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Summary

We discuss in this paper the development of various diagnostic methods in mul-
tivariate elliptical linear regression models. In particular, we show the invariance
property of some usual standardized residuals in the elliptical class of distribu-
tions. This invariance is also verified for some influence measures of dropping
observations, such as the Cook distance. We also discuss the computation of
the likelihood displacement as well as the normal curvature in the local influence
method. An example with real data is given for illustration.
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1 Introduction

Diagnostic methods for the normal linear regression model have been large-
ly investigated in the statistical literature (see, for instance, Belsley et al.,
1980; Cook and Weisberg, 1982; Atkinson, 1985 and Chatterjee and Hadi,
1988). The majority of the works have given emphasis in studying the
effect of eliminating observations on the results from the fitted model, par-
ticularly the parameter estimates. Alternatively, Cook (1986) has proposed
the local influence method to assess the effect on the parameter estimates
of small perturbations in the model. Several authors have extended the
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local influence method to various regression models. Some references are
Beckman et al.(1987), Lawrence (1988), Thomas and Cook (1990), Tsai
and Wu (1992), Paula (1993), Kim (1995), Galea at al. (1997), Fung and
Kwan (1997) among others.

The aim of this paper is to discuss the development of some traditional
diagnostic methods, such as the deletion of individual observations, resid-
ual analysis and local influence in multivariate elliptical linear regression
models. When the interest is only on the regression coefficients the diag-
nostic graphics are in general invariant with the error distribution so that
the well known graphics developed for the normal linear case can be applied
in the elliptical class. However, when the interest is also on the dispersion
parameter the diagnostic graphics depend on the error distribution. In the
application we compare the behavior of some graphics for two particular
models, Student-t and exponential power.

2 Elliptical linear regression model

The class of elliptical distributions has received an increasing attention
in the statistical literature (see, for instance, Fang et al, 1990; Fang and
Zhang, 1990; Fang and Anderson, 1990; Gupta and Varga, 1993; Arellano,
1994 and Leiva, 1998). We say that an (n × 1) random vector Y has an
elliptical distribution with an (n× 1) location parameter µ and an (n×n)
scale matrix Σ if its density function is expressed as

fY(y) = |Σ|−1/2g[(y − µ)TΣ−1(y − µ)], (2.1)

y ∈ Rn, where the function g : R → [0,∞) is such that
∫∞
0 un−1g(u2)du <

∞. The function g(·) is typically known as the density generator. For a
vector Y distributed according to the density (2.1) we use the notation
Y ∼ Eln(µ,Σ, g), or, simply, Y ∼ Eln(µ,Σ). In the case where µ = 0
and Σ = I, we obtain the spherical family of densities. This class of sym-
metric distributions includes the normal, Student-t, contaminated normal
and logistic (both, univariate and multivariate), among others, as consid-
ered, for example, by Fang et al. (1990). Table 1 below, taken from Fang
et al. (1990), reports examples of distributions in the elliptical family. The
notation c1, c2, c3, c4 and c5 is used to denote normalizing constants.

Some properties of the elliptical distributions may be found, for in-
stance, in Fang et al.(1990). A particular property given below will be
useful in some demonstrations.

Suppose Y ∼ Eln(0, I) and let T(Y) be a statistic. Then, from The-
orem 2.22 of Fang et al. (1990, p.51), the distribution of T(Y) remains
unchanged as long as Y ∼ Eln(0, I) provided that

T(kY)
d
= T(Y),∀k > 0,
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Table 1

Multivariate elliptical distributions

Distribution Notation Generating function

Normal Nn(µ,Σ) g(u) = c1e
−u/2, u ≥ 0

Student-t tn(µ,Σ, ν) g(u) = c2(1 + u/ν)−(ν+n)/2, u ≥ 0

Contaminated CNn(µ,Σ, δ, τ) g(u) = c1{(1 − δ)e−u/2+

Normal δτ−n/2e−u/(2τ)}, u ≥ 0

Cauchy Cn(µ,Σ) g(u) = c3(1 + u)−(n+1)/2, u ≥ 0

Logistic Ln(µ,Σ) g(u) = c4e
−u/(1 + e−u)2, u ≥ 0

Exponential Power PEn(µ,Σ, α) g(u) = c5e
−uα/2, u ≥ 0

where the operator
d
= indicates the same distribution. In this case T(Y)

d
=

T(Z), where Z ∼ Nn(0, I).
Consider now the linear regression model

Y = Xβ + ǫ,

where Y is a (n×1) vector of responses, X is a known (n×p) matrix of rank
p, β is a p-dimensional vector of parameters and ǫ is a p-dimensional error
vector with distribution Eln(0, φI), where φ is the scale parameter. Thus,
it follows that Y ∼ Eln(Xβ, φI). This is typically called the elliptical linear
regression model. If g(·) is a continuous and decreasing function then the
maximum likelihood estimators of β and φ are given, respectively, by (see
Fang and Anderson, 1990)

