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Summary

A fully parametric proportional hazard survival model is studied through the simulation

of the behavior of maximum-likelihood estimators. We consider the data to be generated

by a Gompertz distribution with one changepoint and certain observations to be right-

censored. This study has been carried out using the Mathematica program for data

generation and for the numerical solution of equations, and the Statgraphic and S-Plus

packages for the statistical analysis of results.
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1 Introduction

Proportional hazard models comprise the basis of the most common procedures in
survival analysis. A review of the different study procedures on these models ap-
pears in Kay (1977), and Aitkin and Clayton (1980). An important improvement
over these models was achieved by Noura and Read (1990), who considered that
the parameters characterizing the base-line distribution may vary with time for
different intervals but remain constant at each interval. The points where these
changes take place are termed changepoints.

We have employed a changepoint model, considering the survival time to be
determined by the Gompertz distribution.

In some practical situations if we could consider changepoints it can provide a
description most specifies of the data. For example, in the medical treatment of
a disease, the appearance of a new drug can affect to the time of survival. In our
model, this will be reflected only in a change of the parameters that characterize
to the base-line distribution. In general terms, when real changes in the patterns
of risk can be recognized, changepoints may be justified physically.
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In this paper we have studied by simulation the maximum-likelihood estima-
tors for the proposed model. Due to the extreme difficulty in solving maximum-
likelihood equations, it has been necessary to approach them by numerical meth-
ods.

2 The model

Let us consider a proportional hazard survival model whose survival time, t, fol-
lows Gompertz’s distribution. This distribution describes a rather precise form
for the length of humane life after the age of 20.

We suppose that for each individual is defined a p× 1 vector z = (z1, · · · , zp)
T

of covariates which represent the characteristics which could have an influence on
failure time.

The covariates are added to the distribution of failure time via the link function
ψ(z), which can be parameterized by ψ(z) = eβT

z, where the linear predictor βT z

expresses the relative effects of the covariates z in terms of a vector of regression
coefficients β = (β1, · · · , βp)

T .
In the presence of covariates, its survivor function S(t; z) and hazard function

λ(t; z) are defined by:

S(t; z) = exp [−α(eρt − 1)/ρ]
eβT

z

,
λ(t; z) = α exp

[

βT z + ρt
]

,
(2.1)

where α y ρ are Gompertz’s distribution parameters.

Let a partition of the time axis be given by parameter changepoints a1, · · · , ak,
with a0 = 0 and ak+1 = ∞; in each interval (aj−1, aj), the distribution parameters
take the values αj and ρj .

Let g(t) be the logarithm of the accumulative base-line hazard function, Λ(t),
given in this case by:

Λ(t) =

∫ t

0

λ0(u)du =

∫ t

0

αeρudu .

At each interval aj−1 < t ≤ aj of the time axis, g(t) becomes

g(t) = ln
[

αj

(

eρjt − 1
)

/ρj

]

, j = 1, . . . , k + 1 . (2.2)

Imposing the continuity condition on g(t) at the changepoints, the following
is verified:

ln

[

αj [eρjaj − 1)

ρj

]

= ln

[

αj+1 (eρj+1aj − 1)

ρj+1

]

, j = 1, . . . , k , (2.3)

from which we obtain the following parameter relationship:

αj =
α1ρj

ρ1

j−1
∏

p=1

eρpap − 1

eρp+1ap − 1
, j = 2, . . . , k + 1 . (2.4)
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So for a survival time ending at j-th interval,

g(t) = ln

[

α1

ρ1

(

eρjt − 1
)

j−1
∏

p=1

eρpap − 1

eρp+1ap − 1

]

, (2.5)

for i-th observation we obtain

g(ti) =
k+1
∑

j=1

cij ln

[

α1

ρ1

(

eρjti − 1
)

j−1
∏

p=1

eρpap − 1

eρp+1ap − 1

]

, (2.6)

where cij is a variable indicator associated with the i-th observation, defined as

cij =
{

1 if aj−1 < ti ≤ aj

0 otherwise

with i = 1, . . . , N and j = 1, . . . , k + 1 . N represents the number of indi-
viduals studied.

Let Hi = exp{g(ti) + βT z} and

hi = H ′
i = g′(ti)Hi = Hi

k+1
∏

j=1

[

ρje
ρjti

eρjti − 1

]cij

. (2.7)

Survivor and density functions are respectively represented by

S(ti) = exp [−Hi]
f(ti) = hi exp [−Hi] .

