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40170-110, Salvador, BA, Brazil
gauss@ufba.br
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Summary

The t distribution has proved to be a useful alternative to the normal distribu-

tion in many econometric regression models, especially when robust estimation

is desired. In this work, we consider a nonlinear heteroskedastic Student t re-

gression model. We suppose the observations to be independently t distributed,

with the location and scale parameters for each observation being related to lin-

ear combinations of some explanatory variables, through regular, and possibly

nonlinear, completely known link functions. We obtain the second order biases

of the maximum likelihood estimates of the coefficients of those linear combina-

tions and show that the biases will only depend on the first two derivatives of

the link functions. We also express the biases in a closed matrix form, allowing

them to be easily computed, in practical applications, from auxiliary generalized

linear regressions. We discuss some important special cases and present Monte

Carlo simulation results indicating that the bias-corrected estimates outperform

the corresponding uncorrected estimates for relatively small sample sizes. An

example with real data showing the usefulness of bias correction for this model

is also presented.
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1 Introduction

The study of the behaviour of maximum likelihood estimates (MLEs) for
small sample sizes constitute an important area of research in econometric
models. We know that MLEs produce, in general, biased estimates of the
true parameter values. The bias correction of the MLEs is particularly
important when the sample size, or the total information, is small. The
biases of the estimates do not represent a serious problem for relatively
large sample sizes, since they are, in general, of order O(n−1), while the

asymptotic standard errors are of order O(n−1/2). However, for small or
even moderate values of n, the bias has to be taken into consideration and
availability of formulae for its approximate computation is important for a
good estimation performance of many regression models that are used in
a number of econometric applications.

The improvement of MLEs using bias correction has been extensively
studied in the statistical literature. Box (1971) gives a general expression
for the n−1 bias in multivariate nonlinear models where covariance matri-
ces are known. Pike, Hill and Smith (1980) investigate the bias in logistic
linear models. For nonlinear regression models, Cook, Tsai and Wei (1986)
relate bias to the position of the explanatory variables in the sample space.
Young and Bakir (1987) show that bias correction can improve estima-
tion in generalized log-gamma regression models. Cordeiro and McCullagh
(1991) and Cordeiro and Klein (1994) have given general matrix formu-
lae for bias correction in generalized linear models and ARMA models,
respectively. More recently, Cordeiro and Vasconcellos (1997) obtain gen-
eral matrix formulae for bias correction in multivariate nonlinear regression
models with normal errors, while Cordeiro, Vasconcellos and Santos (1998)
present bias correction formulae for univariate nonlinear Student-t regres-
sion models. This study is extended in Vasconcellos and Cordeiro (2000)
for multivariate nonlinear Student-t regression models. Also, Cordeiro and
Vasconcellos (1999) obtain second-order biases of the MLEs in von Mises
regression models.

In this paper, we derive general matrix formulae for second-order biases
of the MLEs of the parameters in an heteroskedastic nonlinear Student-t
regression model. The t distribution has been extensively discussed in the
statistical literature, as an option to model data with heavy-tailed distribu-
tions, and also as a robust estimation procedure, since the t distribution is
not as sensitive to outliers as the normal distribution. Jeffreys (1939) uses
the t distribution to describe astronomical data. Zellner (1976) studies the
univariate linear regression model where the vector of observed responses is
multivariate t distributed. West (1984) performs Bayesian analysis related
to the use of the t distribution in regression problems. Sutradhar and Ali
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(1986) extend Zellner’s work to cover MLEs in a multivariate regression
model. Lange, Little and Taylor (1989) provide a rich illustration on the
use of the t distribution as a robust extension of the normal distribution
by considering univariate and multivariate Student-t regression models and
give a number of practical applications. Ferrari and Arellano-Valle (1996)
have developed Bartlett and Bartlett-type corrections to improve likelihood
ratio and score tests in the class of univariate linear t regression models
discussed in Lange, Little and Taylor (1989). Also, formulae for second-
order biases of MLEs in univariate nonlinear t regression models are given
in Cordeiro, Vasconcellos and Santos (1998), this study being extended in
Vasconcellos and Cordeiro (2000) for multivariate regression models.