β̂ = (XT X)−1XTY and φ̂ = Q(β̂)/u0,

where Q(β) = (Y − Xβ)T (Y −Xβ) and u0 maximizes the function

hn(u) = un/2g(u), u ≥ 0. (2.2)

Typically, if g(·) in (2.2) is continuous and decreasing then its maximum
u0 exists and it is finite and positive. Moreover, if g(·) is continuous and
differentiable then u0 is the solution to (Fang and Anderson, 1990)

g′(u) +
n

2u
g(u) = 0,
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or, equivalently, the solution to the equation

n

2u
+ Wg(u) = 0, (2.3)

where Wg(u) = d log g(u)/du = g′(u)/g(u). It is easy to see that for the
normal and Student-t distributions u0 = n, while for the exponential power
u0 = (n/α)1/α. However, for the contaminated normal and logistic distri-
butions, u0 has to be obtained numerically. In the case of the logistic
distribution, for example, equation (2.3) yields

n

2u
= tanh

(

u

2

)

,

where tanh(·) denotes the hyperbolic tangent.
Using properties of the elliptical distributions we may show that

β̂ ∼ Eln(Xβ, φ(XT X)−1)

and

F =
(β̂ − β)T (XTX)(β̂ − β)

ps2
∼ Fp,(n−p),

where Fp,(n−p) denotes the F distribution with p and (n − p) degrees of

freedom and s2 = Q(β̂)/(n − p) = u0φ̂/(n − p). Then, an 100(1 − γ)%
confidence region for β, where 0 < γ < 1, is given by

R = {β ∈ IRp : (β̂ − β)T (XT X)(β̂ − β) ≤ ps2Fp,(n−p)(1 − γ)}, (2.4)

where Fp,(n−p)(1 − γ) denotes the 100(1 − γ)th quantile of the Fp,(n−p)

distribution.
In addition, the likelihood ratio statistic for testing H0 : Aβ = C

against H1 : Aβ 6= C, where A is a (q × p) matrix of rank q and C is a
(q × 1) vector of constants, takes the form

λ =
(Aβ̂ − C)T {A(XT X)−1AT }−1(Aβ̂ − C)

YT (In − P)Y
, (2.5)

where P = X(XT X)−1XT , (n − p)λ/q
H0∼ Fq,(n−p) and λ is independent of

g(·).
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3 Effects of individual observations

3.1 Residuals

In this section we discuss some properties of two standardized forms for
the ordinary residual in elliptical linear regression models. The vector of
ordinary residuals is defined by e = Y − Ŷ = (I − P)Y. Then, it follows
that

e ∼ Eln(0, φ(I − P)),

and in particular ei ∼ El(0, φ(1 − pii)), i = 1, . . . , n. We may define two
standardized versions for the residual ei, namely

ri =
ei

s
√

1 − pii

and
ti =

ei

s(i)

√
1 − pii

,

i = 1, . . . , n, where s =
√

u0φ̂/(n − p) and s(i) =
√

u∗
0φ̂(i)/(n − p − 1), with

u∗
0 denoting the maximum of the function hn−1(u) and φ̂(i) = Q(i)(β̂(i))/u

∗
0

denotes the maximum likelihood estimator of φ by dropping the ith obser-
vation. Furthermore, we may note that ri(kǫ) = ri(ǫ) and ti(kǫ) = ti(ǫ),
∀k > 0. Thus, by assuming ǫ ∼ Eln(0, φI), it follows from the property
given in Section 2 that

ti ∼ t(n−p−1)

and

bi =
r2
i

(n − p)
∼ Beta(1/2, (n − p − 1)/2),

i = 1, . . . , n, where t(n−p−1) denotes the Student-t distribution with (n −
p − 1) degrees of freedom and ti and bi are independent of g(·). These
results show the invariance of ti and bi in the elliptical class.

