is symmetric about p = 0.5, monotone decreasing for 0 < p < 0.5,
monotone increasing for 0.5 < p < 1, and zero for p = 0.5, (see Figure 2).
For this reason the calibration is defined as follows. If K(my, m9) > Ko,
where Ky = K(g(:|0.5), g(-|po)),then m and mo are completely different,
otherwise, m; and w9 are similar.

3] K(g(:0.5), g(:Ip))

Ko

po pl
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2
The calibration of K (-|-)
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The values of the approximate KL divergence measure between the
marginal posteriors (rainy and dry seasons) for each activity, measured by
expression (5.4), are given in Table 3. The results suggest the plausibility
of different behavior between the rainy and dry seasons.

Table 3
Divergence measure between the marginal posteriors
Activity Approximate KL divergence measure
Resting 37.3586
Animal-Feeding 8.4387
Plant-Feeding 8.9072
Foraging 22.3466
Moving 9.8767

6 Discussion

The methodology proposed in this paper is an attempt to use an hierar-
chical Bayes approach for data on daily activity cycles. This approach
provides a convenient way to compare activity behavior in two dependent
samples. In the situation presented here, samples from the marginal pos-
terior distributions of success probabilities at rainy and dry seasons, con-
sidering informative prior distributions, were generated by the Gibbs with
Metropolis-Hastings technique. Characteristics of those posterior were cal-
culated.

The posterior distributions for each season were compared using the
Kullback-Leibler divergence measure. In all situations the group of animals
seems to have different behavior with respect to the five activities studied
here.
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Table 4

Raw data set, by season, by month, by day, and by ac-
tivity: resting (A1);animal-feeding(A2); plant-feeding(AS3);
foraging(A4); moving (A5) and not in sight(A6).

Season Month Day Al A2 A3 A4 A5 A6 Total

rainy Nov 1 120 3 34 7T 41 85 290
rainy Nov 2 106 5 57 14 41 73 296
rainy Nov 3 132 4 35 28 48 77 324
rainy Dec 1 152 13 19 19 60 45 308
rainy Dec 2 112 1 14 16 39 108 290
rainy Dec 3 158 9 11 14 41 62 295
rainy Jan 1 48 0 24 5 21 43 141
rainy Jan 2 91 1 33 11 29 115 280
rainy Jan 3 65 3 37 20 39 129 293
rainy Feb 1 84 3 36 15 28 92 258
rainy Feb 2 64 2 13 30 22 119 250
rainy Feb 3 106 1 26 39 38 60 270
rainy Mar 1 113 1 11 15 35 85 260
rainy Mar 2 108 0 32 16 34 60 250
rainy Mar 3 97 11 3 23 35 102 271
rainy Apr 1 101 0 23 23 25 §&9 261
rainy Apr 2 97 6 23 29 23 112 290
rainy Apr 3 109 0 54 33 35 23 254
rainy May 1 102 7T 34 26 35 46 250
rainy May 2 80 0 45 13 41 37 216
rainy May 3 126 1 20 17 35 61 260
dry Jun 1 73 1 30 25 28 74 231
dry Jun 2 112 3 9 17 33 46 220
dry Jun 3 58 1 52 19 28 42 200
dry Jul 1 57 6 22 15 23 87 210
dry Jul 2 82 1 39 22 32 54 230
dry Jul 3 97 1 20 30 42 36 226
dry Aug 1 98 1 25 20 30 95 269
dry Aug 2 98 0 32 28 45 47 250
dry Aug 3 90 2 20 22 32 75 241
rainy Sep 1 140 0 30 29 23 58 280
rainy Sep 2 71 6 35 29 38 91 270
rainy Sep 3 107 2 54 36 44 67 310
rainy Oct 1 102 1 33 22 31 101 290
rainy Oct 2 74 1 41 33 26 85 260
rainy Oct 3 45 0 13 3 14 205 280
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