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ar.brSummaryThe 
lassi
al approa
h in analysis of data on daily a
tivity 
y
les is diÆ
ult dueto the randomness of the daily total group a
tivity and dependen
y in the sam-ples. The dependen
e o

urs be
ause the daily a
tivities are re
orded for thesame animal group over the entire study period. A hierar
hi
al Bayes solution tosu
h a type of data is presented. The new approa
h is applied in a real data set
olle
ted to 
ompare daily a
tivity behavior in a group of Bla
k Lion Tamarin, L.
hrysopygus, in two di�erent annual seasons in Brazil. Gibbs with Metropolis-Hastings algorithms are used in order to determine the posterior distributions ofsu

ess probabilities of any spe
i�
 a
tivity at rainy and dry seasons. The margi-nal posterior distributions were 
ompared using the Kullba
k-Leibler divergen
emeasure.Key Words: A
tivity behavior; Gibbs-with-Metropolis-Hastings algorithms; hi-erar
hi
al Bayesian analysis; Kullba
k-Leibler divergen
e measure.1 Introdu
tionData on daily a
tivity 
y
les are 
ommon in studies of groups of animalsin their natural environments. The 
lassi
al approa
h in su
h type of datais diÆ
ult due to the randomness of the daily total group a
tivity andthe dependen
e in the samples. This dependen
e o

urs be
ause the dailya
tivities are re
orded for the same group of animals over the entire studyperiod. Sussman et al. (1979) present an alternative statisti
al methodsfor analyzing data on daily a
tivity. They propose a te
hnique based onfewer assumptions than those required by the 
hi-square test pro
edure.In this paper a Bayesian solution to a set of data on daily a
tivity 
y
lesin primate is given. This primate study (Costa, 1997) was 
ondu
ted inorder to 
ompare daily a
tivity behavior in a group of Bla
k Lion Tamarin,1
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s, 15, 2001L. 
hrysopygus, in two di�erent annual seasonal 
limati
 
onditions in Bra-zil, the rainy and dry seasons. The basi
 data set was obtained through asystemati
 observation of a single group of six individual: two adult male,three adult female and an infant female. The group was observed fromNovember 1992 to O
tober 1993, three 
onse
utive days by month, total-ling 36 observation days. The sampling te
hnique known as instantaneouss
an-sampling (Altmann, 1974) was used. Counts, for ea
h animal, of thenumber of ea
h of the following six a
tivities were re
orded: resting (A1);animal-feeding (A2); plant-feeding (A3); foraging (A4); moving (A5) andnot in sight (A6). A �fteen-minute-interval was taken between the 
ountsof an animal to the next one. At the end of ea
h day the total group a
-tivity re
ord for a
tivity is 
olle
ted. The period of observation per daywas asso
iated to the awakeness and the retiringness of the group, thusthe total group a
tivity re
ord for the ith day in the rainy season, Mi;i = 1; 2; : : : ; r, and for the jth day in the dry season, Nj ; j = 1; 2; : : : ; s;were not �x. The a
tivities are not assumed to be independent and all the6 animals of the group take part on all a
tivities.2 Bayesian approa
hInitially, let us assume that the main interest is to 
ompare the restingbehavior of the two seasons. Suppose, in the rainy season, M is the totalgroup a
tivity re
ord, p is the probability that an element of the group be inresting behavior and X is the total group resting re
ord. In the dry season,N is the total group a
tivity re
ord, q is the probability that an element ofthe group be in resting behavior and Y is the total group resting re
ord.Suppose that the random ve
tor (M; N) assumes values in N2 , where N =f0,1,: : :g and the marginal probability densities of M and N; fM(�j�) andfN (�j#); are indexed by the hyperparameters � and #; respe