Consider now the mean-shift perturbation in the elliptical model

Y = Xβ + diτ + ǫ,

where di denotes an (n × 1) vector of zeros with one at the ith position.
Then, using (2.5), the F statistic to assess if the ith observation is an
outlier, that corresponds in testing H0 : τ = 0 against H1 : τ 6= 0, is given
by

F(i) = t2i ∼ F1,(n−p−1) under H0.

The demonstration of this result is similar to the one for the normal linear
case (see, for instance, Chatterjee and Hadi, 1988).
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3.2 Cook distance

In order to assess the influence of the ith observation on β̂, Cook (1977)

proposed a distance between β̂ and β̂(i) based on the confidence region for

β in the normal linear case, where β̂(i) denotes the maximum likelihood
estimator of β by dropping the ith observation. This distance takes here
the form

Di = (β̂ − β̂(i))
T (XT X)(β̂ − β̂(i))/ps2

=

(

pii

1 − pii

)

r2
i

p
,

i = 1, . . . , n, and since it depends only on the invariant quantities pii and
ri it is also invariant in the elliptical class.

3.3 Scale ratio

Similarly to the normal linear case (see, for instance, Belsley et al., 1980) we

can assess the influence of the ith observation on the scale matrix D(β̂) =

φ̂(XT X)−1, by using the influence measure

SCRi =
det{φ̂(i)(X

T
(i)X(i))

−1}
det{φ̂(XTX)−1}

,

i = 1, . . . , n, where X(i) denotes the matrix X without the ith row. Since

det(XT
(i)X(i)) = (1 − pii)det(XTX) and

φ̂(i)

φ̂
=

(

u0

u∗
0

)

{

1 − r2
i

(n − p)

}

=

(

u0

u∗
0

)

(1 − bi),

we obtain

SCRi =

(

u0

u∗
0

)p (1 − bi)
p

(1 − pii)
,

i = 1, . . . , n, that depends on the quantities u0 and u∗
0 which are not

invariant. Therefore SCRi is also not invariant in the elliptical class.

3.4 Andrews-Pregibon measure

Andrews and Pregibon (1978) proposed a particular influence measure to
detect remote observations in the subspace explained by the response and
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explanatory variable vectors. This measure takes, in the elliptical class,
the form

AP(i) =
Q(i)(β̂(i))det{XT

(i)X(i)}
Q(β̂)det(XT X)

= (1 − pii)(1 − bi),

i = 1, . . . , n, and since it depends only on the invariant quantities pii and
bii it is also invariant in the elliptical class.

4 Likelihood displacement

Let L(θ) denote the log-likelihood function for the elliptical linear model,

where θ = (βT , φ)T . The likelihood displacement (see, for instance, Cook
and Weisberg, 1982 and Cook et al., 1988) is defined by

LDi(θ) = 2{L(θ̂) − L(θ̂(i))},

where θ̂(i) denotes the maximum likelihood estimator of θ by dropping the
ith observation.

For the elliptical model we find

L(θ) = −n

2
log(φ) + log

[

g

{

Q(β)

φ

}]

, (4.1)

which evaluated at θ̂ leads to

L(θ̂) = −n

2
log(φ̂) + log{g(u0)}.

Evaluating (4.1) at θ̂(i) = (β̂
T
(i), φ̂(i))

T we obtain

L(θ̂(i)) = −n

2
log(φ̂(i)) + log

[

g

{

Q(β̂(i))

φ̂(i))

}]

.

Since
Q(β̂(i))

φ̂(i)

= u∗
0

{

1 +
bi

(1 − pii)(1 − bi)

}

,

we get

L(θ̂(i)) = −n

2
log(φ̂(i)) + log

[

g

{

u∗
0

(

1 +
bi

(1 − pii)(1 − bi)

)}]

,



174 Brazilian Journal of Probability and Statistics, 14, 2000

and consequently the distance LDi(θ) may be expressed in the form

LDi(θ) = nlog

{(

u0

u∗
0

)

(1 − bi)

}

+2log

[

g(u0)/g

{

u∗
0

(

1 +
bi

(1 − pii)(1 − bi)

)}]

,

i = 1, . . . , n. Note that LDi(θ) is not invariant in the elliptical class.
In particular for the Student-t distribution we have g(u) = c2(1 +

u/ν)−(n+ν)/2, u0 = n and u∗
0 = n − 1. Then,

LDi(θ) = nlog

{(

n

n − 1

)

(1 − bi)

}

+(n+ν)log

[{

ν+
(n−1)(piibi+1−pii)

(1 − pii)(1 − bi)

}

/(n+ν)

]

. (4.2)

When ν → ∞ expression (4.2) reduces to

LDi(θ) = nlog

{(

n

n − 1

)

(1 − bi)

}

+

(

n − 1

1 − pii

)(

bi

1 − bi

)

− 1,

which corresponds to the normal linear case, as expected (see, for instance,
Cook et al., 1988).