(2.8)

3 Likelihood equations

Let T1, . . . , TN be the associated survival times of N selected individuals; these
survival times may or may not be right-censored. Let t1, . . . , tN be the observed
survival times and ω1, . . . , ωN the corresponding censoring indicators defined by

ωi =

{

1 if the observation is not censored (Ti = ti)
0 if it is censored (Ti > ti)

(3.1)

If the right-censored scheme is independent of the failure mechanism, it is clear
that a censored value ti contributes only the information that Ti exceeds ti. It
follows that a survival time censored in this manner contributes to the likelihood
of its survivor function and an uncensored observation contributes its density
function . In this manner, the likelihood function of N observations, aided by the
censored indicator, is expressed as

l =

N
∏

i=1

[f(ti; z)]
ωi [S(ti; z)]

1−ωi , (3.2)



116 Brazilian Journal of Probability and Statistics, 14, 2000

and the log-likelihood as

L =
N

∑

i=1

{ωi lnλ(ti; z) + lnS(ti; z)} =

N
∑

i=1







ωi ln







exp





p
∑

s=1

βszis +
k+1
∑

j=1

cij ln

[

α1

ρ1

(

eρjti − 1
)

×

j−1
∏

p=1

eρpap − 1

eρp+1ap − 1

]]

k+1
∏

j=1

[

ρje
ρjti

eρjti − 1

]cij







−

exp







p
∑

s=1

βszis +
k+1
∑

j=1

cij ln

[

α1

ρ1

(

eρjti − 1
)

j−1
∏

p=1

eρpap − 1

eρp+1ap − 1

]













.

(3.3)
From this point, the likelihood equations associated with the model are ob-

tained by the following three groups of expressions:

∂L

∂ρ1
=

N
∑

i=1

{

ωi

[

ci1ti +

(

a1e
ρ1a1

eρ1a1 − 1
−

1

ρ1

) k+1
∑

p=2

cip

]

−

− Hi

[

ci1

(

tie
ρ1ti

eρ1ti − 1
−

1

ρ1

)

+

(

a1e
ρ1a1

eρ1a1 − 1
−

1

ρ1

) k+1
∑

p=2

cip

]}

= 0 ,

(3.4)

∂L

∂ρj

=

N
∑

i=1

{

ωi

[

cij

(

1 + ρjti
ρj

−
aj−1e

ρjaj−1

eρjaj−1 − 1

)

+

(

aje
ρjaj

eρjaj − 1
−

−
aj−1e

ρjaj−1

eρjaj−1 − 1

) k+1
∑

p=j+1

cip



 −Hi

[

cij

(

tie
ρjti

eρjti − 1
−
aj−1e

ρjaj−1

eρjaj−1 − 1

)

+

+

(

aje
ρjaj

eρjaj − 1
−
aj−1e

ρjaj−1

eρjaj−1 − 1

) k+1
∑

p=j+1

cip











= 0 ,

(3.5)
for j = 2, . . . , k + 1 , and

∂L

∂βs

=

N
∑

i=1

(ωi −Hi)zis = 0 , s = 0, . . . , p , (3.6)
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the term lnα1 is identified with the component β0 of the parameter vector β which
requires the addition of a component zi0 = 1 to the covariates vector.

4 Simulation scheme

In order to determine the behavior of the estimators resulting from equations (3.4),
(3.5), and (3.6), we have performed a simulation study in which we considered the
following simplifications:

• A single changepoint.

• The existence of two groups of individuals, taking the same number of ob-
servations in each group.

We have also performed a comparative study varying the following factors:

- Changepoint position (percentiles 40 and 60).

- Sample size (50, 80, and 200).

Throughout the study we have considered that the probability of a censored
individual is 0.2. To each individual, a random number is assigned generated by
a uniform distribution; if said number is less then 0.2, the individual is censored
and his observed survival time is randomly reduced by the following expression:

F (ti) = γi ∗ F (Ti) with γi ∈ U [0, 1].

In other words, the reduction of survival time of censored individuals is mod-
eled by an uniform distribution.

The determination of the estimators via the Mathematica program was carried
out by numerically solving the maximum-likelihood equations obtained from the
explicit expression of the corresponding derivatives.

5 Simulation results

Taking into account only the changepoint variation we distinguish two situations,
I and II. In both cases, we assign parameters α1 = 0.01 and ρ1 = 1 (an arbitrary
choice of values) to the distribution before the changepoint. The selection of
ρ2 was arbitrary. The value for α2 was obtained from the recurring ratio (2.4).
We have supposed that β1 = 0, therefore the difference between the two groups
is produced by β2. From these assumptions each situation is identified by the
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parameters summarized in Table 1.

Table 1

Common characteristics
n1 = n2 β1 = 0 α1 = 0.01 ρ1 = 1

% Censored = 20 β2 = 0.59 ρ2 = 0.5
Parameters Situation I Situation II
Changepoint 3.9 (P40) 4.5 (P60)

α2 0.04 0.0524

The simulation is based on the study of 100 independent samples of each
sample size.

A summary of the results obtained in each of the two situations for sample
sizes of 50, 80 and 200 is given below in Tables 2 and 3.