The matrix form expressions given here for the n−1 biases of the MLEs
of the parameters correspond to the coefficients of auxiliary generalized
least squares linear regressions. The n−1 biases are, therefore, very sim-
ple to compute and the necessary formulae to calculate them involve only
elementary operations on matrices, being of easy implementation on any
matrix based programming language as Ox, GAUSS or S-PLUS.

The paper is organized in the following form. Section 2 presents a
formal description of the heteroskedastic nonlinear Student-t regression
model. In Sections 3 and 4, we use Cox and Snell’s (1968) general ex-
pression to obtain formulae for second-order biases of the MLEs of the
parameters in the model defined in Section 2. Some special cases of the
formulae derived are discussed in Section 5. In Section 6, we present some
simulation results suggesting that the corrected estimates have better per-
formance than the uncorrected ones in small samples. Finally, in Section
7, we discuss an example with real data showing the usefulness of our
formulae for the Student t heteroskedastic model.

2 Model Definition

We consider a univariate nonlinear heteroskedastic regression model where
the observations y1, . . . , yn are independent and each observation yi has a
Student-t distribution with location parameter µi, scale parameter σi and
ν degrees of freedom. The density of yi, for each i = 1, . . . , n, is therefore
given by

f(y;µi, σ
2
i , ν) =

νν/2Γ(ν+1
2 )

σi
√

πΓ(ν
2 )

{

ν +

(

y − µi

σi

)2
}−(ν+1)/2

, (2.1)

where σi > 0. We define the precision parameter φi = σ−2
i for each observa-

tion yi. We then assume that the parameters µi and φi can be expressed as
µi = g(ηi) and φi = h(τi) where g(·) and h(·) are known one-to-one continu-
ously twice differentiable functions, while ηi and τi are linear combinations
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of some explanatory variables. The linear predictors η = (η1, . . . , ηn)T

and τ = (τ1, . . . , τn)T are given, respectively, by the relations η = Xβ
and τ = Zγ, where X is a specified n × p matrix of full rank p < n,
β = (β1, . . . , βp)

T is a set of unknown parameters, Z is a specified n × q
matrix of full rank q < n and γ = (γ1, . . . , γq)

T is a set of unknown param-
eters. It is clear that the link function h(·) must be a positive function.
This function is usually called dispersion link function whereas g(·) is the
mean link function. The covariates in Z constitute, in general, although
not necessarily, a subset of the covariates in X. The parameters β and γ
are assumed to be functionally independent, which leaves us p + q param-
eters to be estimated. We also assume that p + q is small relative to n and
that ν is known.

At this point, it is important to make some remarks on the number ν
of degrees of freedom. We first observe that, for ν > 1, the expected values
of all yi’s exist and correspond to the location parameters µi; also, for
ν > 2, the variance of each observation exists and is given by νσ2

i /(ν − 2).
Moreover, the normal distribution is obtained by letting ν → ∞. All of
these results are well-known. However, it must be emphasized that a known
value for ν is not a very strong assumption for the purpose of our work.
Indeed, Lange, Little and Taylor (1989) suggest that ‘ν should be fixed for
small data sets and estimated for large ones’. In other words, small samples
do not typically provide sufficient information about ν for this parameter to
be estimated with enough precision. Since our chief concern is the analysis
of small data sets where bias correction is particularly important, it seems
reasonable to fix ν at a small value. Moreover, the influence function
becomes unbounded when ν is unknown and this is a major argument
for fixing ν. Lange, Little and Taylor (1989) point out that, for small
samples, ν = 4 has worked well for many of their applications. The fixed
ν assumption we adopt here is also considered in Ferrari and Arellano-
Valle (1996), Cordeiro, Vasconcellos and Santos (1998) and Vasconcellos
and Cordeiro (2000). The t distribution, as pointed out earlier, provides a
useful extension of the normal distribution for situations where robustness
plays an important role in estimation. The normal case is trivially obtained
as the limiting case when ν → ∞.