tively. GivenM , p, N , and q; it is assumed that X and Y have binomial distributionswith parameters M , p and N; q respe
tively.Even the random ve
tors (X;M) and (Y;N) are dependent, on
e thestudy was based on the same animal group, it is possible, assuming theprevious assumptions, to write the likelihood fun
tions of those ve
tors.2.1 Likelihood fun
tionsThe likelihood fun
tion in the rainy season, form 2 N and x 2 f0; 1; : : : mg,is given byL(�; pjx;m) = P (X = x; M = mj�; p)= �mx�px(1� p)m�xfM (mj�)I(0;1)(p); (2.1)
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hi
al Bayes analysis of data on daily a
tivity 
y
les 3and in the dry season, for n 2 N and y 2 f0; 1; : : : ng, is given byL(#; qjy; n) = �ny�qy(1� q)n�yfN(nj#)I(0;1)(q):2.2 Posterior distributionsAll statisti
al inferen
es in the Bayesian analysis of resting behaviors willbe based on the posterior distributions of pjx;m and qjy; n:The joint posterior distribution of (�; p) is�(�; pjx;m) / L(�; pjx;m)�(�; p), (2.2)where �(�; p) is the joint prior density for (�; p):For the primate daily a
tivity 
y
les p will be the probability of su

essof the spe
i�
 a
tivity and, in 
ases where fM (mj�) 
orresponds to thePoisson density, �p will be the average of su

ess of the spe
i�
 a
tivity. If� and p are independent a priori, �(�; p) = �(�)�(p), whi
h is natural inthis 
ase, then the marginal posterior distribution of p is given by�(pjx;m) _ px(1� p)m�x�(p)I(0;1)(p): (2.3)Analogously, the marginal posterior distribution of q; assuming that # andq are independent a priori, is�(qjy; n) _ qy(1� q)n�y�(q)I(0;1)(q): (2.4)If p and q have natural 
onjugate Beta distributions with hyperpara-meters (a; b) and (
; d); respe
tively, then the expressions (2.3) and (2.4)be
ome�(pjx;m) = 1B(a+ x;m+ b� x)pa+x�1(1� p)m+b�x�1I(0;1)(p) (2.5)and �(qjy; n) = 1B(
+ y; n+ d� y)q
+y�1(1� q)n+d�y�1I(0;1)(q) (2.6)respe
tively.2.3 Sele
tion of priorsThe values of the hyperparameters a; b; 
; and d are frequently based onthe previous knowledge of the experimenter involved in the investigation.
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s, 15, 2001If those values are not available they must be determined from any infor-mation about the marginal distribution. Some methods (see Berger, 1985,
hapter 3) used to sele
t the priors are, for instan
e, the type II maximumlikelihood prior (ML-II) and the moment approa
h.The determination of a ML-II prior in this work will be asso
iated withthe 
lass � of priors� = �� : �(�; p) = �(�) 1B(a; b)pa�1(1� p)b�1I(0;1)(p); a > 0; b > 0� :Thus, if b� 2 � satis�esP (X = x;M = mjb�) = sup(a;b):a>0;b>0P (X = x;M = mja; b) (2.7)then b� is the ML-II prior. Similar 
lass of priors is used for (#; q):The predi
tive distribution of (X;M) given a and b is given byP (X = x; M = mja; b) = 1Z0 1Z0 P (X = x; M = mj�; p)�(�; p)d�dp/ 1Z0 1Z0 px(1� p)m�xfM(mj�)pa�1(1� p)b�1B(a; b) �(�)d�dp/ B(a+ x;m� x+ b)B(a; b) : (2.8)and the predi
tive distribution of (Y;N) given 
 and d is given byP (Y = y; N = nj
; d) / B(
+ y; n� y + d)B(
; d) : (2.9)In order to determine a and b in (2.5), 
onsidering the 
lass �; it isne
essary to �nd a and b that satisfy (2.7). It is easy to show that thereare no a and b values su
h that the fun
tion (2.8) 
an be maximized.It indi
ates that the ML-II approa
h 
an not be used in this 
ase. Themoment approa
h 
ould also not be used, without subje
tive experien
e,sin
e the data set 
onsist of just one value for X; the total group restingre
ord in the rainy season. Similar argument 
an be used about 
 and d:2.4 Hierar
hi
al modelsAn alternative approa
h is to model su
h a problem hierar
hi
ally. Thatis, given a and b, a > 0 and b > 0; if � and p are independent a priori,