Table 2

Estimator behavior. Situation I.

n = 50 n = 80 n = 200
Param. Bias St.Error Bias St.Error Bias St.Error

β̂2 -0.040853 0.027499 -0.005165 0.001881 -0.00097 0.000305
α̂1 0.000577 0.000518 -0.000484 0.000123 -0.000212 0.000104
α̂2 0.007899 0.001266 0.007763 0.000937 -0.000577 0.001843
ρ̂1 -0.036411 0.011655 0.008639 0.004513 0.000383 0.000131
ρ̂2 -0.024669 0.002822 -0.002969 0.000863 -0.000291 0.000071

Table 3

Estimator behavior. Situation II.

n = 50 n = 80 n = 200
Param. Bias St.Error Bias St.Error Bias St.Error

β̂2 -0.008321 0.007397 -0.004816 0.000878 -0.000126 0.000055
α̂1 0.001741 0.000472 0.001256 0.000174 0.000625 0.00013
α̂2 0.009771 0.002074 -0.000789 0.000439 -0.000079 0.000422
ρ̂1 0.006481 0.001973 0.005131 0.00608 -0.000237 0.000172
ρ̂2 -0.034685 0.003994 -0.003525 -0.000338 -0.000239 0.000198

Comparing the results obtained with the sample sizes 50, 80 and 200, we
note that each estimator bias decreases when the sample size increases. The
standard error also tends to zero and the estimator approaches the true value of
the parameter.

For 200-sized samples, it can be statistically accepted in Situation I and Situ-

ation II that estimators β̂2, α̂1 , α̂2 , ρ̂1 and ρ̂2 are approximately unbiased.
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In addition, the correlation matrices of the samples between the estimators in
each of the situations and for a sample of 200 are shown in Tables 4 and 5.

Table 4

Sample correlations of estimators. Situation I

β̂2 α̂1 α̂2 ρ̂1 ρ̂2

β̂2 1.0000 - 0.0365 0.0015 0.0282 -0.0209
0.0000 0.6076 0.9833 0.6923 0.7692

α̂1 -0.0365 1.0000 0.0757 0.0292 0.1280
0.6076 0.0000 0.2869 0.6813 0.0709

α̂2 0.0015 0.0757 1.0000 0.0863 -0.0848
0.9833 0.2869 0.0000 0.2246 0.2324

ρ̂1 0.0282 0.0292 0.0863 1.0000 0.0183
0.6923 0.6813 0.2246 0.0000 0.7974

ρ̂2 -0.0209 0.1280 -0.0848 0.0183 1.0000
0.7692 0.0709 0.2324 0.7974 0.0000

Table 5

Sample correlations of estimators. Situation II

β̂2 α̂1 α̂2 ρ̂1 ρ̂2

β̂2 1.0000 -0.0100 0.0036 0.0971 0.0877
0.0000 0.8877 0.9596 0.1712 0.2170

α̂1 -0.0100 1.0000 0.0699 -0.1307 0.0976
0.8877 0.0000 0.3255 0.0651 0.1694

α̂2 0.0036 0.0699 1.0000 0.0006 -0.0911
0.9596 0.3255 0.0000 0.9934 0.1996

ρ̂1 0.0971 -0.1307 0.0006 1.0000 -0.0189
0.1712 0.0651 0.9934 0.0000 0.7900

ρ̂2 0.0877 0.0976 -0.0911 -0.0189 1.0000
0.2170 0.1694 0.1996 0.7900 0.0000

Two numbers appear in each cell of the matrix: the correlation coefficient
estimate for the two variables represented by the cell and the significance level of
the correlation.

In general terms, we can accept that the estimator of the covariate effect does
not depend on the parameter estimators of the baseline distribution and that the
estimators of the base distribution do not depend upon each other either. Said
dependency is enhanced as the sample size increases.

On the other hand, the independence between the base distribution parameters
is less significant due to the continuity condition demanded to the accumulative
hazard function at the changepoints, given by the expression (2.3).

Finally, we show a graphic and analytical comparison between the model with
a changepoint and without.
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The figures show that the estimate survival functions with a changepoint are
closer to the true survival functions than the estimates without changepoint. Also
we note that the changepoints in Situation I are more important than in Situation
II since the changepoints provide less information to the survival function when
the changepoints occur at the end of the survival time.

The analytical, the comparison between the fit obtained by the model with
and without changepoint was done by deviance analysis. For example, for data
shown in Figure 1 (a and b), the two-stage Gompertz model with a1 = 3.9 does
significantly better than the simple Gompertz model, reducing the deviance by
96.5283, (χ2 = 417.6270−321.0987) on 1 DF, p < 0.001. Comparisons of deviance
confirm that the two-stage model is also superior in Situation II.

Table 6 displays the deviances for two situations of 10 samples each. Analysis
of the table shows that, in general, the model with changepoint explains the data
better than the model without changepoint.

Table 6

Deviance
Situation I Situation II

Sample Without Chp. With Chp. Without Chp. With Chp.

1 417.6270 321.0987 275.2760 230.7480
2 385.4060 302.2681 261.8940 229.4720
3 398.9920 328.9870 287.9490 260.9070
4 478.7950 329.0701 270.6319 257.79001
5 379.7082 323.1626 321.1324 279.8066
6 497.2571 321.3911 338.4481 321.9874
7 458.5673 327.0950 310.6986 294.0866
8 487.9750 389.6469 325.2892 271.3752
9 398.6766 314.0389 315.0724 291.8536
10 461.3570 350.2241 287.3906 251.5675

(Received January, 1998. Revised July, 2000.)
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