We must here emphasize that we are working with the hypothesis that
the observations are independent. Therefore, the approach we use here is
different from that of Zellner (1976). Instead, we follow Lange, Little and
Taylor (1989), Ferrari and Arellano-Vale (1996), Cordeiro, Vasconcellos
and Santos (1998) and also Vasconcellos and Cordeiro (2000). From (2.1)
and this hypothesis of independence, the total log-likelihood ℓ(θ) for the
(p+q)×1 vector θ = (βT , γT )T of unknown parameters, given observations
y1, ..., yn, becomes
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ℓ(θ) =
1

2

{

C +
∑

i

log h(τi) − (ν + 1)
∑

i

log(ν + h(τi)(yi − g(ηi))
2

}

,

(2.2)
where C is given by

C = 2n log

{

νν/2Γ
(

ν+1
2

)

π1/2Γ
(

ν
2

)

}

, (2.3)

and
∑

i
runs over all n observations. The quantity C defined in (2.3) does

not depend on the parameters of the model (since ν is assumed known)
and is, therefore, not relevant for our purposes. We assume that some
standard regularity conditions (Cox and Hinkley, 1974; Chapter 9) on ℓ(θ)
and its first three derivatives hold as n goes to infinity; these conditions
are usually satisfied in practice.

We now introduce the notation used throughout the paper. The to-
tal log-likelihood derivatives with respect to the unknown parameters are
indicated by indices, where lower-case letters r, s, t, ... correspond to deriva-
tives with respect to the β parameters, while upper-case letters R,S, T, ...
correspond to derivatives with respect to the γ parameters. Thus, Ur =
∂ℓ/∂βr, UR = ∂ℓ/∂γR, URs = ∂2ℓ/∂γR∂βs, UrsT = ∂3ℓ/∂βr∂βs∂γT and so
on. The standard notation for the moments of these derivatives is used here
(Lawley, 1956; Cordeiro, 1993a): κrs = E(Urs), κR,S = E(URUS), κrs,T

= E(UrsUT ), κrst = E(Urst), etc., where all κ’s refer to a total over the
sample, and are, in general, of order n. Also, their derivatives are denoted

by κ
(t)
rs = ∂κrs/∂βt, κ

(T )
rS = ∂κrS/∂γT , etc. Moreover, the information ma-

trices with respect to β and γ are denoted by Kβ and Kγ , respectively,
with their typical elements being given by κr,s and κR,S , respectively. We
assume that Kβ and Kγ are nonsingular, denoting the typical elements of

their inverses by κr,s and κR,S , respectively.
Differentiation of (2.2) yields

Ur = (ν + 1)
∑

i

hi(yi − gi)g
′
ixir

ν + hi(yi − gi)2
,

UR =
1

2

∑

i

h′
iziR

hi
− (ν + 1)

2

∑

i

(yi − gi)
2h′

iziR

ν + hi(yi − gi)2
,

where gi = g(ηi) = µi, hi = h(τi) = φi, g′i = ∂g(ηi)/∂ηi and h′
i =

∂h(τi)/∂τi. The MLEs of the parameters β and γ can be obtained as the
solution of a nonlinear system of p+q equations: Ur = 0 for r = 1, ..., p and
UR = 0 for R = 1, ..., q. This system can, in practice, be solved using an
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iterative procedure that converges to the desired MLEs. Good numerical
alternatives to maximize the log-likelihood function are the offset algorithm
described by Cordeiro and Paula (1989) and the MaxBFGS function im-
plemented in the Ox programming language (Doornik, 1999), which uses
BFGS, the quasi-Newton method developed by Broyden, Fletcher, Gold-
farb and Shanno (see, e.g., Fletcher, 1987). This latter was the procedure
used in the numerical studies of the present work. From here onwards, we
assume that the MLEs β̂ and γ̂ exist, are finite, unique and are given by
the solution of Ur = 0 for r = 1, ..., p and UR = 0 for R = 1, ..., q.