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hi
al Bayes analysis of data on daily a
tivity 
y
les 5� and the ve
tor (a; b) are independent and p 
an be modelled by a betadistribution with hyperparameters a and b, then�(�; pja; b) = �(�)�(pja; b)= �(�) 1B(a; b)pa�1(1� p)b�1I(0;1)(p):Suppose that �(a; b) / expf�(a+b)=kg. This prior put uniform probabilityon a=(a + b); the mean of the beta distribution with hyperparameters aand b (George, 1992). Di�erent values of k were used in this study and theposterior results showed insensitive to all of them. For this reason k = 10was used in the analysis.The posterior density for all the parameters (�; p; a; b) is�(�; p; a; bjx;m) / L(�; pjx;m)�(�; pja; b)�(a; b)/ 1B(a; b)pa+x�1(1� p)b+m�x�1fM (mj�)�(�)�(a; b)I(0;1)(p):The posterior density for the parameters (p; a; b) is given by�(p; a; bjx;m) / 1B(a; b)pa+x�1(1� p)b+m�x�1 expf�(a+ b)=kgI(0;1)(p)(2.10)and for the parameters (a; b) is given by�(a; bjx;m) / B(a+ x; b+m� x)B(a; b) expf�(a+ b)=kg: (2.11)The marginal posterior densities of the parameters p; a; and b in equa-tion (2.10) are not easily obtained. An alternative to handle situationswhere the integration is diÆ
ult or impossible to be 
al
ulated exa
tly isthe use of the Gibbs with Metropolis-Hastings algorithm, whi
h allows oneto simulate observations from a 
omplex joint distribution.In this study the posterior simulation is performed in part using theGibbs sampler algorithm (Casella and George, 1992), for the 
ases wherethe 
onditional posterior distributions of the parameters are available forsampling, and in part using the Metropolis-Hastings algorithm (Chib andGreenberg, 1995), for the 
ases where the 
onditional distribution are notof standard form.All results in this se
tion and in the next subse
tion 
an automati
allybe used to simulate from the full 
onditionals of q; 
; and d.2.4.1 The 
onditional posterior distributions of the parametersThe 
onditional posterior density for p given a; b; x and m is
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s, 15, 2001�(pja; b; x;m) / pa+x�1(1� p)b+m�x�1I(0;1)(p): (2.12)The expression in (2.12) is readily re
ognized to be the kernel of a betadistribution with parameters a+ x and b+m� x.The 
onditional posterior density for a given b; p; x and m is�(ajb; p; x;m) / �(a+ b)�(a) pa expf�a=kgI(0;1)(a) (2.13)and the 
onditional posterior density for b given a; p; x and m is�(bja; p; x;m) / �(a+ b)�(b) pb expf�b=kgI(0;1)(b): (2.14)Observe that it is almost impossible to simulate from the densities (2.13)and (2.14). Thus in order to generate the samples from a and b we use theMetropolis-Hastings algorithm.
3 Data analysisThe Bayesian methods outlined in the previous se
tions are now appliedto a set of data on daily a
tivity 
y
les of a group of Bla
k Lion Tamarin,in two di�erent annual seasonal 
limati
 
onditions in Brazil. Counts ofsix a
tivities, for ea
h animal, were re
orded. At the end of ea
h day thetotal group a
tivity re
ord for a
tivity was 
olle
ted (see the original dataset in Table 4).Chara
teristi
s of the posterior distributions of the parameters p a;and b (q; 
; and d) 
an be 
al
ulated from the samples generated by theGibbs with Metropolis-Hastings te
hnique. A Pentium II 333 MHZ andthe statisti
al software SAS were used to generate two 
hains of 10,000iterations for the three parameters. The �rst 3000 iterations were ignoredand then every 5th sample run was taken forward for analysis.The posterior distributions of p and q are summarized in Table 1, with
hara
teristi
s su
h as the posterior means and the posterior medians (theaverages and the medians of the simulated values), and the 95% 
redibleintervals. The a
tivity not in sight was not relevant for the resear
h.