It may be also shown that LDi(θ) takes, for the exponential power
model, the form

LDi(θ) = nlog

{

(

n

n − 1

)1/α

(1 − bi)

}

+
1

α

{

(n − 1)

(

1 +
bi

(1 − pii)(1 − bi)

)α

− n

}

.

4.1 Parameter subsets

Suppose now we have interest on the parameter vector β with φ being
considered as a nuisance parameter. The likelihood displacement is defined
in this case as (see, for instance, Cook et al., 1988)

LDi(β | φ) = 2{L(θ̂) − max
φ

L(β̂(i), φ)}. (4.3)

We may show that the value of φ which maximizes L(β̂(i), φ) is φ̃ =

Q(β̂(i))/u0. Then, expression (4.3) reduces to

LDi(β | φ) = nlog

(

1 +
pDi

(n − p)

)

, (4.4)
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i = 1, . . . , n, that agrees with expression (4) given in Cook et al. (1988).
It is interesting to note that (4.4) is invariant in the elliptical class.

Similarly, we may show that

LDi(φ | β) = nlog(φ̂(i)/φ̂) + 2log[g(u0)/g{u0φ̂/φ̂(i)}], (4.5)

i = 1, . . . , n, which depends on the elliptical distribution. In the normal
case g(u) = c1exp(−u/2), u0 = n and u∗

0 = n − 1 so that (4.5) reduces to

LDi(φ | β) = nlog

{(

n

n − 1

)

(1 − bi)

}

+

(

nbi − 1

1 − bi

)

, (4.6)

i = 1, . . . , n. As expected, expression (4.6) agrees with expression (11)
given in Cook et al. (1988) for the normal linear model.

5 Local influence

Let L(θ) denote the log-likelihood function from the postulated model (here
θ = (βT , φ)T ), and let ω be a (q × 1) vector of perturbations restricted to
some open subset Ω ∈ IRq. The perturbations are made on the likelihood
function, such that it takes the form L(θ|ω). Denoting the vector of no
perturbation by ω0, we assume L(θ|ω0) = L(θ). To assess the influence of

the perturbations on the maximum likelihood estimate θ̂, one may consider
the likelihood displacement

LD(ω) = 2{L(θ̂) − L(θ̂ω)},

where θ̂ω denotes the maximum likelihood estimate under the model L(θ|ω).
In some situations, though, it may be of interest to assess the influence

on a subset θ1 of θ = (θT
1 ,θT

2 )T . For example, one may have interest on
θT

1 = (β1, . . . , βp)
T or θ1 = φ. In these cases, the likelihood displacement

is defined as
LD1(ω) = 2[L(θ̂) − L{θ̂1ω , θ̂2(θ̂1ω)}],

where θ̂1ω is obtained from θ̂ω = (θ̂
T
1ω , θ̂

T
2ω)T and θ̂2(θ̂1ω) is the maxi-

mum likelihood estimate of θ2 for θ̂1ω fixed in the perturbed model.
The idea of local influence (Cook, 1986) is concerned in characterizing

the behavior of LD(ω) around ω0. The procedure consists in selecting a
unit direction ℓ, ‖ ℓ ‖= 1, and then to consider the plot of LD(ω0 + aℓ)
against a, where a ∈ IR. This plot is called lifted line. Note that, since
LD(ω0) = 0, LD(ω0 + aℓ) has a local minimum at a = 0. Each lifted line
can be characterized by considering the normal curvature Cℓ(θ) around a =
0. This curvature is interpreted as the inverse radius of the best fitting circle
at a = 0. The suggestion is to consider the direction ℓmax corresponding to
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the largest curvature Cℓmax

(θ). The index plot of ℓmax may reveal those
observations that under small perturbations exercise notable influence on
LD(ω).