3 Biases of the Estimate of β

From the log-likelihood defined in (2.2) and basic properties of the Student t
distribution (Zellner, 1971; Appendix B), we obtain the following moments:

κrs = −ν + 1

ν + 3

∑

i

xirxishig
′2
i ,

κRS = − ν

2(ν + 3)

∑

i

ziRziS

(

h′
i

hi

)2

,

κrst = −3(ν + 1)

ν + 3

∑

i

xirxisxithig
′
ig

′′

i ,

κrsT = −(ν + 1)(ν + 2)

(ν + 3)(ν + 5)

∑

i

xirxisziT h′
ig

′2
i ,

κRST =
ν

(ν + 3)

∑

i

ziRziSziT

(

(ν + 8)

(ν + 5)

(

h′
i

hi

)3

− 3h′
ih

′′

i

2h2
i

)

and

κrS = κrST = 0,

where g′′i = ∂2g(ηi)/∂η2
i and h′′

i = ∂2h(τi)/∂τ2
i . We immediately observe

that β and γ are globally orthogonal (Cox and Reid, 1987) since κrS =
0, for all r = 1, ..., p and S = 1, ..., q. Therefore, the joint information
matrix K for θ = (βT , γT )T is block-diagonal, K = diag{Kβ ,Kγ}, with

the information matrices Kβ and Kγ for β and γ given by Kβ = XT W1X

and Kγ = ZT W2Z, where W1 and W2 are the n × n diagonal matrices
W1 = [(ν +1)/(ν +3)]diag{hig

′2
i } and W2 = [ν/(2ν +6)]diag{(h′

i/hi)
2}. In

view of block-diagonality of K, the n−1 biases of β̂ and γ̂ can be obtained
in simple forms.

Our first goal is to derive the second-order bias of the MLE β̂ of β. To
do so, we will follow the approach in Cordeiro and Vasconcellos (1999). Let
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B(β̂s) be the n−1 bias of β̂s. From the general formula of Cox and Snell
(1968) and the block-diagonality of K, we have

B(β̂s) =
∑

r,t,u

κsrκtu

{

κ
(u)
rt − 1

2
κrtu

}

+
∑

r,T,U

κsrκTU

{

κ
(U)
rT − 1

2
κrTU

}

. (3.1)

The second term in (3.1) vanishes, since κrTU = κrT = 0. Thus, the

second-order bias of β̂ will be the same, regardless of whether the dis-
persion parameters of the observations are known or unknown. Now, by
rearranging the first term in (3.1), we have

B(β̂s) = − ν + 1

2(ν + 3)

∑

i

∑

r

aiκ
srxir

∑

t,u

xitκ
tuxiu,

where ai = hig
′
ig

′′

i for i = 1, . . . , n.
If we let xi be the p× 1 vector representing the i-th column of XT and

ρs represents the s-th column of the identity matrix Ip, then, the above
equation can be written in matrix notation as

B(β̂s) = − ν + 1

2(ν + 3)
ρT

s K−1
β

∑

i

ai(x
T
i K−1

β xi)xi.

Now, we define cov(η̂)=XK−1
β XT , W3 =diag{hig

′
ig

′′

i } and δ=−d{[(ν+

1)/(2ν+6)]W−1
1 W3cov(η̂)}, where d(A) represents a vector whose elements

are the diagonal elements of A. Note that cov(η̂) represents the large-

sample covariance matrix of η̂ = Xβ̂. The expression for B(β̂) can then be
written as

B(β̂) = (XT W1X)−1XT W1δ. (3.2)

The bias B(β̂) can be simply obtained from a generalized linear regres-
sion of δ on X, having W1 as a weight matrix. It has also advantages for
algebraic purposes because it only involves products and inversion of ma-
trices. Equation (3.2) depends on the parameters only through the mean
link function gi, the first and second partial derivatives with respect to the
linear predictor ηi, and the dispersion link function hi for i = 1, . . . , n.
Although (3.2) has a simple form, its interpretation is not straightforward.