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hi
al Bayes analysis of data on daily a
tivity 
y
les 7Table 1Mean, median, sd and HPD interval for p and q.Seasonal A
tivity mean median sd 0.95 HPD intervalrainy resting - p 0.3860 0.3860 0.0056 (0.3750; 0.3970)dry resting - q 0.3670 0.3670 0.0106 (0.3470; 0.3880)rainy animal-feeding -p 0.0111 0.0111 0.0012 (0.0088; 0.0136)dry animal-feeding -q 0.0078 0.0076 0.0020 (0.0044; 0.0121)rainy plant-feeding - p 0.1120 0.1120 0.0037 (0.1050; 0.1190)dry plant-feeding - q 0.1200 0.1200 0.0071 (0.1060; 0.1340)rainy foraging - p 0.0783 0.0782 0.0031 (0.0723; 0.0845)dry foraging - q 0.0955 0.0952 0.0065 (0.0831; 0.1090)rainy moving - p 0.1280 0.1280 0.0039 (0.1210; 0.1360)dry moving - q 0.1410 0.1410 0.0076 (0.1270; 0.1560)4 Convergen
e diagnosisThe CODA software (Best, et al., 1995) was used to perform 
onvergen
edisgnosti
s of the 
hains. At least four 
riteria available in that pa
kagewere used and the results showed that the 
hains have 
onverged. One ofthem, the Gelman and Rubin 
riterion (Gilks et al., 1995), is presented inTable 2. Histograms of the 
ombined 
hains for ea
h a
tivity are showedin Figure 1.Table 2Gelman and Rubin 50% and 97.5% shrink fa
torsVariable Point est. 97.5% quantileresting - p 1.00 1.00resting - q 1.02 1.08animal-feeding -p 1.00 1.00animal-feeding -q 1.00 1.00plant-feeding - p 1.00 1.00plant-feeding - q 1.00 1.00foraging - p 1.00 1.00foraging - q 1.00 1.00moving - p 1.00 1.00moving - q 1.00 1.00
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hi
al Bayes analysis of data on daily a
tivity 
y
les 95 Comparing the posterior distributionsThe Kullba
k-Leibler (KL) divergen
e measure and Monte Carlo methodsare used here in order to 
ompare the posterior distributions of p andq: Suppose that the random variables W1 and W2 have pdf fW1(z) =�1(zjx;m) and pdf fW2(z) = �2(zjy; n), respe
tively, and, for some j =1; 2; : : : J; fW1(zj) = ZZ �1(zj ja; b; x;m)�(a; bjx;m)dadb= Ea;b(�1(zj ja; b; x;m)): (5.1)Thus, for values (a1; b1); (a2; b2); : : : ; (aI ; bI) generated from �(a; bjx;m)the expe
tation (5.1) 
an be estimated by (Ma
kay, 1996; Gelfand et al.,1992)fW1(zj) �= 1I IXi=1 �1(zj jai; bi; x;m); for all I suÆ
iently large. (5.2)Similarly, for values (
1; d1); (
2; d2);: : :;(
I ; dI) generated from �(
; djy; n),fW2(zj) 
an be estimated byfW2(zj) �= 1I IXi=1 �2(zj j
i; di; y; n); for all I suÆ
iently large. (5.3)The KL divergen
e between fW1 and fW2 is de�ned as (Csisz�ar, 1967)K(fW1 ; fW2) = Z log�fW2(z)fW1(z)� fW1(z)dz= K(�1(�jx;m); �2(�jy; n)):Using (5.2) and (5.3) the dis
repan
y between �1 and �2 
an be appro-ximately measured byK(�1(�jx;m); �2(�jy; n)) �= 1J JXJ=1 log0BBB� 1I2 I2Pi=1�2(zj j
i; di; y; n)1I1 I1Pi=1 �1(zj jai; bi; x;m)1CCCA ; (5.4)for all J; I1 and I2 suÆ
ient large.The use of K(�1; �2) as a measure of the dis
repan
y between �1 and�2 depends on the 
alibration of K(�; �): Thus, given K(�1; �2) = K; we
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s, 15, 2001have to 
reate a s
ale to de
ide ifK indi
ates a weak or a strong divergen
ebetween the posteriors.The 
alibration of K(�; �) follows from M
Cullo
h (1989) and Pengand Dey (1995). Let fg(�jp) : p 2 (0; 1)g be the family of probabilityfun
tions 
orresponding to the Bernoulli distribution; that is, g(xjp) =px(1�p)1�xIf0;1g(x); p 2 (0; 1): Fixing, arbitrarily, the numbers p0 and p1;su
h that p0 2 (0; 0:5) and p1 2 (0:5; 1); with p0 and p1 symmetri
allyabout p = 0.5, as, for example, p0 = 0:02 and p1 = 0:98; it is reasonableto suppose that, for all p < p0 or p > p1 g(�j0:5) and g(�jp) are 
ompletelydi�erent, and for all p 2 [p0, p1℄ it is reasonable to suppose that g(�j0:5)and g(�jp) are similar. It implies that, for all p 2 (0; p0)[ (p1, 1); the valueof K(g(�j0:5); g(�jp)) 
ould be 
onsidered large and, for all p 2 [p0, p1℄ ; thevalue of K(g(�j0:5); g(�jp)) 
ould be 
onsidered small.The fun
tionK(g(�j0:5); g(�jp)); whi
h is equal to �0:5 log[4p(1�p)℄; forp 2 (0; 1); is symmetri
 about p= 0.5, monotone de
reasing for 0 < p < 0:5;monotone in
reasing for 0:5 < p < 1; and zero for p = 0:5; (see Figure 2).For this reason the 
alibration is de�ned as follows. If K(�1; �2) � K0,where K0 = K(g(�j0:5); g(�jp0));then �1 and �2 are 
ompletely di�erent,otherwise, �1 and �2 are similar.