Cook(1986) showed that the normal curvature at the direction ℓ takes
the form

Cℓ(θ) = 2|ℓT∆T (L̈)−1∆ℓ|, (5.1)

where −L̈ is the observed Fisher information matrix for the postulated
model (ω = ω0) and ∆ is the (p + 1) × q matrix with elements

∆ij =
∂2L(θ|ω)

∂θi∂ωj
,

evaluated at θ = θ̂ and ω = ω0, i = 1, . . . , p + 1 and j = 1, . . . , q.
Therefore, the maximization of (5.1) is equivalent to finding the largest

eigenvalue Cℓmax

of the matrix B = ∆T (L̈)−1∆, and ℓmax is the corre-
sponding eigenvector.

For the subset θ1, the curvature at the direction ℓ is given by

Cℓ(θ1) = 2|ℓT∆T (L̈−1 − B22)∆ℓ|,

where B22 is defined as

B22 =

(

0 0

0 L̈−1
22

)

,

and L̈22 is obtained from the partition of L̈ according to the partition of θ.
The eigenvector ℓmax corresponds to the largest eigenvalue of the matrix
B = ∆T (L̈−1 − B22)∆.

Recently, Fung and Kwan (1997) presented an interesting discussion on
the application of the local influence method for various influence measures.
They showed that an influence measure, namely T̂ω , is scale invariant if
Γ̇ = ∂T̂ω/∂ω|ω=ω0

= 0. When this derivative is non-zero the ordering
among the components of ℓmax is not necessarily preserved under changes
in the scale. In particular, for the likelihood displacement, we have Γ̇ =
∂L(β̂ω)/∂ω|ω=ω0

= 0. This property also follows, for instance, for the
influence measures proposed by Thomas and Cook (1990) and Paula (1993).
But it does not hold for other influence measures as pointed out by Fung
and Kwan (1997).

5.1 Curvature derivation

We assume the perturbation scheme ǫ ∼ Eln(0, φD−1(ω)), where D(ω) =
diag{ω1, . . . , ωn} with ωi denoting the weight corresponding to the ith case
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and ω0 = 1. The normal curvature in the direction ℓ for the vector θ is
given by (see Galea et al., 1997)

Cℓ(θ) = 2|ℓT [B1 + B2]ℓ|,

where

B1 = (2/φ̂)Wg(u0)D(e)PD(e)

and

B2 =
1

φ̂2

[Wg(u0) + u0W
′
g(u0)]

2

[n2 + u0{2Wg(u0) + u0W ′
g(u0)}]

D(e)eeT D(e).

In particular, if we are interested in the vector β, the normal curvature in
the direction ℓ yields

Cℓ(β) =
4

φ̂
|Wg(u0)||ℓTD(e)PD(e)ℓ|,

where D(e) = diag{e1, . . . , en}. Then, the index plot of ℓmax obtained
from the matrix D(e)PD(e) may show how to perturb D(ω) to obtain
larger changes in the regression coefficients.

Similarly, the normal curvature for φ in the direction ℓ takes the form

Cℓ(φ) =
2

φ̂2
|Cω||ℓTD(e)eeT D(e)ℓ|,

where

Cω = [Wg(u0) + u0W
′
g(u0)]

2/[
n

2
+ u0{2Wg(u0) + u0W

′
g(u0)}].

In this case, for the largest curvature,

ℓmax ∝ D(e)e,

which means that observations with large values for e2
i are most influential

on φ̂.
Therefore, since e is invariant in the elliptical class the vector ℓmax is

invariant when we are interested in the vector β or in the scale parameter
φ. However, if we are interested in both, β and φ, the vector ℓmax depends
on the elliptical distribution under consideration.
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6 Application

As illustration consider the data set reported by Ruppert and Carroll
(1980) on the salinity of water during the spring in Pamlico Sound, North
Carolina. The response Y was the biweekly salinity, and the explanatory
variables were salinity lagged 2 weeks, x1, a dummy variable, x2, for the
time period and the river discharge, x3. Twenty-eight observations were
considered. The value of x1i may differ from yi−1, since the data are not a
contiguous sequence. Several authors have analyzed this data set, particu-
larly under the diagnostic viewpoint. The linear model