One can use equation (3.2) with a computer algebra system such as
MATHEMATICA (Wolfram, 1991) or MAPLE (Abell and Braselton, 1994)

to obtain closed-form expressions for B(β̂).

All quantities have to be evaluated at β̂ and γ̂. It is then possible to
obtain the bias-corrected estimate as β̃ = β̂ − B̂(β̂), where B̂(β̂) denotes

the right-hand side of (3.2) evaluated at β̂ and γ̂. The corrected estimate

β̃ is expected to have better sampling properties than β̂ in small samples.
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4 Biases of the Estimate of γ

We now proceed to the calculation of the n−1 bias of the MLE γ̂. For this
purpose, we consider again Cox and Snell’s formula. Since the information
matrix for θ = (βT , γT )T is block-diagonal, we can write the n−1 bias of
γ̂A as

B(γ̂A)=
∑

R,t,u

κA,Rκt,u

{

κ
(u)
Rt −

1

2
κRtu

}

+
∑

R,T,U

κA,RκT,U

{

κ
(U)
RT − 1

2
κRTU

}

.

(4.1)
Let B1(γ̂A) denote the first sum of (4.1). We have

B1(γ̂A) =
(ν + 1)(ν + 2)

2(ν + 3)(ν + 5)

∑

R,t,u

κA,Rκt,u
∑

i

biziRxitxiu,

where bi = g′2i h′
i for i = 1, . . . , n. Let zi and ρA be the i-th column of ZT

and the Ath column of the identity matrix Iq. Then, the above equation
can be rearranged as

B1(γ̂A) =
(ν + 1)(ν + 2)

2(ν + 3)(ν + 5)
ρT

AK−1
γ

∑

i

bi(x
T
i K−1

β xi)zi. (4.2)

For the second sum in (4.1), B2(γ̂A), we write

B2(γ̂A) =
∑

R,T,U

κA,RκT,U
∑

i

ciziRziT ziU ,

where ci = {ν(ν + 2)/[2(ν + 3)(ν + 5)]}(h′
i/hi)

3 − {ν/[4(ν + 3)]}h′
ih

′′

i /h2
i .

Then, we obtain

B2(γ̂A) = ρT
AK−1

γ

∑

i

ci(z
T
i K−1

γ zi)zi. (4.3)

Adding B1(γ̂A), given by (4.2), to the expression for B2(γ̂A), given by
(4.3), we find the n−1 bias of the MLE γ̂. This n−1 bias can also be written
in a neat form, defining the matrices W4 = {[(ν + 1)(ν + 2)]/[2(ν + 3)(ν +
5)]}diag{g′2i h′

i} and W5 = ν(ν+2)/[2(ν+3)(ν+5)]diag{(h′
i/hi)

3}−ν/[4(ν+

3)]diag{h′
ih

′′

i /h2
i }. Consider also cov(τ̂) = ZK−1

γ ZT , which represents the
large-sample covariance matrix of τ̂ = Zγ̂, the MLE of τ. Now let ξ =
d{W−1

2 [W4cov(η̂) + W5cov(τ̂)]}. Then, we can obtain the n−1 bias of the
MLE γ̂ as

B(γ̂) = (ZT W2Z)−1ZT W2ξ. (4.4)
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Equation (4.4) can be written as the vector of coefficients from a gen-
eralized least-squares regression of ξ on Z using W2 as weight matrix.
Observe that the expression for the n−1 bias of γ̂ in (4.4) depends on the
model matrices X and Z and on the mean link function gi and its first
derivative and on the dispersion link function hi and its first two deriva-
tives. Hence, both formulae (3.2) and (4.4) can be very easily obtained
from the defined model. Also, if closed-form expressions for Kβ and Kγ

are available, we can obtain closed-from expressions for B(β̂) and B(γ̂)
from (3.2) and (4.4) using a computer algebra system such as MAPLE or
MATHEMATICA.