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hi
al Bayes analysis of data on daily a
tivity 
y
les 11The values of the approximate KL divergen
e measure between themarginal posteriors (rainy and dry seasons) for ea
h a
tivity, measured byexpression (5.4), are given in Table 3. The results suggest the plausibilityof di�erent behavior between the rainy and dry seasons.Table 3Divergen
e measure between the marginal posteriorsA
tivity Approximate KL divergen
e measureResting 37.3586Animal-Feeding 8.4387Plant-Feeding 8.9072Foraging 22.3466Moving 9.8767
6 Dis
ussionThe methodology proposed in this paper is an attempt to use an hierar-
hi
al Bayes approa
h for data on daily a
tivity 
y
les. This approa
hprovides a 
onvenient way to 
ompare a
tivity behavior in two dependentsamples. In the situation presented here, samples from the marginal pos-terior distributions of su

ess probabilities at rainy and dry seasons, 
on-sidering informative prior distributions, were generated by the Gibbs withMetropolis-Hastings te
hnique. Chara
teristi
s of those posterior were 
al-
ulated.The posterior distributions for ea
h season were 
ompared using theKullba
k-Leibler divergen
e measure. In all situations the group of animalsseems to have di�erent behavior with respe
t to the �ve a
tivities studiedhere.
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s, 15, 2001Table 4Raw data set, by season, by month, by day, and by a
-tivity: resting (A1);animal-feeding(A2); plant-feeding(A3);foraging(A4); moving (A5) and not in sight(A6).Season Month Day A1 A2 A3 A4 A5 A6 Totalrainy Nov 1 120 3 34 7 41 85 290rainy Nov 2 106 5 57 14 41 73 296rainy Nov 3 132 4 35 28 48 77 324rainy De
 1 152 13 19 19 60 45 308rainy De
 2 112 1 14 16 39 108 290rainy De
 3 158 9 11 14 41 62 295rainy Jan 1 48 0 24 5 21 43 141rainy Jan 2 91 1 33 11 29 115 280rainy Jan 3 65 3 37 20 39 129 293rainy Feb 1 84 3 36 15 28 92 258rainy Feb 2 64 2 13 30 22 119 250rainy Feb 3 106 1 26 39 38 60 270rainy Mar 1 113 1 11 15 35 85 260rainy Mar 2 108 0 32 16 34 60 250rainy Mar 3 97 11 3 23 35 102 271rainy Apr 1 101 0 23 23 25 89 261rainy Apr 2 97 6 23 29 23 112 290rainy Apr 3 109 0 54 33 35 23 254rainy May 1 102 7 34 26 35 46 250rainy May 2 80 0 45 13 41 37 216rainy May 3 126 1 20 17 35 61 260dry Jun 1 73 1 30 25 28 74 231dry Jun 2 112 3 9 17 33 46 220dry Jun 3 58 1 52 19 28 42 200dry Jul 1 57 6 22 15 23 87 210dry Jul 2 82 1 39 22 32 54 230dry Jul 3 97 1 20 30 42 36 226dry Aug 1 98 1 25 20 30 95 269dry Aug 2 98 0 32 28 45 47 250dry Aug 3 90 2 20 22 32 75 241rainy Sep 1 140 0 30 29 23 58 280rainy Sep 2 71 6 35 29 38 91 270rainy Sep 3 107 2 54 36 44 67 310rainy O
t 1 102 1 33 22 31 101 290rainy O
t 2 74 1 41 33 26 85 260rainy O
t 3 45 0 13 3 14 205 280
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