Yi = β0 + β1x1i + β2x2i + β3x3i + ǫi,

where ǫi follows an appropriate symmetric distribution, has been adopted.
Atkinson (1985), for instance, assumed a normal distribution for ǫi

and using deletion diagnostic methods found cases 16 and 5 as the most
influential on the parameter estimates. Davison and Tsai (1992) assumed
a univariate Student-t distribution with 3 degrees of freedom for ǫi and in
their deletion diagnostic analysis cases 16, 5 and 3 appeared as the most
influential. Galea et al. (1997) assumed that ǫ ∼ Eln(0, φI) and applied
the local influence method for assessing the influence of the observations
on θ̂, β̂ and φ̂ under some multivariate elliptical distributions. They found
case 16 as the most influential on β̂ and cases 9, 15, 16 and 17 most

influential on φ̂.
Our analysis will be restricted on the normal, Student-t and exponential

power distributions, which are the most well known in the elliptical class.
Figures 1 and 2 present the index plot of LDi(θ) under the exponential
power and Student-t distributions for α = 0.1, 0.5 and 1.2 and ν = 3, 30
and 100 degrees of freedom, respectively. We can notice from Figure 1 that
case 16 appears with more accentuated influence for α = 1.2 rather than
for α = 0.5 and 0.1. It may be due to the fact that the exponential power
distribution has lighter tails than the normal distribution as α becomes
greater than one. Similar tendency is observed in Figure 2. The influence
of observation 16 becomes less accentuated for small degrees of freedom.
Figures 3 and 4 present the index plot of LDi(φ | β). In these figures
we can notice similar tendencies to the ones observed in Figures 1 and 2,
respectively. The index plot of LDi(β | φ), that is invariant under the
elliptical distributions and is omitted here, points out observation 16 as
the most influential.

Figures 5a and 5b present the index plot of | ℓmax | for θ under the
exponential power distribution with α = 0.1 and 1.2. Note that case 16
appears most influential in both graphics. In Figures 5c and 5d one has
the index plot of | ℓmax | for θ under the Student-t distribution with ν = 3
degrees of freedom and under the normal distribution. Similarly to the
exponential power distribution case 16 is influential in both situations.
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Figure 1

Index plot of LDi(θ) for the exponential power distribution with
α = 0.1 (−△−), α = 0.5 (− ◦ −) and α = 1.2 (−⊓−).
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Figure 2

Index plot of LDi(θ) for the Student-t distribution with ν = 3
(−△−), ν = 30 (− ◦ −) and ν = 100 (−⊓−) degrees of freedom.
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Figure 3

Index plot of LDi(φ | β) for the exponential power distribution
with α = 0.1 (−△−), α = 1.0 (− ◦ −) and α = 3.0 (−⊓−).
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Figure 4

Index plot of LDi(φ | β) for the Student-t distribution with ν = 3
(−△−), ν = 30 (− ◦ −) and ν = 100 (−⊓−) degrees of freedom.
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Figure 5

Index plot of |ℓmax| for θ under the exponential power distribution
with α = 0.1 (a) and α = 1.2 (b), Student-t distribution with ν = 3
degrees of freedom (c) and normal distribution (d).
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7 Conclusions

Even though robustness is a more generic subject that involves aspects,
which are not directly treated in this work, it is interesting to note from
the example discussed in the last section the evident superiority of the
deletion method over the local influence method in the sense of selecting
the less sensitive elliptical model to the influential observations. For exam-
ple, when the no invariant measure LDi(θ) is used, the Student-t model
with 3 degrees of freedom is less sensitive than the Student-t models with
higher degrees of freedom to the influential observation 16. Similar ten-
dency occurs with the exponential power model. In this case, the models
with smaller values for the parameter α are less sensitive to the influential
observations than the models with larger values of α. Nevertheless, it is
still open to discussion how to select between the “best” Student-t model
and the “best” exponential power model.

Another important point that remains to be examined is on the defi-
nition of an appropriate residual capable of distinguishing among the el-
liptical distributions. As it was shown in Section 3.1 the residuals ti and
bi are invariant in the elliptical class, so that they should not be used to
select, among the elliptical distributions, one more appropriate to explain
the responses. We think that defining residuals by using the log-likelihood
function may be an interesting topic for future investigation. A possible
suggestion would be the study of the deviance residual distribution (see,
for instance, Davison and Gigli, 1989) in the elliptical class.

Further work on influence diagnostic in univariate elliptical linear mod-
els which assume, in contrast with the class considered in this work, inde-
pendent distributions for the responses is being investigated by the authors
and will be the subject of an incoming paper. However, such models do
not enjoy the invariance property which is shared in the multivariate case.
For more details on univariate elliptical models see, for instance, Fang and
Anderson (1990).
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