Clearly, all quantities in (4.4) have to be evaluated at θ̂ = (β̂T , γ̂T )T in

order to obtain the corrected MLE γ̃ = γ̂ − B̂(γ̂), where B̂(γ̂) is the value

of (4.4) at θ̂. The corrected estimate γ̃ is expected to be closer to the true
parameter vector than the unadjusted estimate γ̂.

5 Special Cases

It is important to consider here some special cases for which formulae (3.2)
and (4.4) can be simplified. We begin with the linear model. If the model

is linear, then g
′′

i = 0, for all i = 1, . . . , n. Hence, the W3 matrix defined
in Section 3 becomes a zero matrix, and consequently we also have δ = 0.
Therefore, the second-order biases of the MLEs of the regression coefficients
for the location parameters are zero for the linear model, that is B(β̂) = 0,
for this case. This result extends the result in Cordeiro, Vasconcellos and
Santos (1998) for a possible heteroskedastic model.

We now consider the homoskedastic model. This case can be conve-
niently represented if we define Z as an n × 1 vector of ones and h as the
identity function. Here we have q = 1 and a constant φ = τ = γ for all
observations. We turn here to the study by Cordeiro, Vasconcellos and
Santos (1998) of the general nonlinear homoskedastic Student t regression
model. In their model, the observations are assumed to be independent and
each observation yi has a t density function with location parameter µi,
precision parameter φ and ν degrees of freedom. The location µi is given
by the systematic component µi = fi(ei, β), where the fi’s are possibly
nonlinear twice continuously differentiable functions, the ei’s are vectors
of explanatory variables and β is a vector of unknown parameters. It is
shown in that paper that the second-order bias of the MLE β̂ of β is given
by

B(β̂) = (F T F )−1F T d, (5.1)

where F is the n× p matrix F =
{

∂fi

∂βj

}

, d = − 1
2φ

(ν+3)
(ν+1)Hvec((F T F )−1), H

is the n×p2 matrix H =
{

∂2fi

∂βj∂βk

}

and vec is the operator that transforms a
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matrix into a vector by stacking the columns of the matrix, one underneath
the other.

We apply formula (5.1) for our particular form of homoskedastic model.
For our particular model, the matrix F will have as its ith row the vector
g′ix

T
i , where xT

i is the ith row of X. Also, the matrix H will have as its ith

row the vector g
′′

i (xi ⊗ xi)
T , where ⊗ represents the Kronecker product.

Therefore, if we let D1 = diag{g′2i } and D2 = diag{g′ig
′′

i },we can see, after
a few calculations that (5.1) will reduce to

B(β̂) = (XT D1X)−1XT D1α,

where α is the vector α = −(1/2)D−1
1 D2d{XK−1

β XT }. But this is exactly

the same result that is obtained by applying (3.2) to this particular case.
Therefore, the particularization of the formula in Cordeiro, Vasconcellos
and Santos (1998) for this special nonlinear model leads to the same ex-

pression for B(β̂) from the particularization of (3.2) for this homoskedastic
model. This provides a partical check of (3.2).

We now turn to the n−1 bias B(φ̂). Applying (4.4) for this particular
case, it follows after some algebra that

B(φ̂) =
(p + 2)(ν + 2)(ν + 3)

nν(ν + 5)
φ ,

which coincides with Cordeiro, Vasconcellos and Santos’ (1998) equation
(4). This provides a partial check of (4.4).

Another interesting simplification occurs in the special case where h(τ)=

exp(τ). If this is the case, then, hi = h′
i = h

′′

i and it is not difficult to see
that (4.4) can be written here as

B(γ̂) = (ZTZ)−1ZT ζ,

where ζ = [(ν −1)/(2ν +10)]d{ZK−1
γ ZT}+{[(ν +2)(ν +3)]/[ν(ν +5)]}W1

d{XK−1
β XT }. This shows that, when the heteroskedasticity is modelled

exponentially, the second-order bias of the γ parameters can be obtained by
an ordinary linear least squares formula. Similar results have been obtained
by Cordeiro (1993b) and also by Vasconcellos and Cordeiro (1997).

6 Simulation Results

We now perform a Monte Carlo simulation study of a Student t regression
model, where the observations have means µi = exp(β0 + β1xi) and pre-
cisions φi = exp(γ0 + γ1zi), xi and zi being the values of the explanatory
variables for each observation, assumed known.
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Without loss of generality the true parameters were taken as β = (1, 1)T

and γ = (1, 1)T and the values of the covariates xi and zi, i = 1, ..., n, were
chosen as random draws from a normal N(0, 1) distribution, its values be-
ing held constant throughout the simulations with equal sample sizes. The
number of observations was set at n = 20, 40 and 60. The number of de-
grees of freedom was fixed as ν = 4. The simulations and the calculations
of the MLEs and their biases were performed using the version 2.00 of the
Ox programming language (Doornik, 1999). We carried out the simula-
tions based on 10,000 replications. In each of the 10,000 replications, we
computed the MLEs β̂ and γ̂ by maximizing the log-likelihood using the
MaxBFGS routine of Ox. Then, we computed B(β̂) and B(γ̂) from formu-

lae (3.2) and (4.4), with all quantities evaluated at θ̂ = (β̂T , γ̂T )T . For each
n, we computed the sample means and standard errors of the MLEs and
of the corrected estimates β̃ and γ̃, based on their values from the 10,000
trials.

Table 1

Uncorrected and corrected estimates for a simulated model

n β0 = 1 β1 = 1 γ0 = 1 γ1 = 1
20 1.001 0.9981 1.268 1.234

(0.0490) (0.0540) (0.590) (0.461)
1.001 0.9987 1.132 1.068

(0.0490) (0.0539) (0.557) (0.461)

40 0.9999 1.000 1.011 1.103
(0.0141) (0.0298) (0.313) (0.308)
0.9999 1.000 1.001 1.016

(0.0141) (0.0298) (0.303) (0.308)

60 1.000 0.9993 1.025 1.070
(0.0171) (0.0292) (0.273) (0.248)
1.000 0.9996 1.001 1.009

(0.0171) (0.0292) (0.265) (0.248)

Table 1 gives the sample means of both uncorrected and corrected es-
timates with their respective standard errors in parentheses. Overall, it
is clear from the figures in this table that the bias-corrected estimates are
closer to the true parameter values than the unadjusted estimates. Thus,
the second-order bias correction seems very effective in bringing the cor-
rected MLEs toward to their true values. It should be noted that reasonably
large sample sizes are really necessary for uncorrected estimates of the γ0
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and γ1 parameters to become accurate. It is also clear from these figures
that the corrected estimates tend to have slightly smaller standard errors
than the original ones for samples of small to moderate size. In these cases,
the bias correction can lead to substantial improvement in terms of bias
and mean square error.

7 Example

We discuss an example with real data, showing the usefulness of formula
(4.4). The dataset used here was taken from Myers (1990). It consists of
observations taken at twenty-five Bachelor Officers Quarters sites of the
U.S. Navy. The dependent variable (y) measures monthly man-hours at
the twenty-five different sites. In our example, we try to explain y with a
linear regression that uses three explanatory variables: the average daily
occupancy (x1), the weekly hours of service desk operation (x2) and the
number of building wings at the respective sites (x3). The observations are
assumed to be independent.

We begin by trying the ordinary least squares fit, where we assume
the observational variance to be constant throughout the sample. Let X
be the 25 × 4 matrix containing the three explanatory variables and the
intercept, each row representing a different observed site. Also, let y be
the 25 × 1 column vector consisting of the observations of the dependent
variable. The graph in the next page shows the plot of the R-Student
residuals against the fitted values, for the twenty-five observations in the
sample. The vector ŷ of fitted values is given by ŷ = X(X ′X)−1XT y, and
the R-Student residual for the ith observation is computed as

yi − ŷi

s−i

√
1 − hii

.

Here, hii is the ith diagonal value of the hat matrix X(X ′X)−1XT . Also,
the quantity s−i represents the estimate of the standard error of the obser-
vations from the twenty-four sized sample that is obtained by deleting the
ith case.

From the graph in Figure 1, it can be seen that the R-Student residu-
als corresponding to the observations labeled as 23 and 24 have very large
absolute values, which indicates that those observations may be outliers.
Also, the pattern of the residuals, with large R-Student absolute values cor-
responding to large fitted values suggests a possible heteroskedastic model.

We, then, consider two linear regression heteroskedastic models. The
first one is a normal model where the observations are assumed independent
and normally distributed and the precision (inverse variance) of observation
i is modelled by σ−2

i = exp(γ0+ γ1xi1 +γ2xi2 +γ3xi3), with xi1, xi2 and xi3
standing for the values of x1, x2 and x3, respectively, at the ith site. The
row vector (1, xi1, xi2, xi3) corresponds to the ith row of X. The second
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model is a Student t linear regression model where the observations are
assumed independent and Student t distributed with ν = 4 degrees of
freedom, the precision of observation i being modelled by φi = exp(δ0+
δ1xi1 + δ2xi2 + δ3xi3). All parameters in both models are estimated using
maximum likelihood.
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Figure 1

R-Student residuals for OLS

Tables 2 and 3 show the estimation results for both models. Also,
for the normal model, the estimated regression equation is ŷ = 126 +
22.1x1+0.428x2−9.95x3, while, for the t(4) model, the estimated regression
equation is ŷ = 134+20.8x1 +0.548x2−6.92x3, only slightly different from
the first equation.

From Table 2, we have the maximum likelihood estimates of the pre-
cision parameters, as well as the bias-corrected estimates, for the normal
model. The bias-corrected estimates were obtained with the expressions
derived in Vasconcellos and Cordeiro (1997). The asymptotic standard
errors are obtained from the estimated information matrix. From the ta-
ble, it is readily seen that the estimates of the precision parameters are
indeed significant, which means that the heteroskedasticity hypothesis is
very plausible. Also, the bias to standard error relation is large enough to
justify the bias correction for all estimates.
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Table 2

Results obtained for the normal model

γ0 γ1 γ2 γ3

Maximum likelihood estimates −9.966 −0.0111 −0.00898 0.0606

Bias corrected estimates −10.348 −0.0116 −0.00648 0.0405

Asymptotic standard errors 0.515 0.00141 0.00384 0.0201

Bias to s.e. ratio 0.742 0.324 −0.651 1.003

Table 3

Results obtained for the Student t(4) model

δ0 δ1 δ2 δ3

Maximum likelihood estimates −9.302 −0.0121 −0.0130 0.117

Bias corrected estimates −9.624 −0.0121 −0.0107 0.0926

Asymptotic standard errors 0.963 0.00263 0.00719 0.0376

Bias to s.e ratio 0.334 0.000798 −0.318 0.643

From Table 3, it can be seen that the MLEs of the precision parame-
ters, as well as the bias-corrected parameters for the Student t(4) model.
The bias corrected estimates were obtained with formula (4.4) and the
asymptotic standard errors from the estimated information matrix. We
can see that estimates of the precision parameters are also significant for
this model. Also, from the bias to standard error relation, we can conclude
that, apart from δ1, the bias correction of the estimates seems useful in
this case.

When comparing the normal and Student t(4) regression procedures,
we see that the estimated regression equations do not differ too much. Also,
for each explanatory variable, its respective estimated coefficient has the
same sign in both models. The same thing can be verified for the estimated
precision parameters that model heteroskedasticity for both models. In
addition, it is seen that the estimated biases of the parameters relative
to their estimated standard errors are much smaller in magnitude for the
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Student t(4) model than for the normal model. This is an indication that
the Student t(4) regression is more adequate here, which seems reasonable,
since we have detected the possible presence of outliers in the sample.

All calculations were performed using the Ox matrix programming lan-
guage (Doornik, 1999).
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